dc.contributor.author | Theohari-Apostolidi, Th. | |
dc.contributor.author | Vavatsoulas, H. | |
dc.date.accessioned | 2015-11-16T08:03:28Z | |
dc.date.available | 2015-11-16T08:03:28Z | |
dc.date.issued | 2005 | |
dc.identifier.uri | http://hdl.handle.net/123456789/165 | |
dc.description.abstract | Let G be a finite group and let = g2G g be a strongly G-graded R-algebra, where R is a commutative ring with unity. We prove that if R is a Dedekind domain with quotient field K, is an R-order in a separable K-algebra such that the algebra 1 is a Gorenstein R-order, then is also a Gorenstein R-order. Moreover, we prove that the induction functor ind : Mod H ! Mod defined in Section 3, for a subgroup H of G, commutes with the standard duality functor | uk_UA |
dc.language.iso | en | uk_UA |
dc.publisher | Луганский национальный университет им. Т. Шевченко | uk_UA |
dc.subject | алгебра | uk_UA |
dc.subject | математика | uk_UA |
dc.title | On strongly graded Gorestein orders | uk_UA |
dc.type | Article | uk_UA |