Abstract:
In this paper we study the properties of positive series such that its terms are reciprocals of the elements of Jacobsthal-Lucas sequence (Jn+2 = 2Jn+1 + Jn, J1 = 2, J2 = 1).
In particular, we consider the properties of the set of incomplete sums as well as their applications. We prove that the set of incomplete sums of this series is a nowhere dense set of positive Lebesgue measure. Also we study singular random variables of Cantor type related to Jacobsthal-Lucas sequence.