dc.contributor.author |
Paudel, L. |
|
dc.contributor.author |
Tchamna, S. |
|
dc.date.accessioned |
2019-12-16T08:36:39Z |
|
dc.date.available |
2019-12-16T08:36:39Z |
|
dc.date.issued |
2018 |
|
dc.identifier.uri |
http://hdl.handle.net/123456789/4538 |
|
dc.description |
Paudel L. On the saturations of submodules / L. Paudel , S.Tchamna // Algebra and Discrete Mathematics. - 2018. - Vol. 26. - Number 1. - Рp. 110-123 |
uk_UA |
dc.description.abstract |
Let R ⊆ S be a ring extension, and let A be an
R-submodule of S. The saturation of A (in S) by τ is set A[τ] =
{x ∈ S : tx ∈ A for some t ∈ τ}, where τ is a multiplicative subset
of R. We study properties of saturations of R-submodules of S. We
use this notion of saturation to characterize star operations ⋆ on
ring extensions R ⊆ S satisfying the relation (A ∩ B)
⋆ = A⋆ ∩ B⋆
whenever A and B are two R-submodules of S such that AS =
BS = S. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.relation.ispartofseries |
Математичні науки; |
|
dc.subject |
saturation |
uk_UA |
dc.subject |
star operation |
uk_UA |
dc.subject |
ring extension |
uk_UA |
dc.subject |
prime specrum |
uk_UA |
dc.subject |
localization |
uk_UA |
dc.subject |
flat module |
uk_UA |
dc.title |
On the saturations of submodules |
uk_UA |
dc.type |
Article |
uk_UA |