Show simple item record

dc.contributor.author Kozerenko, S.
dc.date.accessioned 2019-12-18T11:20:17Z
dc.date.available 2019-12-18T11:20:17Z
dc.date.issued 2017
dc.identifier.uri http://hdl.handle.net/123456789/4567
dc.description Kozerenko S. On disjoint union of M-graphs / S. Kozerenko // Algebra and Discrete Mathematics. - 2017. - Vol. 24. - Number 2. - Рp. 262-273 uk_UA
dc.description.abstract Given a pair (X, σ) consisting of a finite tree X and its vertex self-map σ one can construct the corresponding Markov graph Γ(X, σ) which is a digraph that encodes σ-covering relation between edges in X. M-graphs are Markov graphs up to isomorphism. We obtain several sufficient conditions for the disjoint union of M-graphs to be an M-graph and prove that each weak component of M-graph is an M-graph itself. uk_UA
dc.language.iso en uk_UA
dc.publisher ДЗ "ЛНУ імені Тараса Шевченка" uk_UA
dc.relation.ispartofseries математичні науки;
dc.subject tree maps uk_UA
dc.subject Markov graphs uk_UA
dc.subject Sharkovsky’s theorem uk_UA
dc.title On disjoint union of M-graphs uk_UA
dc.type Article uk_UA


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account