dc.contributor.author |
Kochubinska, E. |
|
dc.date.accessioned |
2019-12-17T09:11:31Z |
|
dc.date.available |
2019-12-17T09:11:31Z |
|
dc.date.issued |
2018 |
|
dc.identifier.uri |
http://hdl.handle.net/123456789/4553 |
|
dc.description |
Kochubinska E. Spectral properties of partial automorphisms of a binary rooted tree / E.Kochubinska // Algebra and Discrete Mathematics. - 2018. - Vol. 26. - Number 2. - Рp. 280-289 |
uk_UA |
dc.description.abstract |
We study asymptotics of the spectral measure of a randomly chosen partial automorphism of a rooted tree. To every partial automorphism x we assign its action matrix Ax. It is shown that the uniform distribution on eigenvalues of Ax converges weakly in probability to δ0 as n → ∞, where δ0 is the delta measure concentrated at 0. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
ДЗ "ЛНУ імені Тараса Шевченка" |
uk_UA |
dc.relation.ispartofseries |
математичні науки; |
|
dc.subject |
partial automorphism |
uk_UA |
dc.subject |
semigroup |
uk_UA |
dc.subject |
eigenvalues |
uk_UA |
dc.subject |
random matrix |
uk_UA |
dc.subject |
delta measure |
uk_UA |
dc.title |
Spectral properties of partial automorphisms of a binary rooted tree |
uk_UA |
dc.type |
Article |
uk_UA |