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ABSTRACT

This study presents an integrated ecological assessment of water quality in the Southern Bug River basin,
employing analyses of water quality criteria and pollution indicators. Through meticulous examination,
the research identifies various factors pivotal to the river’s water quality. Key findings underscore the
significant influence of physicochemical parameters on the river’s water resources. Two distinct water
quality prediction models were developed: a traditional model and a hydrochemical regime-incorporating
model. While the traditional model generally exhibits superior accuracy, the hydrochemical regime model
demonstrates heightened precision, particularly in scenarios characterized by abrupt environmental changes.
Although the hydrochemical regime model predicts with slightly lower accuracy (70-75%) compared to the
traditional model, it excels during sudden anthropogenic alterations in water resources, achieving accuracy
levels of 80-85%. These results underline the substantial impact of the hydrochemical regime on prediction
accuracy and emphasize its crucial role in evaluating water quality. Moreover, the study addresses pollution
prediction in the Southern Bug River environment, facilitating proactive responses to potential threats to
aquatic ecosystems and public health. An integrated approach to water quality analysis, considering various
factors and developing a spatial model of river flow, significantly enhances precision in identifying and
understanding variations in water quality, which is imperative for effective water resource management.
The insights gleaned from this research provide valuable information for policymakers, stakeholders, and
environmental managers tasked with preserving and managing water resources sustainably. By shedding
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light on the complex dynamics of river basins, this study contributes to the advancement of scientific
knowledge and the development of strategies for safeguarding freshwater ecosystems.

Key words: Pollution indicators,Prediction model, Accuracy, River hydrochemical regime, Quality criteria

Introduction

Amidst the backdrop of mounting global ecological
challenges, ensuring the quality of water resources
emerges as a paramount scientific concern. Exces-
sive regulation, population growth, and the exploi-
tation of natural resources have led to a significant
deterioration in water quality and the condition of
aquatic ecosystems. In this context, integrated eco-
logical assessment becomes an indispensable com-
ponent of strategies aimed at conserving and restor-
ing water resources(Reid at al., 2018).

The preservation of viable aquatic ecosystems
stands as a critical objective, as they not only consti-
tute key elements of biodiversity but also play a piv-
otal role in meeting the needs of both populations
and economic sectors for clean and safe water. The
examination of water quality criteria and pollution
serves as a crucial step in identifying tangible threats
and formulating effective management measures
(Hossain at al., 2020).

The imperative for conducting research on this
subject is underscored by the menacing impact of
both anthropogenic and natural factors on water
resources. This relevance is underscored by several
factors. Firstly, a multitude of natural and anthropo-
genic factors exert influence over the state of aquatic
ecosystems. Changes in water quality and pollution
levels serve as vital indicators of the ecological
health of river systems. Secondly, water pollution
directly impacts biota and ecosystem health, while
also posing significant risks to human health
through its use in households and agriculture.

This underscores the urgency of investigating the
worsening water quality and ecological resilience of
rivers amidst anthropogenic pressures and ecologi-
cal crises. The analysis of water quality criteria rep-
resents a crucial stage in comprehending the eco-
logical condition of the region.

A systematic analysis of water quality criteria
and pollution indicators serves as a prerequisite for
the development of effective strategies aimed at con-
serving and restoring ecosystems, as well as ensur-

ing the sustainable utilization of water resources
within the region.

Such research transcends mere academic interest,
intersecting with practical environmental protection
measures and water resource management prac-
tices. The resolution of river ecological status chal-
lenges and the formulation of effective protective
measures are determined not only by the impera-
tives of nature but also by the harmonious preserva-
tion of water resources to meet societal needs.

The insights garnered from such research are in-
dispensable in practice, as they not only delineate
the state of river water environments but also fur-
nish the basis for devising effective water resource
management strategies. The assessment of pollution
and identification of key influencing factors will fa-
cilitate the identification of critical aspects necessi-
tating immediate action to safeguard biodiversity.

