dc.contributor.author | Andrade, M. G. C. | |
dc.contributor.author | Gazon, A. B. | |
dc.contributor.author | Lima, A. F. | |
dc.date.accessioned | 2019-12-11T12:25:09Z | |
dc.date.available | 2019-12-11T12:25:09Z | |
dc.date.issued | 2018 | |
dc.identifier.uri | http://hdl.handle.net/123456789/4508 | |
dc.description | Andrade M.G.C.On certain homological invariant and its relation with Poincaré duality pairs / M. G. C. Andrade A. B.Gazon , A. F. Lima // Algebra and Discrete Mathematics. - 2018. - Vol. 25. - Number 2. - Рp.177-187 | uk_UA |
dc.description.abstract | Let G be a group, S = {Si , i ∈ I} a non empty family of (not necessarily distinct) subgroups of infinite index in G and M a Z2G-module. In [4] the authors defined a homological invariant E∗(G, S, M), which is “dual” to the cohomological invari- ant E(G, S, M), defined in [1]. In this paper we present a more general treatment of the invariant E∗(G, S, M) obtaining results and properties, under a homological point of view, which are dual to those obtained by Andrade and Fanti with the invariant E(G, S, M). We analyze, through the invariant E∗(G, S, M), properties about groups that satisfy certain finiteness conditions such as Poincaré duality for groups and pairs. | uk_UA |
dc.language.iso | en | uk_UA |
dc.publisher | ДЗ "ЛНУ імені Тараса Шевченка" | uk_UA |
dc.relation.ispartofseries | математичні науки; | |
dc.subject | (co)homology of groups | uk_UA |
dc.subject | duality pairs | uk_UA |
dc.subject | duality groups | uk_UA |
dc.subject | homological invariant. | uk_UA |
dc.title | On certain homological invariant and its relation with Poincaré duality pairs | uk_UA |
dc.type | Article | uk_UA |