dc.contributor.author | Dokuchaev, M. A. | |
dc.contributor.author | Kirichenko, V. V. | |
dc.contributor.author | Zelensky, A. V. | |
dc.contributor.author | Zhuravlev, V. N. | |
dc.date.accessioned | 2015-11-11T13:36:23Z | |
dc.date.available | 2015-11-11T13:36:23Z | |
dc.date.issued | 2005 | |
dc.identifier.issn | 1726-3255 | |
dc.identifier.uri | http://hdl.handle.net/123456789/143 | |
dc.description.abstract | Let A = (aij) be an integral matrix. We say that A is (0, 1, 2)-matrix if aij 2 {0, 1, 2}. There exists the Gorenstein (0, 1, 2)-matrix for any permutation on the set {1, . . . , n} with- out fixed elements. For every positive integer n there exists the Gorenstein cyclic (0, 1, 2)-matrix An such that inxAn = 2. If a Latin square Ln with a first row and first column (0, 1, . . n − 1) is an exponent matrix, then n = 2m and Ln is the Cayley table of a direct product of m copies of the cyclic group of order 2. | uk_UA |
dc.language.iso | en | uk_UA |
dc.publisher | Луганский национальный университет им. Т. Шевченко | uk_UA |
dc.title | Gorenstein matrices | uk_UA |
dc.title.alternative | Dedicated to Yu.A. Drozd on the occasion of his 60th birthday | uk_UA |
dc.type | Article | uk_UA |