The data derived from this research will aid in
formulating specific measures to protect water re-
sources, enhancing ecological monitoring, and aug-
menting the effectiveness of strategies aimed at re-
storing river ecosystems.

Scientific inquiry into the integrated ecological
assessment of river water environments, with a fo-
cus on water quality criteria and pollution indica-
tors, represents a crucial stride towards ensuring
sustainable water utilization and ecosystem preser-
vation. Its outcomes will serve as a pivotal resource
in addressing environmental challenges and en-
hancing overall water quality.

Therefore, research endeavors dedicated to as-
sessing the pollution status of rivers remain perti-
nent, as they furnish the groundwork for formulat-
ing specific measures aimed at safeguarding water
resources, refining ecological monitoring practices,
and implementing more efficacious strategies for the
restoration of river ecosystems. Such research en-
deavors will contribute to ensuring sustainable wa-
ter utilization and ecosystem preservation, both of
which are indispensable in tackling environmental
challenges and enhancing water quality on a
broader scale.
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Literature Review and Problem Statement

Developing an effective and precise water quality
model proves to be a significant yet challenging task
due to variations in river hydrology and the pres-
ence of anthropogenic influences in real-world con-
ditions. Traditional data processing methods and
statistical forecasting models often fail to address
these complexities, especially given the ambiguity
and non-linearity of water quality parameters.

Deterministic models aimed at reproducing
chemical and physical processes have their limita-
tions due to the need for simplifications in decision-
making. While statistical models seek general rules
based on empirical data, they can be intricate and
require substantial data volumes.

Given the limitations of traditional methods, arti-
ficial intelligence (Al) is often considered as an alter-
native. Models developed based on the correlation
of input and output data enable overcoming some
constraints associated with conventional methods.

Thus, conducting research devoted to the devel-
opment and implementation of Al models for effec-
tive modeling of complex nonlinear systems, such as
assessing water quality in rivers, is deemed worth-
while. The application of Al can aid in addressing
the challenges posed by variability and ambiguity in
real-world conditions, ensuring accurate and reli-
able results.

The use of artificial intelligence opens new possi-
bilities for accurate modeling of complex river water
quality systems. The application of Al in ecological
research can help overcome challenges associated
with variability and non-linearity of parameters in
real-world conditions.

Study (Lu et al., 2023) analyzes spatial and tempo-
ral variations in water quality in the middle and
lower reaches of the Han River in China. The study
employs Water Quality Index (WQI) and Minimum
WQI methods to comprehensively analyze the state
of water resources. The uniqueness of the article lies
in the wide range of parameters used for analysis, as
well as the comparison between the traditional WQI
method and the enhanced WQImin method.

However, the study leaves several unresolved
questions. Particularly, there is a lack of detailed
analysis of the causes of seasonal variations in water
quality and their impact on the environment and
society. Additionally, the study does not provide
clear conclusions and recommendations for further
actions, which may complicate the practical imple-
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mentation of the obtained results. Objective reasons
for these unresolved issues may include limited re-
sources for research, insufficient data availability,
and the complexity of analyzing seasonal variations.

Study (Yang et al., 2021) of spatiotemporal varia-
tions in water quality in the Nanfei River establishes
links between various water quality parameters and
their impact on the overall water quality index.
However, there are several aspects that remain un-
resolved in this study or could be further elaborated.

Firstly, the article does not consider the impact of
geographical factors on water quality. Although it is
noted that water from different sources has different
qualities, the specific influence of geographical con-
ditions on pollution is not addressed. This limitation
may be due to limited resources for research or a
lack of access to sufficient data. Another limitation is
the limited list of water quality parameters ana-
lyzed. While the article emphasizes the importance
of considering various parameters such as COD,
TN, TP, etc., it may be beneficial to expand the list of
analyzed parameters or explore their interaction in
greater depth.

