dc.contributor.author | Kulikova, O. V. | |
dc.date.accessioned | 2015-10-19T07:36:54Z | |
dc.date.available | 2015-10-19T07:36:54Z | |
dc.date.issued | 2002-12-09 | |
dc.identifier.uri | http://hdl.handle.net/123456789/48 | |
dc.description | Let N1 (respectively N2) be a normal closure of a set R1 = {ui} (respectively R2 = {vj}) of cyclically reduced words of the free group F(A). In the paper we consider geometric conditions on R1 and R2 for N1 ∩ N2 = [N1,N2]. In particular, it turns out that if a presentation < A | R1,R2 > is aspherical (for example, it satisfies small cancellation conditions C(p)&T(q) with 1/p + 1/q = 1/2), then the equality N1 ∩ N2 = [N1,N2] holds. | uk_UA |
dc.language.iso | en | uk_UA |
dc.publisher | Луганский национальный университет им. Т. Шевченко | uk_UA |
dc.title | On intersections of normal subgroups in free groups | uk_UA |
dc.type | Article | uk_UA |