- 4.Краузе А.А., Лиепиныш Э.Э.. Пелчер Ю.Э., ДубурГ.Я. // ХТС. 1987. №1.С. 124-128.
- 5. Артемов В.А., Иванов В.Л., Родиновская Л.А., Шестопалов А.М.,Литвинов В.П. // ХГС. 1996. № 4. С. 553-556.
- 6. Ivanov V.L., Artyomov V.A., Shestopalov A.M., Litvinov V.P. // 12th Symposium on Chemistry of Heterocyclic Compounds and 6th Blue Danube Symposium on Heterocyclic Chemistry. Brno, Czech. Republic, 1996.P. 55.
- 7. Artyomov V.A., Rodinovskaya L.A., Shestopalov A.M., LitvinovV.P. // Mendeleev Commun. 1993. № 4. P. 149-151.

Шевырёв Д.Н., студент. Научн. рук., доц., к.т.н. **Колесников В.А.** Луганский национальный университет имени Тараса Шевченко

ЖАРОПРОЧНОСТЬ СПЛАВОВ ЦВЕТНЫХ МЕТАЛЛОВ И СТАЛЕЙ

Рассмотрены некоторые виды жаропрочных конструкционных сталей. **Ключевые слова:** жаропрочность, суперсплав.

Состояние проблемы. Легкие сплавы на основе алюминия, магния и титана имеют худшую жаропрочность по сравнению со сталями, их применяют в летательных аппаратах для работы в условиях средних температур. При рабочих температурах ниже 400 – 450°С нет необходимости использовать жаропрочные материалы. В этих условиях могут успешно работать обычные конструкционные стали. Жаропрочные сплавы могут быть на алюминиевой, титановой, железной, медной, кобальтовой и никелевой основах. Наиболее широкое применение в авиационных двигателях получили никелевые жаропрочные сплавы, из которых изготавливают рабочие и сопловые лопатки, диски ротора турбины, детали камеры сгорания и т. п.

Анализ последних исследований и публикаций. Первые жаропрочные стали для газотурбинных двигателей были разработаны в Германии фирмой Кгирр в 1936—1938 годах. Высоколегированная аустенитная сталь Тинидур создавалась как материал рабочих лопаток турбины на температуры 600—700 °С. Тинидур — аустенитная сталь с дисперсионным твердением и карбидным упрочнением. В 1943-44 годах годовое производство Тинидур составляло 1850 тонн. Институтом DVL и фирмой HeraeusVacuumschmelze были разработаны аустенитые стали DVL42 и DVL52 на более высокие рабочие температуры 750—800 °С. Составы сталей приведены в таблице 1 [1]

Таблица 1

Наим	%, C	%	% Si	%	%	% Cr	%	%	%	%	%
		Mn		Ni	Co		Mo	W	Ti	Al	др.эл
Тинидур	До	0,6-1	0,6-1	29-		14,5-			1,8-	0,2	Fe
	0,14			31		15,5			2,2		основа
	До	0,6-1	0,4-	30-	22-	12-	4-6	4-6	1,5-		Fe
DVL42	0,1		0,8	35	25	17			2		основа

DVL52	До	0,6-1	0,4-	30-	22-	12-	4-6	4-6		4-5%
	0,1		0,8	35	25	17				Ta
Хромадур	0,9-	17,5-	0,55-			11-	0,7-			V 0,6-
	12	18,5	0,7			14	0,8			0,7
										0,18-
										0,23
										N2

Цель стальи. Показать важность использования жаропрочных сталей для изготовления деталей энергетического оборудования (турбинные диски, роторы).

Перспективные разработки суперсплавов способствуют повышению надежности и экономичности за счет снижения содержания дорогостоящих легирующих элементов. До температуры 680°С целесообразно использовать железоникелевые сплавы с высокими свойствами, хорошей обрабатываемостью и более низкой ценой, чем у сплавов на никелевой основе.

Различают следующие виды жаропрочных конструкционных сталей (high-temperaturesteel)[2].

Перлитные стали. Стали перлитного класса используют для изготовления крепежа, труб, паропроводов, пароперегревателей и коллекторов энергетических установок, длительно работающих при температурах 500 – 550°С. Перлитные стали содержат относительно малые количества углерода и обычно легированы хромом, молибденом и ванадием (марки 12ХМ, 12Х1МФ). Стали этого класса используют в закаленном или нормализованном и высокоотпущенном состоянии.

