dc.contributor.author | Kehayopulu, N. | |
dc.contributor.author | Ponizovskii, J. | |
dc.contributor.author | Tsingelis, M. | |
dc.date.accessioned | 2015-10-19T07:34:36Z | |
dc.date.available | 2015-10-19T07:34:36Z | |
dc.date.issued | 2002-12-06 | |
dc.identifier.uri | http://hdl.handle.net/123456789/47 | |
dc.description | In commutative rings having an identity element, every maximal ideal is a prime ideal, but the converse statement does not hold, in general. According to the present note, similar results for ordered semigroups and semigroups -without order- also hold. In fact, we prove that in commutative ordered semigroups with identity each maximal ideal is a prime ideal, the converse statement does not hold, in general. | uk_UA |
dc.language.iso | en | uk_UA |
dc.publisher | Луганский национальный университет им. Т. Шевченко | uk_UA |
dc.title | A note on maximal ideals in ordered semigroups | uk_UA |
dc.type | Article | uk_UA |