| dc.contributor.author | Legchekova, Helena V. | |
| dc.date.accessioned | 2016-02-16T20:32:50Z | |
| dc.date.available | 2016-02-16T20:32:50Z | |
| dc.date.issued | 2005 | |
| dc.identifier.issn | 1726-3255 | |
| dc.identifier.uri | http://hdl.handle.net/123456789/422 | |
| dc.description | Criterions of supersolubility of some finite factorizable groups / Helena V. Legchekova // Algebra and Discrete Mathematics. - 2005. - № 3. - 46-55. | uk_UA |
| dc.description.abstract | Let A, B be subgroups of a group G and ∅ 6= X ⊆ G. A subgroup A is said to be X-permutable with B if for some x ∈ X we have ABx = BxA. We obtain some new criterions for supersolubility of a finite group G = AB, where A and B are supersoluble groups. In particular, we prove that a finite group G = AB is supersoluble provided A, B are supersolube subgroups of G such that every primary cyclic subgroup of A X-permutes with every Sylow subgroup of B and if in return every primary cyclic subgroup of B X-permutes with every Sylow subgroup of A where X = F(G) is the Fitting subgroup of G. | uk_UA |
| dc.language.iso | en | uk_UA |
| dc.publisher | ДЗ "Луганський національний університет імені Тараса Шевченка | uk_UA |
| dc.subject | алгебра | uk_UA |
| dc.title | Criterions of supersolubility of some finite factorizable grou | uk_UA |
| dc.type | Article | uk_UA |