dc.contributor.author | Darani, A.Y. | |
dc.contributor.author | Rahmatinia, M. | |
dc.date.accessioned | 2019-12-18T08:32:02Z | |
dc.date.available | 2019-12-18T08:32:02Z | |
dc.date.issued | 2017 | |
dc.identifier.uri | http://hdl.handle.net/123456789/4560 | |
dc.description | Darani A.Y. Some remarks on Φ-sharp modules / A. Y. Darani, M. Rahmatinia // Algebra and Discrete Mathematics. - 2017. - Vol. 24. - Number 2. - Рp. 209-220 | uk_UA |
dc.description.abstract | The purpose of this paper is to introduce some new classes of modules which is closely related to the classes of sharp modules, pseudo-Dedekind modules and T V -modules. In this paper we introduce the concepts of Φ-sharp modules, Φ-pseudo- Dedekind modules and Φ-T V -modules. Let R be a commutative ring with identity and set H = {M | M is an R-module and Nil(M) is a divided prime submodule of M}. For an R-module M ∈ H, set T = (R \ Z(M)) ∩ (R \ Z(R)), T(M) = T −1 (M) and P := (Nil(M) :R M). In this case the mapping Φ : T(M) −→ MP given by Φ(x/s) = x/s is an R-module homomorphism. The restriction of Φ to M is also an R-module homomorphism from M in to MP given by Φ(m/1) = m/1 for every m ∈ M. An R-module M ∈ H is called a Φ-sharp module if for every nonnil submodules N, L of M and every nonnil ideal I of R with N ⊇ IL, there exist a nonnil ideal I ′ ⊇ I of R and a submodule L ′ ⊇ L of M such that N = I ′L ′ . We prove that Many of the properties and characterizations of sharp modules may be extended to Φ-sharp modules, but some can not. | uk_UA |
dc.language.iso | en | uk_UA |
dc.publisher | ДЗ "ЛНУ імені Тараса Шевченка" | uk_UA |
dc.relation.ispartofseries | математичні науки; | |
dc.subject | Φ-sharp module | uk_UA |
dc.subject | Φ-pseudo-Dedekind module | uk_UA |
dc.subject | Φ- Dedekind module | uk_UA |
dc.subject | Φ-T V module | uk_UA |
dc.title | Some remarks on Φ-sharp modules | uk_UA |
dc.type | Article | uk_UA |