Show simple item record

dc.contributor.author Yashchuk, V . S .
dc.date.accessioned 2019-12-03T09:54:44Z
dc.date.available 2019-12-03T09:54:44Z
dc.date.issued 2019
dc.identifier.uri http://hdl.handle.net/123456789/4374
dc.description Yashchuk V. S.On some Leibniz algebras,having small dimension / V. S. Yashchuk // Algebra and Discrete Mathematics. - 2019. - Vol. 27. - Number 2. - Рp. 292-308 uk_UA
dc.description.abstract The first step in the study of all types of algebras is the description of such algebras having small dimensions. The structure of 3-dimensional Leibniz algebras is more complicated than 1 and 2-dimensional cases. In this paper, we consider the structure of Leibniz algebras of dimension 3 over the finite fields.In some cases, the structure of the algebra essentially depends on the characteristic of the field, in others on the solvability of specific equations in the field, and so on. uk_UA
dc.language.iso other uk_UA
dc.relation.ispartofseries Математичні науки;
dc.subject Leibniz algebra uk_UA
dc.subject ideal uk_UA
dc.subject factor-algebra, uk_UA
dc.subject Leibniz kernel,finite dimensional Leibniz algebra uk_UA
dc.subject nilpotent Leibniz algebra uk_UA
dc.subject left (right) center uk_UA
dc.subject Frattini subalgebra uk_UA
dc.title On some Leibniz algebras, having small dimension uk_UA
dc.type Article uk_UA


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account