dc.contributor.author |
Zhuchok, A. V. |
|
dc.contributor.author |
Demko, M. |
|
dc.date.accessioned |
2022-03-07T19:31:48Z |
|
dc.date.available |
2022-03-07T19:31:48Z |
|
dc.date.issued |
2016 |
|
dc.identifier.uri |
http://hdl.handle.net/123456789/9026 |
|
dc.description |
Zhuchok A. V. Free n-dinilpotent doppelsemigroups / A. V. Zhuchok, M. Demko // Algebra and Discrete Mathematics. - 2016. - Vol. 22, Number 2. - Рр. 304–316. |
uk_UA |
dc.description.abstract |
A doppelalgebra is an algebra defined on a vector space with two binary linear associative operations. Doppelalgebras play a prominent role in algebraic K-theory. In this paper
we consider doppelsemigroups, that is, sets with two binary associative operations satisfying the axioms of a doppelalgebra. We construct a free n-dinilpotent doppelsemigroup and study separately free n-dinilpotent doppelsemigroups of rank 1. Moreover, we characterize the least n-dinilpotent congruence on a free doppelsemigroup, establish that the semigroups of the free n-dinilpotent doppelsemigroup are isomorphic and the automorphism group of the free n-dinilpotent doppelsemigroup is isomorphic to the symmetric group. We also give different examples of doppelsemigroups and
prove that a system of axioms of a doppelsemigroup is independent. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.title |
Free n-dinilpotent doppelsemigroups |
uk_UA |
dc.type |
Article |
uk_UA |