| dc.contributor.author | Ahmia, M. | |
| dc.contributor.author | Belbachir, H. | |
| dc.date.accessioned | 2019-12-12T09:57:58Z | |
| dc.date.available | 2019-12-12T09:57:58Z | |
| dc.date.issued | 2018 | |
| dc.identifier.uri | http://hdl.handle.net/123456789/4524 | |
| dc.description | Ahmia M. Unimodality polynomials and generalized Pascal triangles / M. Ahmia , H. Belbachir // Algebra and Discrete Mathematics. - 2018. - Vol. 26. - Number 1. - Рp. 1 - 7 | uk_UA |
| dc.description.abstract | In this paper, we show that if P(x) = Pm k=0 akx k is a polynomial with nondecreasing, nonnegative coefficients, then the coefficients sequence of P(x s + · · · + x + 1) is unimodal for each integer s > 1. This paper is an extension of Boros and Moll’s result “A criterion for unimodality”, who proved that the polynomial P(x + 1) is unimodal. | uk_UA |
| dc.language.iso | en | uk_UA |
| dc.publisher | ДЗ "ЛНУ імені Тараса Шевченка" | uk_UA |
| dc.relation.ispartofseries | Математичні науки; | |
| dc.subject | unimodality | uk_UA |
| dc.subject | log-concavity | uk_UA |
| dc.subject | ordinary multinomials | uk_UA |
| dc.subject | Pascal triangle | uk_UA |
| dc.title | Unimodality polynomials and generalized Pascal triangles | uk_UA |
| dc.type | Article | uk_UA |