A third aspect is the absence of specific recom-
mendations regarding water quality management
strategies. Although the authors emphasize the im-
portance of considering various factors when mak-
ing decisions to reduce pollution, the article does not
provide specific recommendations on how this can
be done.

It is likely that these points were left unresolved
due to limitations in the methods of analysis. Objec-
tive reasons for these unresolved issues may include
limited data availability, particularly regarding spe-
cific sources of pollution and their impact on water
quality. Additionally, there may be difficulties in
determining the relationships between different fac-
tors, such as hydrological conditions and pollution
levels.

Of particular interest is the study (Kim et al.,
2017), which evaluates changes in water quality in a
monitoring network using exploratory factor analy-
sis and empirical orthogonal function.

The main advantages of this study lie in the use
of innovative analysis methods such as exploratory
factor analysis and empirical orthogonal function,
which allow for a more accurate identification and
understanding of variations in water quality. Addi-
tionally, the use of these methods can contribute to
improving the monitoring of water resources and
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the adoption of water quality management mea-
sures.

However, there are aspects that remain unre-
solved in this study. Primarily, there is no clear
methodology for selecting the monitoring network
and water quality parameters, which may lead to
the misrepresentation of water systems. Addition-
ally, the study does not investigate the impact of
external factors such as climate change or anthropo-
genic pollution on water quality, which could affect
the reliability of the obtained results.

For future research, it is important to address
these issues and take appropriate measures to re-
solve them. For example, it may be necessary to de-
velop a standardized methodology for selecting
monitoring points and water quality parameters
based on the diversity of geographical and anthro-
pogenic factors.

As we can see, traditional studies (Lu et al., 2023;
Yang et al., 2021; Kim et al., 2017) have limitations in
terms of accuracy due to data constraints. Indeed,
conducting continuous monitoring is costly, labor-
intensive, and in some cases not rational, yet it is
essential for identifying current dynamics. Address-
ing this issue could involve the application of ma-
chine learning, which can generate additional neces-
sary data for assessment and precise forecasting.
Therefore, research based on Al plays a significant
role in this research direction.

The authors of article (Zhu et al., 2019) propose a
model based on Extreme Learning Machine (ELM)
for predicting daily water temperature in rivers. Air
temperature (Ta), discharge (Q), and day of the year
(DOY) are used as predictors. Data from three rivers
with different hydrological conditions were used to
test the models. The results showed that the inclu-
sion of all three input parameters (Ta, Q, and DOY)
yielded the best modeling accuracy for all devel-
oped models. Additionally, it was found that Q
played a minor role, while Ta and DOY were the
most important explanatory variables for predicting
water temperature in rivers.

Positive aspects of the study include the innova-
tive approach using ELM for predicting water tem-
perature in rivers. The results showed that ELM and
MLPNN models outperformed the MLR model.
Additionally, it was found that sigmoid and radial
basis activation functions performed best for pre-
dicting water temperature in rivers. However, de-
spite its high accuracy, the conducted research is
extremely labor-intensive.
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Article (Abba et al., 2020) examines the applica-
tion of various models, such as Genetic Program-
ming (GP), Extreme Learning Machine (ELM), and
XGBoost (XGB), for predicting Water Quality Index
(WQI) in the Kinabatangan River basin, Malaysia.
The authors compare the results of the constructed
models with the classical method of linear regres-
sion (LR). Positive aspects include the efficiency of
GP and XGB as tools for selecting input variables, as
well as improved prediction accuracy using ELM.
However, using LR after variable selection may de-
grade prediction accuracy. A negative factor is the
limitation of the study: the use of only one data
source and the absence of analysis of the impact of
anthropogenic activity on water quality. To over-
come this, it is possible to expand the data scope,
utilize diverse sources of information, and consider
the impact of human activity on water resources in
more detail.

The methodology described in article (Kim et al.,
2015) is based on the combination of clustering
methods and Artificial Neural Networks (ANN) for
predicting water quality in rivers. The main idea is
to use clustering to construct balanced data sets for
training ANN and thus improve prediction accu-
racy.

