| dc.contributor.author | Bondarenko, V. M. | |
| dc.contributor.author | Gildea, J. | |
| dc.contributor.author | Tylyshchak, A. A. | |
| dc.contributor.author | Yurchenko, N.V. | |
| dc.date.accessioned | 2019-12-05T08:49:42Z | |
| dc.date.available | 2019-12-05T08:49:42Z | |
| dc.date.issued | 2019 | |
| dc.identifier.uri | http://hdl.handle.net/123456789/4416 | |
| dc.description | Bondarenko V. M. On hereditary reducibility of 2-monomial matrices over commutative rings / V. M. Bondarenko, J. Gildea, A. A. Tylyshchak, N.V.Yurchenko // Algebra and Discrete Mathematics. - 2019. - Vol. 27. - Number 1. - Рp.1 -11 | uk_UA |
| dc.description.abstract | A 2-monomial matrix over a commutative ring R is by definition any matrix of the form M(t, k, n) = Φ Ik 0 0 tIn−k , 0 < k < n, where t is a non-invertible element of R, Φ the companion matrix to λ n − 1 and Ik the identity k × k-matrix. In this paper we introduce the notion of hereditary reducibility (for these matrices) and indicate one general condition of the introduced reducibility. | uk_UA |
| dc.language.iso | en_US | uk_UA |
| dc.relation.ispartofseries | Математичні науки; | |
| dc.subject | commutative ring | uk_UA |
| dc.subject | Jacobson radical | uk_UA |
| dc.subject | 2-monomial matrix | uk_UA |
| dc.subject | hereditary reducible matrix | uk_UA |
| dc.subject | similarity | uk_UA |
| dc.subject | linear operator | uk_UA |
| dc.subject | free module | uk_UA |
| dc.title | On hereditary reducibility of 2-monomial matrices over commutative rings | uk_UA |
| dc.type | Article | uk_UA |