Show simple item record

dc.contributor.author Agustín -Aquino, O. A.
dc.date.accessioned 2019-12-11T07:55:39Z
dc.date.available 2019-12-11T07:55:39Z
dc.date.issued 2018
dc.identifier.uri http://hdl.handle.net/123456789/4499
dc.description Agustín –Aquino O. A. Enumeration of strong dichotomy patterns / O. A. Agustín –Aquino // Algebra and Discrete Mathematics. - 2018. - Vol. 25. - Number 2. – Рp.165-176 uk_UA
dc.description.abstract We apply the version of Pólya-Redfield theory obtained by White to count patterns with a given automorphism group to the enumeration of strong dichotomy patterns, that is, we count bicolor patterns of Z2k with respect to the action of Aff(Z2k) and with trivial isotropy group. As a byproduct, a conjectural instance of phenomenon similar to cyclic sieving for special cases of these combinatorial objects is proposed. uk_UA
dc.language.iso en uk_UA
dc.publisher ДЗ "ЛНУ імені Тараса Шевченка" uk_UA
dc.relation.ispartofseries Математичні науки;
dc.subject strong dichotomy pattern uk_UA
dc.subject Pólya-Redfield theory uk_UA
dc.subject cyclic sieving uk_UA
dc.title Enumeration of strong dichotomy patterns uk_UA
dc.type Article uk_UA


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account