There are certain advantages to using this meth-
odology, such as reducing modeling errors through
the use of balanced data sets and improving model
accuracy, as demonstrated compared to results of
non-clustered ANN. However, there are several
unresolved issues that require further research.

Firstly, the impact of the number of clusters on
modeling results has not been investigated. Addi-
tionally, the stability of the methodology’s results
under different conditions is not considered. It is
important to determine how different clustering
parameters may affect the effectiveness of the meth-
odology.

Furthermore, the methodology should be com-
pared with other modern water quality prediction
methods to obtain more objective results. Finally,
there is a need to study the influence of clustering
parameters on modeling results and address unre-
solved issues.

For further research, it is recommended to con-
duct a systematic analysis of methodology param-
eters. It is also crucial to expand the data scope to
enhance stability and generalizability of results.
Additionally, it is necessary to compare it with other
methods and develop new clustering approaches
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specifically adapted for water quality data.

Article (Asadollah et al., 2021) addresses the effec-
tiveness of three machine learning models (Decision
Tree Regression, Support Vector Regression, and
Extra Tree Regression) in predicting Water Quality
Index (WQI). As a practical example, the study fo-
cuses on the Lam Tsuen River in Hong Kong based
on water quality indicators measured monthly. The
research demonstrates that the Extra Tree Regres-
sion model with ten input parameters achieves the
highest accuracy in predicting WQI. Moreover, it
shows the capability to significantly reduce compu-
tational load compared to other methods and poten-
tially provide effective real-time water quality moni-
toring. However, the study may be limited by the
selected set of chemical and physical parameters, as
well as data sampling requirements. Additionally,
the article does not account for potential differences
in climatic and hydrological conditions of other riv-
ers.

Interest in prediction under data scarcity is high-
lighted in study (Kouadri et al., 2021). The authors
evaluate groundwater quality to ensure safe drink-
ing water sources. To address data limitations, the
authors utilized 8 artificial intelligence algorithms,
including Multilinear Regression (MLR), Random
Forest (RF), M5P tree, Random Subspace (RSS), Ad-
ditive Regression (AR). They also employed Locally
Weighted Linear Regression (LWLR), Artificial
Neural Network (ANN), and Support Vector Re-
gression (SVR) to predict WQI in the Illizi region,
southeastern Algeria. The article discusses the re-
sults and discussion of the research on water re-
sources, particularly the chemical composition of
groundwater. The study is based on the investiga-
tion of 114 groundwater samples collected from 57
developed wells across 6 different layers. However,
a drawback of the study is the neglect of well loca-
tions. It should be understood that water bodies are
not independent; they interact, forming a complex
network of hydrological processes and cycles.
Therefore, their hydrochemical regime should be
considered not only separately but also in the con-
text of their interaction to gain a fuller understand-
ing of aquatic ecosystems and ensure effective water
resource management.

Opverall, according to analytical works devoted to
Al in water resources (Tiyasha, Minh Tung et al.,
2020; Yan et al., 2024), there are some unresolved is-
sues:

Model accuracy issues: Analysis of articles reveals
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that although artificial intelligence models such as
Artificial Neural Networks (ANN) and logic-based
reasoning demonstrate high accuracy in predicting
water quality in rivers, they may inadequately re-
flect complex interactions between various water
parameters and environmental factors. For instance,
they may underestimate the impact of certain pol-
lutants or fail to account for heterogeneity in water
resources. This could be an objective reason related
to the complexity of physicochemical processes in
the aquatic environment, which are challenging to
model.

Insufficient attention to forecasting future changes:
Many studies focus on predicting the current state
of water quality in rivers. However, little attention is
paid to forecasting future changes, such as the im-
pact of climate change or human activities on water
quality. This could be an objective reason, as fore-
casting future changes requires a significant amount
of additional data and complex models, which may
be inaccessible or underestimated.

