Show simple item record

dc.contributor.author Harmanci, A.
dc.contributor.author Ungor, B.
dc.date.accessioned 2019-12-16T07:43:33Z
dc.date.available 2019-12-16T07:43:33Z
dc.date.issued 2018
dc.identifier.uri http://hdl.handle.net/123456789/4536
dc.description A. Harmanci Module decompositions via Rickart modules / A. Harmanci , B. Ungor // Algebra and Discrete Mathematics. - 2018. - Vol. 26. - Number 1. - Рp.47-64 uk_UA
dc.description.abstract This work is devoted to the investigation of module decompositions which arise from Rickart modules, socle and radical of modules. In this regard, the structure and several illustrative examples of inverse split modules relative to the socle and radical are given. It is shown that a module M has decompositions M = Soc(M) ⊕ N and M = Rad(M) ⊕ K where N and K are Rickart if and only if M is Soc(M)-inverse split and Rad(M)-inverse split, respectively. Right Soc(·)-inverse split left perfect rings and semiprimitive right hereditary rings are determined exactly. Also, some characterizations for a ring R which has a decomposition R = Soc(RR) ⊕ I with I a hereditary Rickart module are obtained. uk_UA
dc.language.iso en_US uk_UA
dc.relation.ispartofseries Математичні науки;
dc.subject Soc(·)-inverse split module uk_UA
dc.subject Rad(·)-inverse split module uk_UA
dc.subject Rickart module uk_UA
dc.title Module decompositions via Rickart modules uk_UA
dc.type Article uk_UA


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account