dc.contributor.author | Khibina, Marina | |
dc.date.accessioned | 2015-11-11T13:53:17Z | |
dc.date.available | 2015-11-11T13:53:17Z | |
dc.date.issued | 2005 | |
dc.identifier.issn | 1726-3255 | |
dc.identifier.uri | http://hdl.handle.net/123456789/146 | |
dc.description.abstract | A ring A is called an FDI-ring if there exists a decomposition of the identity of A in a sum of finite number of pairwise orthogonal primitive idempotents. We call a primitive idempotent e artinian if the ring eAe is Artinian. We prove that every semiprime FDI-ring is a direct product of a semisimple Artinian ring and a semiprime FDI-ring whose identity decomposition doesn’t contain artinian idempotents. | uk_UA |
dc.language.iso | en | uk_UA |
dc.publisher | Луганский национальный университет им. Т. Шевченко | uk_UA |
dc.subject | алгебра | uk_UA |
dc.title | A decomposition theorem for semiprime rings | uk_UA |
dc.title.alternative | Dedicated to Yu.A. Drozd on the occasion of his 60th birthday | uk_UA |
dc.type | Article | uk_UA |