Inadequate consideration of geographical and cultural
specificity: Studies are conducted in various geo-
graphical areas and cultural contexts, which may
lead to ambiguous results or inconsistent models.
This could be a subjective reason, as considering
geographical and cultural characteristics can be a
challenging task that requires deeper analysis and
consideration of local conditions.

We may conclude that there is a notable dearth of
studies assessing the holistic impact of anthropo-
genic pressures on rivers. While numerous investi-
gations delve into specific facets of aquatic environ-
ments, they often fail to account for interrelations
and the synergistic influence of diverse factors on
ecosystems. Consequently, it is imperative to under-
take research aimed at scrutinizing the comprehen-
sive ecological state of the Southern Bug River.

Hence, our study proposes conducting an inte-
grated ecological appraisal of the aquatic milieu
through a synthesis of water quality criteria analysis
and computational modeling, aiming for a more
profound comprehension of the multifaceted im-
pacts on riverine ecosystems. Notably, conventional
methodologies frequently fall short of meeting the
demands of water quality modeling.

The deployment of artificial intelligence (AI)
holds promise as a viable remedy to circumvent
these limitations, serving as a potent tool for yield-
ing precise and credible outcomes. Therefore, it is
recommended to embark on investigations dedi-
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cated to crafting Al models for the comprehensive
ecological assessment of water quality in rivers.
However, the challenge persists in delineating opti-
mal parameters and tailoring AI models to the spe-
cific hydrochemical dynamics of the river.

Materials and Methods

Research Objectives and Goals

The aim of this research is to conduct a comprehen-
sive ecological assessment of the riverine environ-
ment, utilizing an analysis of water quality criteria
and pollution indicators. The study seeks to enhance
understanding of the anthropogenic pressures on
the river ecosystem and to identify key aspects of
pollution and their interrelationships. The outcomes
will contribute to the development of effective con-
servation and restoration strategies for water re-
sources, fostering sustainable water management in
the region.

To achieve this goal, the following objectives
were set:

To investigate the impact of physico-chemical
water quality criteria of the river, focusing on indi-
cators reflecting the ecological status of the river sys-
tem.

To develop a water quality prediction model tak-
ing into account the hydrochemical regime of the
Southern Bug River.

Study method

The object of the study is the basin of the Southern
Bug River within the Vinnytsia region. The research
hypothesis assumes that anthropogenic factors and
natural elements significantly interact, leading to
changes in water quality and causing imbalances in
the river’s aquatic ecosystems.

The underlying concept of the study is based on
the spatial structure of the input-output model
framework.

To develop a water quality assessment model for
the Southern Bug River, key input parameters that
have a substantial impact on the river’s water qual-
ity were identified. Considering a critical literature
review, the following parameters were determined
for modeling the water quality of the Southern Bug
River: ammonium ion content, five-day biochemical
oxygen demand, suspended solids, and dissolved
oxygen. Additionally, nitrate ions, nitrite ions, sul-
fate ions, phosphate ions (polyphosphates), and
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chloride ions were taken into account. The selection
of these input parameters is based on prior knowl-
edge and statistical analysis of potential inputs.
Furthermore, the proposed model includes a pa-
rameter that considers the influence of the
hydrochemical regime of the Southern Bug River.
Existing models do not account for internal pro-
cesses; instead, they develop models through the
correlation of input and output data based on the
value of the same parameter at the previous moni-
toring point. However, typically, discharge through
a local area from an upstream monitoring point af-
fects water pollution relating to a downstream point.
Therefore, the proposed model focuses on the possi-
bility of considering the influence of water quality
parameters at an upstream monitoring point.
Thus, the developed water quality prediction
model at each monitoring point incorporates not
only nine input parameters - chemical water indica-
tors measured at monitoring points, but also an ad-
ditional indicator - water quality at previous points.
At the previous points (upstream), the predicted
water pollution index (WPI) is calculated according
to equation (1):

