Show simple item record

dc.contributor.author Dokuchaev, M. A.
dc.contributor.author Kirichenko, V. V.
dc.contributor.author Zelensky, A. V.
dc.contributor.author Zhuravlev, V. N.
dc.date.accessioned 2015-11-11T13:36:23Z
dc.date.available 2015-11-11T13:36:23Z
dc.date.issued 2005
dc.identifier.issn 1726-3255
dc.identifier.uri http://hdl.handle.net/123456789/143
dc.description.abstract Let A = (aij) be an integral matrix. We say that A is (0, 1, 2)-matrix if aij 2 {0, 1, 2}. There exists the Gorenstein (0, 1, 2)-matrix for any permutation on the set {1, . . . , n} with- out fixed elements. For every positive integer n there exists the Gorenstein cyclic (0, 1, 2)-matrix An such that inxAn = 2. If a Latin square Ln with a first row and first column (0, 1, . . n − 1) is an exponent matrix, then n = 2m and Ln is the Cayley table of a direct product of m copies of the cyclic group of order 2. uk_UA
dc.language.iso en uk_UA
dc.publisher Луганский национальный университет им. Т. Шевченко uk_UA
dc.title Gorenstein matrices uk_UA
dc.title.alternative Dedicated to Yu.A. Drozd on the occasion of his 60th birthday uk_UA
dc.type Article uk_UA


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account