Show simple item record

dc.contributor.author Theohari-Apostolidi, Th.
dc.contributor.author Vavatsoulas, H.
dc.date.accessioned 2015-11-16T08:03:28Z
dc.date.available 2015-11-16T08:03:28Z
dc.date.issued 2005
dc.identifier.uri http://hdl.handle.net/123456789/165
dc.description.abstract Let G be a finite group and let = g2G g be a strongly G-graded R-algebra, where R is a commutative ring with unity. We prove that if R is a Dedekind domain with quotient field K, is an R-order in a separable K-algebra such that the algebra 1 is a Gorenstein R-order, then is also a Gorenstein R-order. Moreover, we prove that the induction functor ind : Mod H ! Mod defined in Section 3, for a subgroup H of G, commutes with the standard duality functor uk_UA
dc.language.iso en uk_UA
dc.publisher Луганский национальный университет им. Т. Шевченко uk_UA
dc.subject алгебра uk_UA
dc.subject математика uk_UA
dc.title On strongly graded Gorestein orders uk_UA
dc.type Article uk_UA


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account