dc.contributor.author |
Erca, G. |
|
dc.contributor.author |
Güloğlu, İ.Ş. |
|
dc.date.accessioned |
2020-01-14T08:32:22Z |
|
dc.date.available |
2020-01-14T08:32:22Z |
|
dc.date.issued |
2017 |
|
dc.identifier.uri |
http://hdl.handle.net/123456789/4644 |
|
dc.description |
Erca G. Finite groups admitting a dihedral group of automorphisms / G. Erca, İ.Ş.Güloğlu // Algebra and Discrete Mathematics. - 2017. - Vol. 23. - Number 2. - Рp. 223 - 229 |
uk_UA |
dc.description.abstract |
Let D = hα, βi be a dihedral group generated by
the involutions α and β and let F = hαβi. Suppose that D acts on a
finite group G by automorphisms in such a way that CG(F) = 1. In
the present paper we prove that the nilpotent length of the group G
is equal to the maximum of the nilpotent lengths of the subgroups
CG(α) and CG(β). |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
ДЗ "ЛНУ імені Тараса Шевченка" |
uk_UA |
dc.relation.ispartofseries |
математичні науки; |
|
dc.subject |
dihedral group |
uk_UA |
dc.subject |
fixed points |
uk_UA |
dc.subject |
nilpotent length. |
uk_UA |
dc.title |
Finite groups admitting a dihedral group of automorphisms |
uk_UA |
dc.type |
Article |
uk_UA |