Digital Repository of Luhansk Taras Shevchenko National University

On wildness of idempotent generated algebras associated with extended Dynkin diagrams

Show simple item record

dc.contributor.author Bondarenko, Vitalij M.
dc.date.accessioned 2015-10-29T13:11:40Z
dc.date.available 2015-10-29T13:11:40Z
dc.date.issued 2004
dc.identifier.uri http://hdl.handle.net/123456789/115
dc.description.abstract Let denote an extended Dynkin diagram with vertex set 0 = {0, 1, . . . , n}. For a vertex i, denote by S(i) the set of vertices j such that there is an edge joining i and j; one assumes the diagram has a unique vertex p, say p = 0, with |S(p)| = 3. Further, denote by \ 0 the full subgraph of with vertex set 0 \ {0}. Let = ( i | i 2 0) 2 Z| 0| be an imaginary root of , and let k be a field of arbitrary characteristic (with unit element 1). We prove that if is an extended Dynkin diagram of type D˜4, E˜6 or E˜7, then the k-algebra Qk( , ) with generators ei, i 2 0 \ {0}, and relations e2 i = ei, eiej = 0 if i and j 6= i belong to the same connected component of \ 0, and Pn i=1 i ei = 01 has wild representation type. uk_UA
dc.language.iso en uk_UA
dc.publisher Луганский национальный университет им. Т. Шевченко uk_UA
dc.subject алгебра uk_UA
dc.title On wildness of idempotent generated algebras associated with extended Dynkin diagrams uk_UA
dc.type Article uk_UA


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account