Digital Repository of Luhansk Taras Shevchenko National University

Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. II

Show simple item record

dc.contributor.author Chernousova, Zh.T.
dc.contributor.author Dokuchaev, M.A.
dc.contributor.author Khibina, M.A.
dc.contributor.author Kirichenko, V.V.
dc.contributor.author Miroshnichenko, S.G.
dc.contributor.author Zhuravlev, V.N.
dc.date.accessioned 2015-10-20T11:27:56Z
dc.date.available 2015-10-20T11:27:56Z
dc.date.issued 2003-03-28
dc.identifier.uri http://hdl.handle.net/123456789/60
dc.description The main concept of this part of the paper is that of a reduced exponent matrix and its quiver, which is strongly connected and simply laced. We give the description of quivers of reduced Gorenstein exponent matrices whose number s of vertices is at most 7. For 2 6 s 6 5 we have that all adjacency matrices of such quivers are multiples of doubly stochastic matrices. We prove that for any permutation σ on n letters without fixed elements there exists a reduced Gorenstein tiled order ¤ with σ(E) = σ. We show that for any positive integer k there exists a Gorenstein tiled order ¤k with in¤k = k. The adjacency matrix of any cyclic Gorenstein order ¤ is a linear combination of powers of a permutation matrix P¾ with non-negative coefficients, where σ = σ(¤). If A is a noetherian prime semiperfect semidistributive ring of a finite global dimension, then Q(A) be a strongly connected simply laced quiver which has no loops. uk_UA
dc.language.iso en uk_UA
dc.publisher Луганский национальный университет им. Т. Шевченко uk_UA
dc.title Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. II uk_UA
dc.type Article uk_UA


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account