Мартенситные стали. Стали мартенситного класса используют для изготовления деталей энергетического оборудования (лопатки, диафрагмы, турбинные диски, роторы), длительно работающих при температурах 600 – 620°C.

Рис. 1 Лопатки турбинного двигателя

Стали значительно легированы хромом, а также вольфрамом, молибденом, ванадием (марки 15X11МФ, 15X12ВНМФ). Высокая жаропрочность этих сталей достигается при закалке от 1000 – 1050°С в масле на мартенсит с последующим отпуском на сорбит или троостит. Клапаны выхлопа двигателей внутреннего сгорания небольшой и средней мощности изготовляют из сильхромов – хромокремнистых сталей мартенситного класса типа 40Х9С2, 40Х10С2М. Клапаны более мощных двигателей изготовляют из аустенитных сталей.

Аустенитные стали. Из этих сталей изготовляют роторы, диски, лопатки газовых турбин, клапаны дизельных двигателей, работающие при температурах 600 — 700°С. Хромоникелевые аустенитные стали для увеличения жаропрочности дополнительно легируют вольфрамом, молибденом, ванадием, ниобием, бором и другими элементами. К жаропрочным сталям аустенитного класса относятся стали 09X14H16Б, 09X14H19B2БР, 45X14H14B2M.

Термообработка этих сталей состоит из закалки и старения при температурах выше эксплуатационных. При старении происходит выделение из аустенита мелкодисперсных избыточных фаз, что дополнительно увеличивает сопротивление стали ползучести. В таблице 2 приведены основные свойства некоторых жаропрочных сталей.

Таблица 2

Mare	риал		Температ	ура, ℃	Жаропрочные свойства			
Марка	Группа	Средияя доля основных легирующих элементов, %	макси- мальная рабочая	начала интен- сивно- го окис- ления	σ _s , МПа	σ _{α,3} , MIIa	Тем- пера- тура испы- тания, °С	
12Х1МФ	Перлитные	0,12 C; 0,1 Cr; 0,3 Mo; 0,2 V	570-585	600	140	84	560	
25Х2М1Ф		0,25 C; 2,3 Cr; 1 Mo; 0,4 V	520-550	600	160-220	70	550	
15X5M	Мартенситные стали	До 0,15 С; 5,2 Сr; 0,5 Мо	600	650	100	40	540	
12X18H10T	Аустенитные стали	До 0,12 С; 18 Сг; 10 Ni; 0,5 Ti	600	850	80-100	30-40	660	
10X11H20T3P		До 0,10 С; 11 Сr; 20 Ni; 2,6 Тi; 0,02 В	700	850	400	-	700	

Рис. 2 Свойства жаропрочных сталей

Более высокие рабочие температуры (до $1000 - 1100^{\circ}$ С и более) выдерживают так называемые суперсплавы, выплавленные на основе элементов VIII группы периодической системы — никелевые, кобальтовые, железоникелевые сплавы. Их применяют при изготовлении газотурбинных двигателей для аэрокосмических и промышленных энергоустановок. Для работы при еще более высоких температурах применяют тугоплавкие металлы и керамические материалы.

В конце 1940-х годов была обнаружена возможность дополнительного упрочнения жаропрочных сплавов путём легирования молибденом. Позже для

этой же цели начали применять добавки таких элементов, как вольфрам, ниобий, тантал, рений и гафний.

Суперсплавы [3]

Началом истории суперсплавов можно считать 1929 г., когда Бедфорд и Пиллинг дополнительно легировали небольшими добавками Ті и А1 разработанный ранее жаростойкий хромоникелевый сплав с ГЦК решеткой. Введение этих элементов обеспечило существенный прирост сопротивлению ползучести. Интересно, что появление суперсплавов случайно совпало по времени с началом разработки реактивного двигателя. В конце 1930-х годов в Германии и Англии были созданы первые образцы самолетов с турбинными двигателями. Появление новых конструкций обусловило необходимость разработки новых сплавов с высокой жаропрочностью.

Суперсплавы на никелевой основе в качестве особо жаропрочных материалов имеют наибольшее распространение. Гомологические рабочие температуры никелевых сплавов выше, чем у других систем легирования, и в двигателях с высокими техническими характеристиками их доля превышает 50 %. Суперсплавы имеют сложный химический состав, насчитывающий до 10 — 12 компонентов.