B
WPL=2 i=1pc,

Gy 4
+2+24

L5y 6 4 Cr 4 F5 4 G5
c4’-|-‘15-|-3.3-|- +=+

500 3.5 500

- (1)

where c-represents the concentration of the nor-
mative component, c,—concentration NH,*, ¢, —con-
centration of biological oxygen demand (BOD5), c,
-indicates the concentration of suspended solids, ¢~
signifies the concentration of dissolved oxygen O,, c,
— concentration of nitrates NO,”, c.-NO," - concentra-
tion of phosphates, c-reflects the concentration of
sulfates SO,*, c,—represents the concentration of am-
monia PO, cg—the concentration of chloride Cl;
PC - signifies the established concentration value of
the component for the respective water body type,
measured in mg/dm?3; n — denotes the number of
indicators utilized in calculating the WPL.

Figure 1 provides a schematic depiction of the
parameter selection approach for the models.

This procedure is repeated, incorporating the pre-
dicted WP], for the second, third, and fourth moni-
toring points downstream.

As a practical implementation, a ANN model
was developed for four monitoring points along the
Southern Bug River. The model was constructed
using the Neural Network Toolbox tool within the
Matlab environment. The accuracy of the model was
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Fig. 1. Schematic representation of parameter selection
for water quality prediction models of the South-
ern Bug River

evaluated using the coefficient of determination (R?)
and the mean squared error (MSE).

Results

Impact of physico-chemical water quality criteria
on the Southern Bug River

During the investigation of the influence of physico-
chemical water quality criteria on the Southern Bug
River, an analysis of indicators was conducted at
four monitoring points. The results indicate signifi-
cant differences in the levels of individual indicators
between monitoring points, suggesting diverse in-
fluences of anthropogenic and natural factors in dif-
ferent areas. Specifically, the comparison of average
indicator values at different monitoring points indi-

Eco. Env. & Cons. 30 (3) : 2024

cates that the Khmilnyk and Hushchyntsi points
have higher average levels of ammonium ions,
BODS5, and nitrates compared to other monitoring
points. This may indicate possible sources of indus-
trial or agricultural pollution in these areas.

On the other hand, the Mankivka point is charac-
terized by lower levels of ammonium ions and
BOD?5, suggesting a lesser influence of anthropo-
genic emissions sources in this basin area.

In particular, ammonium ions have an average
value ranging from 0.42 to 0.72 mg/dms3, with the
maximum level recorded at the Khmilnyk point and
the minimum at the Mankivka point. BOD5 ranges
from 5.25 to 7.00 mgQO,/dms3, with the highest re-
corded value at the Khmilnyk point.

The main statistical parameters (mean (i), mini-
mum (min), maximum (max), standard deviation
(o), arithmetic mean (X), and coefficient of variation
(CV)) for input and output parameters are presented
in Table 1.

Average values and range indicators provide an
overview of substance concentrations in the waters
of the Southern Bug River at different monitoring
points.

To determine the degree of concentration varia-
tion of parameters, the coefficient of variation (CV)
is used. Large CV values (ranging from 109.59% to
355.84%) indicate significant diversity in substance
concentrations in the water, which may be associ-
ated with different sources of pollution and spatial
non-uniformity in their distribution.

The general trend shows that nitrate, nitrite, and
phosphate levels exhibit significant variability
among monitoring points. Sulfate ions and chloride
ions also demonstrate variability in distribution
along different stretches of the river.

The significant differences in parameter concen-
trations suggest various pollution sources across the
extensive geographical range of the river basin. The
river channel passes through different settlements,
tributaries, and sewage channels that discharge
wastewater into the main river channel.

For modeling efficiency, a statistical correlation
analysis was used between input and output param-
eters. For example, concentrations of ammonium
ions and BOD?5 exhibit a high degree of correlation.

