Show simple item record

dc.contributor.author Gutik, Oleg V.
dc.contributor.author Pavlyk, Kateryna P.
dc.date.accessioned 2016-02-16T20:09:20Z
dc.date.available 2016-02-16T20:09:20Z
dc.date.issued 2005
dc.identifier.issn 1726-3255
dc.identifier.uri http://hdl.handle.net/123456789/419
dc.description Topological semigroups of matrix units / Oleg V. Gutik, Kateryna P. Pavlyk // Algebra and Discrete Mathematics. - 2005. - № 3. - 1 – 17. uk_UA
dc.description.abstract We prove that the semigroup of matrix units is stable. Compact, countably compact and pseudocompact topologies on the infinite semigroup of matrix units B such that (B , ) is a semitopological (inverse) semigroup are described. We prove the following properties of an infinite topological semigroup of matrix units. On the infinite semigroup of matrix units there exists no semigroup pseudocompact topology. Any continuous homomorphism from the infinite topological semigroup of matrix units into a compact topological semigroup is annihilating. The semigroup of matrix units is algebraically h-closed in the class of topological inverse semigroups. Some H-closed minimal semigroup topologies on the infinite semigroup of matrix units are considered. uk_UA
dc.language.iso en uk_UA
dc.publisher ДЗ "Луганський національний університет імені Тараса Шевченка uk_UA
dc.subject алгебра uk_UA
dc.title Topological semigroups of matrix units uk_UA
dc.type Article uk_UA


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account