Show simple item record

dc.contributor.author Khibina, Marina
dc.date.accessioned 2015-11-11T13:53:17Z
dc.date.available 2015-11-11T13:53:17Z
dc.date.issued 2005
dc.identifier.issn 1726-3255
dc.identifier.uri http://hdl.handle.net/123456789/146
dc.description.abstract A ring A is called an FDI-ring if there exists a decomposition of the identity of A in a sum of finite number of pairwise orthogonal primitive idempotents. We call a primitive idempotent e artinian if the ring eAe is Artinian. We prove that every semiprime FDI-ring is a direct product of a semisimple Artinian ring and a semiprime FDI-ring whose identity decomposition doesn’t contain artinian idempotents. uk_UA
dc.language.iso en uk_UA
dc.publisher Луганский национальный университет им. Т. Шевченко uk_UA
dc.subject алгебра uk_UA
dc.title A decomposition theorem for semiprime rings uk_UA
dc.title.alternative Dedicated to Yu.A. Drozd on the occasion of his 60th birthday uk_UA
dc.type Article uk_UA


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account