| dc.contributor.author | Atani, S.E. | |
| dc.contributor.author | Khoramdel, M. | |
| dc.contributor.author | Pishhesar, S.D. | |
| dc.date.accessioned | 2019-12-17T08:48:00Z | |
| dc.date.available | 2019-12-17T08:48:00Z | |
| dc.date.issued | 2018 | |
| dc.identifier.uri | http://hdl.handle.net/123456789/4549 | |
| dc.description | Atani S.E. Modules in which every surjective endomorphism has a δ-small kernel / S.E. Atani, M.Khoramde , ,S.D.Pishhesari // Algebra and Discrete Mathematics. - 2018. - Vol. 26. - Number 2. - Рp. 170-189 | uk_UA |
| dc.description.abstract | Hopfian modules, δ-Hopfian modules. In this paper, we introduce the notion of δ-Hopfian modules. We give some properties of these modules and provide a characterization of semisimple rings in terms of δ-Hopfian modules by proving that a ring R is semisimple if and only if every R-module is δ-Hopfian. Also, we show that for a ring R, δ(R) = J(R) if and only if for all R-modules, the conditions δ-Hopfian and generalized Hopfian are equivalent. Moreover, we prove that δ-Hopfian property is a Morita invariant. Further, the δ-Hopficity of modules over truncated polynomial and triangular matrix rings are considered. | uk_UA |
| dc.language.iso | en | uk_UA |
| dc.publisher | ДЗ "ЛНУ імені Тараса Шевченка" | uk_UA |
| dc.relation.ispartofseries | математичні науки; | |
| dc.subject | Dedekind finite modules | uk_UA |
| dc.subject | Hopfian modules | uk_UA |
| dc.subject | generalized Hopfian modules | uk_UA |
| dc.subject | δ-Hopfian modules | uk_UA |
| dc.title | Modules in which every surjective endomorphism has a δ-small kernel | uk_UA |
| dc.type | Article | uk_UA |