| dc.contributor.author | Paudel, L. | |
| dc.contributor.author | Tchamna, S. | |
| dc.date.accessioned | 2019-12-16T08:36:39Z | |
| dc.date.available | 2019-12-16T08:36:39Z | |
| dc.date.issued | 2018 | |
| dc.identifier.uri | http://hdl.handle.net/123456789/4538 | |
| dc.description | Paudel L. On the saturations of submodules / L. Paudel , S.Tchamna // Algebra and Discrete Mathematics. - 2018. - Vol. 26. - Number 1. - Рp. 110-123 | uk_UA |
| dc.description.abstract | Let R ⊆ S be a ring extension, and let A be an R-submodule of S. The saturation of A (in S) by τ is set A[τ] = {x ∈ S : tx ∈ A for some t ∈ τ}, where τ is a multiplicative subset of R. We study properties of saturations of R-submodules of S. We use this notion of saturation to characterize star operations ⋆ on ring extensions R ⊆ S satisfying the relation (A ∩ B) ⋆ = A⋆ ∩ B⋆ whenever A and B are two R-submodules of S such that AS = BS = S. | uk_UA |
| dc.language.iso | en | uk_UA |
| dc.relation.ispartofseries | Математичні науки; | |
| dc.subject | saturation | uk_UA |
| dc.subject | star operation | uk_UA |
| dc.subject | ring extension | uk_UA |
| dc.subject | prime specrum | uk_UA |
| dc.subject | localization | uk_UA |
| dc.subject | flat module | uk_UA |
| dc.title | On the saturations of submodules | uk_UA |
| dc.type | Article | uk_UA |