dc.contributor.author |
Ahmia, M. |
|
dc.contributor.author |
Belbachir, H. |
|
dc.date.accessioned |
2019-12-12T09:57:58Z |
|
dc.date.available |
2019-12-12T09:57:58Z |
|
dc.date.issued |
2018 |
|
dc.identifier.uri |
http://hdl.handle.net/123456789/4524 |
|
dc.description |
Ahmia M. Unimodality polynomials and generalized Pascal triangles / M. Ahmia , H. Belbachir // Algebra and Discrete Mathematics. - 2018. - Vol. 26. - Number 1. - Рp. 1 - 7 |
uk_UA |
dc.description.abstract |
In this paper, we show that if P(x) = Pm
k=0 akx
k
is a polynomial with nondecreasing, nonnegative coefficients, then
the coefficients sequence of P(x
s + · · · + x + 1) is unimodal for
each integer s > 1. This paper is an extension of Boros and Moll’s
result “A criterion for unimodality”, who proved that the polynomial
P(x + 1) is unimodal. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
ДЗ "ЛНУ імені Тараса Шевченка" |
uk_UA |
dc.relation.ispartofseries |
Математичні науки; |
|
dc.subject |
unimodality |
uk_UA |
dc.subject |
log-concavity |
uk_UA |
dc.subject |
ordinary multinomials |
uk_UA |
dc.subject |
Pascal triangle |
uk_UA |
dc.title |
Unimodality polynomials and generalized Pascal triangles |
uk_UA |
dc.type |
Article |
uk_UA |