The most significant influence on forecasting re-
sults comes from oxygen-containing nitrates and
phosphates. Correlation analysis was conducted by
constructing a correlation matrix (Table 2). This cor-
relation matrix represents a table of correlation coef-



BEREZENKO ET AL

475

Table 1. Main physico-chemical indicators of the Southern Bug River at monitoring points Khmilnyk, Hushchyntsi,

Sabarivske, and Mankivka

Indicator Unit u max min c X Ccv
Monitoring Point 1 (Khmilnyk)

NH,* mg/dm?’ 0,72 0,00 3,30 0,79 0,72 109,59 %
BOD5 mg O,/dm? 6,57 3,70 13,30 2,22 6,57 33,77 %
Suspended solids mg/dm? 11,50 5,00 25,00 5,07 11,50 44,13 %
0, mg O,/dm? 6,91 2,98 11,30 2,09 691 30,26 %
NO, mg/dm? 1,99 0,00 7,71 2,05 1,99 102,82 %
NO, mg/dm? 0,32 0,00 6,79 1,13 0,32 355,84 %
SO, mg/dm?’ 33,53 21,90 47,30 7,05 33,53 21,02 %
PO* mg/dm? 0,64 0,03 3,05 0,73 0,64 113,75 %
Cr mg/dm? 39,09 22,70 61,10 6,78 39,09 17,35 %
Monitoring Point 2 (Hushchintsy)

NH,* mg/dm? 0,72 0,00 3,00 0,75 0,72 104,08 %
BOD5 mg O,/dm? 6,05 3,50 12,20 1,99 6,05 32,85 %
Suspended solids mg/dm? 11,44 5,00 25,00 4,80 11,44 41,93 %
0, mg O,/dm? 7,08 3,40 13,90 2,09 7,08 29,48 %
NO, mg/dm? 1,95 0,00 8,56 2,33 1,95 119,29 %
NO, mg/dm? 0,11 0,00 0,63 0,12 0,11 103,67 %
SO, mg/dm? 33,73 21,20 57,17 8,00 33,73 23,70 %
PO* mg/dm? 0,53 0,03 3,05 0,68 0,53 128,98 %
Cr mg/dm?’ 38,72 22,60 49,50 5,60 38,72 14,46 %
Monitoring Point 3 (Sabarivske)

NH,* mg/dm? 0,70 0,10 3,62 0,75 0,70 107,21 %
BOD5 mg O,/dm? 7,00 3,80 19,00 3,25 7,00 46,48 %
Suspended solids mg/dm? 11,06 4,00 24,00 451 11,06 40,80 %
0, mg O,/dm? 7,04 1,70 14,50 2,85 7,04 40,42 %
NO; mg/dm?’ 2,11 0,00 13,79 3,00 2,11 142,39 %
NO, mg/dm?’ 0,11 0,01 0,55 0,12 0,11 110,02 %
SO, mg/dm? 34,77 18,40 60,15 9,15 34,77 26,33 %
PO* mg/dm? 0,50 0,04 2,39 0,60 0,50 119,92 %
Cr mg/dm? 37,81 28,90 53,80 4,69 37,81 12,41 %
Monitoring Point 4 (Mankivka)

NH,* mg/dm? 042 0,10 1,30 0,27 042 63,82 %
BOD5 mg O,/dm? 5,25 2,40 11,30 1,96 5,25 37,38 %
Suspended solids mg/dm? 7,59 4,00 19,00 3,26 7,59 42,91 %
0, mg O,/dm? 8,69 2,50 15,70 3,14 8,69 36,17 %
NO, mg/dm? 1,72 0,00 4,79 1,47 1,72 85,10 %
NO, mg/dm? 0,10 0,00 0,78 0,14 0,10 132,91 %
SO, mg/dm?’ 35,33 22,30 53,10 6,42 35,33 18,17 %
PO* mg/dm? 0,46 0,03 3,50 0,60 0,46 129,95 %
Cr mg/dm?’ 44,52 23,50 57,50 8,86 44,52 19,91 %

ficients between various chemical parameters in the
water. Each element of the matrix indicates the de-
gree of correlation between two parameters. The
correlation coefficient can range from -1 to 1, where
-1 indicates a complete negative correlation, 1 indi-
cates a complete positive correlation, and 0 indicates
no correlation.

