dc.contributor.author | Kizmaz, M. Y. | |
dc.date.accessioned | 2019-12-04T09:15:10Z | |
dc.date.available | 2019-12-04T09:15:10Z | |
dc.date.issued | 2019 | |
dc.identifier.uri | http://hdl.handle.net/123456789/4396 | |
dc.description | Kizmaz M. Y. On the number of topologies on a finite set / M. Y. Kizmaz // Algebra and Discrete Mathematics. - 2019. - Vol. 27. - Number 2. - Рp.50-57 | uk_UA |
dc.description.abstract | We denote the number of distinct topologies which can be defined on a set X with n elements by T(n). Similarly, T0(n) denotes the number of distinct T0 topologies on the set X. In the present paper, we prove that for any prime p, T(pk ) ≡ k +1 (mod p), and that for each natural number n there exists a unique k such that T(p + n) ≡ k (mod p). We calculate k for n = 0, 1, 2, 3, 4. We give an alternative proof for a result of Z. I. Borevich to the effect that T0(p + n) ≡ T0(n + 1) (mod p). | uk_UA |
dc.language.iso | en_US | uk_UA |
dc.relation.ispartofseries | Математичні науки; | |
dc.subject | topology | uk_UA |
dc.subject | finite sets | uk_UA |
dc.subject | T0 topology | uk_UA |
dc.title | On the number of topologies on a finite set | uk_UA |
dc.type | Article | uk_UA |