Железо в сплавах присутствует обычно в виде примесей, хотя имеется ряд марок, содержащих до 30 % и более железа. Легирование хромом (15 − 20 %) обеспечивает стойкость к высокотемпературной коррозии. Молибден и вольфрам, находящиеся либо в твердом растворе, либо в карбидах, повышают жаропрочность сплава. Алюминий и титан с никелем образуют γ-фазу Ni₃(Al, Ti), являющуюся основным упрочнителем. Кобальт вводится в никелевые сплавы для понижения энергии дефектов упаковки и интенсифицирует дисперсионное твердение, обусловленное выделением γ-фазы.

В никелевых сплавах после закалки или диффузионного отжига и последующего старения происходит дисперсионное твердение с образованием интерметаллида У-фазы. Температура нагрева под закалку и температура диффузионного отжига примерно равны и составляют обычно около 1100 – 1300°С. Выдержка при высоких температурах приводит к растворению интерметаллидных фаз с образованием однородного твердого раствора с низкой твердостью и получением необходимого размера зерна. Одно- или двухступенчатое старение проводят при температурах 700 – 950°С.

Также к числу перспективных конструкционных материалов, в том числе которые обладают повышенной жаростойкостью можно отнести высокоазотистые стали и наноструктурированные стали и сплавы [4 - 9].

Вывод. Направление дальнейших исследований должно пойти по пути разработки суперсплавов с еще большим сопротивлением ползучести, максимальной стойкостью к окислению, сопротивлением термомеханической усталости и повышенной структурной стабильностью. Сопоставление свойств и надежности изделий, изготовленных по разным технологическим схемам, показало технические и экономические преимущества монокристаллической литейной технологии. Для монокристаллических отливок разрабатываются специальные суперсплавы с низким содержанием элементов, упрочняющих

границы зерен (C, B, Zr, Hf), и дополнительным легированием рением с небольшими добавками иттрия и редкоземельных элементов.

Литература

- 1. Жаропрочные сплавы история. [Электронный ресурс] Химия. Режим доступа http://98.131.164.122/u/jaroprochnyie_splavyi_-_istoriya
- 2. Стали и сплавы. Марочник. Справ.изд./ В. Г. Сорокин и др. Науч. С77. В. Г. Сорокин, М. А.Гервасьев М.: "Интермет Инжиниринг", 2001 608с, илл. ISBN 5-89594-056-0
- 3. Новые материалы в металлургии [Электронный ресурс] Украинская ассоциация сталеплавильщиков. Режим доступа: http://uas.su/books/newmaterial/55/razdel55.php.
- 4. Balyts'kyi O.I., **Kolesnikov V.O** Investigation of wear products of high nitrogen manganes steels // *Materials Science (Springer).* 2009, vol. 45, N 4.- P.576-581.
- 5. В.А. Колесников Новые наноструктурированные высокоазотистые марганцевые стали // Вісник Східноукраїнського національного університету імені Володимира Даля // Електронне наукове фахове видання, 2009. № 5. Режим доступа: http://www.nbuv.gov.ua/e-journals/vsunud/2009-5E/09kvavms.htm.
- 6. Kolesnikov V.O. Investigation of the wear products of high-nitrogen steel after hydrogenation // Komisji Motoryzacji i Energetyki Rolnictwa XA/2010. *Commission of Motorization and Power Industry in Agriculture* OLPAN, 2010, 10A,271 -275 p. http://www.pan-ol.lublin.pl/wydawnictwa/TMot10a/Kolesnikov.pdf.
- 7. Колесников В.А. Новые наноструктурированные высокоазотистые марганцевые стали // Мир Техники и Технологий, 2010. № 6 -7. C. 31 33.
- 8. Колесников В.А., Балицкий А.И. Новые наноструктурированные сплавы очередной шаг к экологической безопасности планеты // Збірник наук. Праць СНУ ім. В. Даля, № 1 (2). Прикладна екологія. Луганськ: вид-во СНУ ім. В. Даля, 2010.— С. 137 142.
- 9. Valerii Kolesnikov, Alexsandr Balitskii, Jacek Eliasz Tribological properties of high nitrogen steels after hydrogenation // Komisji Motoryzacji i Energetyki Rolnictwa Volume XC/2010. *Commission of Motorization and Power Industry in Agriculture* OLPAN, 2010, 116 121 p.

