dc.contributor.author |
Singh, G. |
|
dc.date.accessioned |
2019-12-04T11:42:29Z |
|
dc.date.available |
2019-12-04T11:42:29Z |
|
dc.date.issued |
2019 |
|
dc.identifier.uri |
http://hdl.handle.net/123456789/4402 |
|
dc.description |
Singh G . Classification of homogeneous Fourier matrices / G . Singh // Algebra and Discrete Mathematics. - 2019. - Vol. 27. - Number 1. - Рp.78-84 |
uk_UA |
dc.description.abstract |
Modular data are commonly studied in mathe-
matics and physics. A modular datum defines a finite-dimensional
representation of the modular group SL2(Z). In this paper, we show
that there is a one-to-one correspondence between Fourier matrices
associated to modular data and self-dual C-algebras that satisfy a
certain condition. We prove that a homogenous C-algebra arising
from a Fourier matrix has all the degrees equal to 1. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.relation.ispartofseries |
Математичні науки; |
|
dc.subject |
modular data |
uk_UA |
dc.subject |
Fourier matrices |
uk_UA |
dc.subject |
fusion rings |
uk_UA |
dc.subject |
C-algebras. |
uk_UA |
dc.title |
Classification of homogeneous Fourier matrices Gurmail Singh |
uk_UA |
dc.type |
Article |
uk_UA |