Description:
Various versions of the prediction principle called
the “Black Box” are known. One of the strongest versions can
be found in [EM]. There it is formulated and proven in a model
theoretic way. In order to apply it to specific algebraic problems
it thus has to be transformed into the desired algebraic setting.
This requires intimate knowledge on model theory which often pre-
vents algebraists to use this powerful tool. Hence we here want to
present algebraic versions of this “Strong Black Box” in order to
demonstrate that the proofs are straightforward and that it is easy
enough to change the setting without causing major changes in the
relevant proofs. This shall be done by considering three different
applications where the obtained results are actually known.