Шевырёва М. Е., студентка. Науч. рук. доц., к.т.н. **Колесников В.А.** Луганский национальный университет имени Тараса Шевченко

АМОРФНЫЕ МЕТАЛЛИЧЕСКИЕ МАТЕРИАЛЫ

В статье представлены сведения о методах получения, структуре и свойствах аморфных металлических материалов. Рассмотрено использование аморфных металлических материалов в качестве барьеров против диффузии, сердечников магнитных головок, различного рода преобразователей и датчиков.

Ключевые слова: аморфные металлические стёкла, ионно-плазменное распыление, диффузный барьер, инжекционное сопло.

проблемы. Состояние Исследования области прикладного материаловедения оказывают непосредственное влияние на развитие цивилизации [1]. Аморфные материалы не лишены недостатков. Это их невысокая термическая устойчивость, недостаточная стабильность во времени, что снижает их надежность, малые размеры получаемых лент, проволоки, гранул и их полная несвариваемость. Следовательно, аморфные металлы не пригодны для крупногабаритных конструкций, невозможно их использовать в качестве высокотемпературных материалов. Поэтому применение аморфных металлов, вероятно, будет ограничено только малогабаритными изделиями.

Цель статьи. Сделать краткий обзор исследований и разработок, связанных с многообразными практическими применениями аморфных металлических материалов.

Шевырёв Д.Н., Колесников В.А. ЖАРОПРОЧНОСТЬ СПЛАВОВ ЦВЕТНЫХ МЕТАЛЛО И СТАЛЕЙ	ЭВ 137
Шевырёва М. Е., Колесников В.А. АМОРФНЫЕ МЕТАЛЛИЧЕСКИЕ МАТЕРИАЛЫ	
Шевырёва М. Е., Колесников В.А. БИОМАТЕРИАЛЫ	.146
<i>Шевырёв Д. Н., Колесников В.А.</i> ДОСТОИНСТВА И НЕДОСТАТКИ ДРЕВЕСИНЫ КА	К
МАТЕРИАЛА	.150
<u>СЕКЦІЯ IV</u>	
Гуманітарні та соціальні проблеми промислових регіонів	
Factoring A. T. Vocarana E.M. Hacaraca H.F. CEVCVA III HOCTI HEHODEVA VAV	
Бабыкина А. Т., Коваленко Е.М., Носорева Н.Г. СЕКСУАЛЬНОСТЬ ЧЕЛОВЕКА КАК ОБЪЕКТ НОРМИРОВАНИЯ В РЕЛИГИОЗНОМ ДИСКУРСЕ	154
Булгакова С.Н. ПРОБЛЕМЫ МОНОГОРОДОВ В РОССИИ	
ВойтенкоА.С., ИвченкоМ.В. ОСОБЕННОСТИ ПЕРЕВОДА РЕКЛАМНЫХ	.130
СЛОГАНОВ	161
<i>Гетманов И.П., Петренко О.Б., Петренко Е.А.</i> НРАВСТВЕННЫЕ ОСНОВЫ	
ПРАВОСОЗНАНИЯ	.163
Гетманов И.П., Петренко Е.А. СОЦИАЛЬНОЕ НАУЧЕНИЕ НАСИЛИЮ	
И.П.Гетманов, С.Н. Косьяненко. САМОБЫТНОСТЬ РУССКОЙ КУЛЬТУРЫ	
Гетманов И.П., Петренко Е.А. ПРИЧИНЫ АГРЕССИИ В СОЦИАЛЬНОМ МИРЕ	
Голосова Н.В. ПОНЯТИЕ «АНЕКДОТ» В НЕМЕЦКОЙ ЛИНГВОКУЛЬТУРЕ	192
<i>Головченко Д.К., КрайняяА.В.</i> ФОНОСЕМАНТИЧЕСКАЯ ОЦЕНКА СТРОЕВЫХ	
МАРШЕЙ	.195
<i>Гринина О.,Добрин Б.</i> ПРОФИЛАКТИКА ОСТЕОПОРОЗА – ВАЖНЕЙШАЯ	
СОЦИАЛЬНАЯ ЗАДАЧА	.198
<i>Грицихина А. Я., Носорева Н.Г.</i> СРАВНИТЕЛЬНЫЙ ЛИНГВОСТАТИСТИЧЕСКИЙ	
АНАЛИЗ РОССИЙСКИХ И БРИТАНСКИХ НОВОСТНЫХ СТАТЕЙ (НА ПРИМЕРЕ	
МАТЕРИАЛОВ ИНФОРМАЦИОННОГО АГЕНТСТВА ВВС)	203
Давыдова М.М., Быкова А.С., Коваленко Е.М. РАСПРЕДЕЛЕНИЕ БУКВЕННОЙ ДЛИН	
СЛОВА В ТЕКСТАХ РУССКОЙ ЛИТЕРАТУРЫ	207
Зайцева Д.Д., Голосова Н.В. СРАВНИТЕЛЬНЫЙ АНАЛИЗ ОБРАЗА «ЖЕНЩИНЫ» В	• • •
СМИ	209
Захарова С.П., Крайняя А.В. ФОНОСЕМАНТИЧЕСКАЯ ОЦЕНКА КОЛЫБЕЛЬНЫХ	
TIECEH	212
Е.В.Капелюшная , О.Д.Макарова . АКТИВНЫЕ И ИНТЕРАКТИВНЫЕ ФОРМЫ	
ПРОВЕДЕНИЯ ЗАНЯТИЙ	217
ИСТОРИЧЕСКОГО НАСЛЕДИЯ А.С. ПУШКИНА	
Кардашян К.В., Крайняя А.В. КОРПУС ТЕКСТОВ УКРАИНСКОГО ЯЗЫКА	225
Коваленко Е.М. ИСПОЛЬЗОВАНИЕ СИСТЕМЫ ВААЛ В СОВРЕМЕННОМ	220
ЛИНГВИСТИЧЕСКОМ ОБРАЗОВАНИИ	228
ГОСУДАРСТВА	
А.Н.Коршунов. НАСТОЯЩЕЕ И БУДУЩЕЕ РУССКОЙ ФИЛОСОФИИ	.236
Крайняя А.В. СОЦИАЛЬНЫЕ СЕТИ КАК СРЕДСТВО ОРГАНИЗАЦИИ	220
САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ	239
<i>Куликова М.С., Голосова Н.В.</i> СРАВНИТЕЛЬНЫЙ АНАЛИЗ ОБРАЗА «ВОЙНЫ» В СМИ	242
CIVIII	442

