| dc.contributor.author | Erca, G. | |
| dc.contributor.author | Güloğlu, İ.Ş. | |
| dc.date.accessioned | 2020-01-14T08:32:22Z | |
| dc.date.available | 2020-01-14T08:32:22Z | |
| dc.date.issued | 2017 | |
| dc.identifier.uri | http://hdl.handle.net/123456789/4644 | |
| dc.description | Erca G. Finite groups admitting a dihedral group of automorphisms / G. Erca, İ.Ş.Güloğlu // Algebra and Discrete Mathematics. - 2017. - Vol. 23. - Number 2. - Рp. 223 - 229 | uk_UA |
| dc.description.abstract | Let D = hα, βi be a dihedral group generated by the involutions α and β and let F = hαβi. Suppose that D acts on a finite group G by automorphisms in such a way that CG(F) = 1. In the present paper we prove that the nilpotent length of the group G is equal to the maximum of the nilpotent lengths of the subgroups CG(α) and CG(β). | uk_UA |
| dc.language.iso | en | uk_UA |
| dc.publisher | ДЗ "ЛНУ імені Тараса Шевченка" | uk_UA |
| dc.relation.ispartofseries | математичні науки; | |
| dc.subject | dihedral group | uk_UA |
| dc.subject | fixed points | uk_UA |
| dc.subject | nilpotent length. | uk_UA |
| dc.title | Finite groups admitting a dihedral group of automorphisms | uk_UA |
| dc.type | Article | uk_UA |