Digital Repository of Luhansk Taras Shevchenko National University

Classification of homogeneous Fourier matrices Gurmail Singh

Show simple item record

dc.contributor.author Singh, G.
dc.date.accessioned 2019-12-04T11:42:29Z
dc.date.available 2019-12-04T11:42:29Z
dc.date.issued 2019
dc.identifier.uri http://hdl.handle.net/123456789/4402
dc.description Singh G . Classification of homogeneous Fourier matrices / G . Singh // Algebra and Discrete Mathematics. - 2019. - Vol. 27. - Number 1. - Рp.78-84 uk_UA
dc.description.abstract Modular data are commonly studied in mathe- matics and physics. A modular datum defines a finite-dimensional representation of the modular group SL2(Z). In this paper, we show that there is a one-to-one correspondence between Fourier matrices associated to modular data and self-dual C-algebras that satisfy a certain condition. We prove that a homogenous C-algebra arising from a Fourier matrix has all the degrees equal to 1. uk_UA
dc.language.iso en uk_UA
dc.relation.ispartofseries Математичні науки;
dc.subject modular data uk_UA
dc.subject Fourier matrices uk_UA
dc.subject fusion rings uk_UA
dc.subject C-algebras. uk_UA
dc.title Classification of homogeneous Fourier matrices Gurmail Singh uk_UA
dc.type Article uk_UA


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account