Show simple item record

dc.contributor.author Stekolshchik, R.
dc.date.accessioned 2020-01-13T07:56:12Z
dc.date.available 2020-01-13T07:56:12Z
dc.date.issued 2017
dc.identifier.uri http://hdl.handle.net/123456789/4623
dc.description Stekolshchik R. Equivalence of Carter diagrams / R.Stekolshchik // Algebra and Discrete Mathematics. - 2017. - Vol. 23. - Number 1. - Рp.138-179 uk_UA
dc.description.abstract We introduce the equivalence relation ρ on the set of Carter diagrams and construct an explicit transformation of any Carter diagram containing l-cycles with l > 4 to an equivalent Carter diagram containing only 4-cycles. Transforming one Carter diagram Γ1 to another Carter diagram Γ2 we can get a certain intermediate diagram Γ′ which is not necessarily a Carter diagram. Such an intermediate diagram is called a connection diagram. The relation ρ is the equivalence relation on the set of Carter diagrams and connection diagrams. The properties of connection and Carter diagrams are studied in this paper. The paper contains an alternative proof of Carter’s classification of admissible diagrams. uk_UA
dc.language.iso en uk_UA
dc.publisher ДЗ "ЛНУ імені Тараса Шевченка" uk_UA
dc.relation.ispartofseries математичні науки;
dc.subject Dynkin diagrams uk_UA
dc.subject Carter diagrams uk_UA
dc.subject Weyl group uk_UA
dc.subject cycles uk_UA
dc.title Equivalence of Carter diagrams uk_UA
dc.type Article uk_UA


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account