ЗБІРНИК МАТЕРІАЛІВ

VII МІЖНАРОДНОЇ НАУКОВО - ПРАКТИЧНОЇ КОНФЕРЕНЦІЇ

"ЕКОНОМІЧНІ, ЕКОЛОГІЧНІ ТА СОЦІАЛЬНІ ПРОБЛЕМИ ВУГІЛЬНИХ РЕГІОНІВ ЄВРОПИ ТА СНД"

26 травня 2014 р.

м. Краснодон

Матеріали VII МІЖНАРОДНОЇ НАУКОВО-ПРАКТИЧНОЇ

КОНФЕРЕНЦІЇ "ЕКОНОМІЧНІ, ЕКОЛОГІЧНІ ТА СОЦІАЛЬНІ ПРОБЛЕМИ ВУГІЛЬНИХ РЕГІОНІВ ЄВРОПИ ТА СНД"

Редакційна колегія: доц. Стьопіна О.Г.

доц. Колесніков В.О.

Технічний редактор: ac. Козлов І.О.

Відповідальні за випуск: доц. Стьопіна О.Г.

доц. Колесніков В.О.

Тексти статей друкуються в авторській редакції

Шевырѐв Д.Н., Колесников В.А. Жаропрочность сплавов цветных металлов и сталей // Матеріали VII Міжнародної науково-практичної конференції "Економічні, екологічні та соціальні проблеми вугільних регіонів Європи та СНД" 26 травня, м. Краснодон. 2014 р. 138 -142 с.

Жароміцність сплавів кольорових металів і сталей.

Heat resistance of alloys of non-ferrous metals and steels.

Heat resistance of alloys of colors metals and steels.

https://www.researchgate.net/publication/334598463_Sevyrev_DN_Kolesnikov_V A_Zaroprocnost_splavov_cvetnyh_metallov_i_stalej_Materiali_VII_Miznarodnoi_naukovo-

<u>prakticnoi_konferencii_Ekonomicni_ekologicni_ta_socialni_problemi_vugilnih_regioniv_Evropi_ta_</u>