dc.contributor.author |
Bondarenko, V. M. |
|
dc.contributor.author |
Gildea, J. |
|
dc.contributor.author |
Tylyshchak, A. A. |
|
dc.contributor.author |
Yurchenko, N.V. |
|
dc.date.accessioned |
2019-12-05T08:49:42Z |
|
dc.date.available |
2019-12-05T08:49:42Z |
|
dc.date.issued |
2019 |
|
dc.identifier.uri |
http://hdl.handle.net/123456789/4416 |
|
dc.description |
Bondarenko V. M. On hereditary reducibility of 2-monomial matrices over commutative rings / V. M. Bondarenko, J. Gildea, A. A. Tylyshchak, N.V.Yurchenko // Algebra and Discrete Mathematics. - 2019. - Vol. 27. - Number 1. - Рp.1 -11 |
uk_UA |
dc.description.abstract |
A 2-monomial matrix over a commutative ring
R is by definition any matrix of the form M(t, k, n) = Φ
Ik 0
0 tIn−k
,
0 < k < n, where t is a non-invertible element of R, Φ the companion
matrix to λ
n − 1 and Ik the identity k × k-matrix. In this paper we
introduce the notion of hereditary reducibility (for these matrices)
and indicate one general condition of the introduced reducibility. |
uk_UA |
dc.language.iso |
en_US |
uk_UA |
dc.relation.ispartofseries |
Математичні науки; |
|
dc.subject |
commutative ring |
uk_UA |
dc.subject |
Jacobson radical |
uk_UA |
dc.subject |
2-monomial matrix |
uk_UA |
dc.subject |
hereditary reducible matrix |
uk_UA |
dc.subject |
similarity |
uk_UA |
dc.subject |
linear operator |
uk_UA |
dc.subject |
free module |
uk_UA |
dc.title |
On hereditary reducibility of 2-monomial matrices over commutative rings |
uk_UA |
dc.type |
Article |
uk_UA |