Show simple item record

dc.contributor.author Kizmaz, M. Y.
dc.date.accessioned 2019-12-04T09:15:10Z
dc.date.available 2019-12-04T09:15:10Z
dc.date.issued 2019
dc.identifier.uri http://hdl.handle.net/123456789/4396
dc.description Kizmaz M. Y. On the number of topologies on a finite set / M. Y. Kizmaz // Algebra and Discrete Mathematics. - 2019. - Vol. 27. - Number 2. - Рp.50-57 uk_UA
dc.description.abstract We denote the number of distinct topologies which can be defined on a set X with n elements by T(n). Similarly, T0(n) denotes the number of distinct T0 topologies on the set X. In the present paper, we prove that for any prime p, T(pk ) ≡ k +1 (mod p), and that for each natural number n there exists a unique k such that T(p + n) ≡ k (mod p). We calculate k for n = 0, 1, 2, 3, 4. We give an alternative proof for a result of Z. I. Borevich to the effect that T0(p + n) ≡ T0(n + 1) (mod p). uk_UA
dc.language.iso en_US uk_UA
dc.relation.ispartofseries Математичні науки;
dc.subject topology uk_UA
dc.subject finite sets uk_UA
dc.subject T0 topology uk_UA
dc.title On the number of topologies on a finite set uk_UA
dc.type Article uk_UA


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account