Show simple item record

dc.contributor.author Zhuchok, A.V.
dc.contributor.author Knauer, K.
dc.date.accessioned 2019-12-17T10:47:47Z
dc.date.available 2019-12-17T10:47:47Z
dc.date.issued 2018
dc.identifier.uri http://hdl.handle.net/123456789/4554
dc.description Zhuchok A.V. Abelian doppelsemigroups / A.V.Zhuchok, K.Knauer // Algebra and Discrete Mathematics. - 2018. - Vol. 26. - Number 2. - Рp.290-304 uk_UA
dc.description.abstract A doppelsemigroup is an algebraic system consisting of a set with two binary associative operations satisfying certain identities. Doppelsemigroups are a generalization of semi-groups and they have relationships with such algebraic structures as doppelalgebras, duplexes, interassociative semigroups, restrictive bisemigroups, dimonoids and trioids. This paper is devoted to the study of abelian doppelsemigroups. We show that every abelian doppelsemigroup can be constructed from a left and right commutative semigroup and describe the free abelian doppelsemigroup. We also characterize the least abelian congruence on the free doppel semigroup, give examples of abelian doppelsemigroups and find conditions under which the operations of an abelian doppelsemi group coincide. uk_UA
dc.language.iso en uk_UA
dc.publisher ДЗ"ЛНУ імені Тараса Шевченко" uk_UA
dc.relation.ispartofseries Математичні науки;
dc.subject doppelsemigroup uk_UA
dc.subject abelian doppelsemigroup uk_UA
dc.subject free abelian doppelsemigroup uk_UA
dc.subject free doppelsemigroup uk_UA
dc.subject interassociativity uk_UA
dc.subject semigroup uk_UA
dc.subject congruence uk_UA
dc.subject doppelalgebra uk_UA
dc.title Abelian doppelsemigroups uk_UA
dc.type Article uk_UA


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account