The following parameters were analyzed: con-

centrations of ammonium ions, biochemical oxygen
demand for five days, suspended solids, dissolved
oxygen, nitrate ions, nitrite ions, sulfate ions, phos-
phate ions (polyphosphates), and chloride ions.
Regarding the correlation between BOD5 and ni-
trate ion content, a weak positive correlation (0.37)
was found, suggesting that an increase in nitrate
ions may lead to an increase in biochemical oxygen
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Table 2. Correlation Matrix
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Indicator NH,* BOD5  Suspended 0, NO, NO, SO, PO* Cl-
NH,* 1 0,11 0,01 -0,15 0,37 0,25 0,08 0,57 0,13
BOD5 0,11 1 0,36 -0,36 -0,1 -0,06 -0,29 0,09 0,03
Suspended solids 0,01 0,36 1 -0,21 -0,21 -0,07 -0,01 0,07 -0,05
0, -0,15 -0,36 -0,21 1 0,25 -0,03 0,36 -0,14 -0,05
NO; 0,37 -0,1 -0,21 0,25 1 0,23 0,16 0,09 0,01
NO, 0,25 -0,06 -0,07 -0,03 0,23 1 0,02 0,07 -0,05
SO, 0,08 -0,29 -0,01 0,36 0,16 0,02 1 -0,15 -0,03
PO* 0,57 0,09 0,07 -0,14 0,09 0,07 -0,15 1 0,06
Cl 0,13 0,03 -0,05 -0,05 0,01 -0,05 -0,03 0,06 1
demand. Sabarivske monitoring points was also considered.

The relationship between suspended solids and
dissolved oxygen indicates a weak negative correla-
tion (-0.21), implying that an increase in suspended
solids may result in a decrease in dissolved oxygen.

There is a moderate positive correlation (0.57)
between phosphate ion content and nitrate ions, in-
dicating that an increase in phosphate ions may in-
fluence an increase in nitrate ions. A weak positive
correlation (0.36) exists between sulfate ions and
dissolved oxygen, suggesting that an increase in sul-
fate ions may contribute to an increase in dissolved
oxygen.

This analysis aids in identifying optimal input
parameters for the ANN model, relying on statisti-
cal relationships. Although the correlation depen-
dency does not essentially imply a physical meaning
according to the weight percentage, it indicates that
all variables significantly influenced the evaluation
of variable outcomes. The contribution of each indi-
cator ranged from 5 to 14%.

Construction of water quality prediction model
considering the hydrochemical regime of the river

Two approaches to the structure of ANN models
were used for comparison. The first approach in-
volved the construction of a traditional ANN model
for rivers: comparing solely physico-chemical indi-
cators and water quality indicators of a single moni-
toring point (Mankivka). In the second approach
(proposed), in addition to physico-chemical indica-
tors and water quality indicator of monitoring point
No. 4, water quality indicators of monitoring points
No. 3, No. 2, and No. 1 were also included as input
parameters.

For practical implementation of the proposed
method, ANN modeling was performed for moni-
toring point Mankivka. The influence of water qual-
ity indicators from Khmilnyk, Hushchintsy, and

Models for monitoring point Mankivka were con-
structed based on ANN with architecture. For the
first variant, a model with dimensions 10-8-10 was
used, where 10 nodes corresponded to input param-
eters, 8 nodes in the hidden layer, and 10 nodes in
the output layer representing target variables. For
the second variant, a model with architecture 13-8-
10 was applied.

Sigmoid and linear activation functions were used

Graphs displaying the overall data distribution of
the first variant ANN model with architecture 10-8-
10 during training, testing, and validation stages are
shown in Fig. 2, a. Correspondingly, Fig. 2, b illus-
trates the graphs of the model for the second variant
of ANN construction with architecture 13-8-10.

Data on water quality and physico-chemical pa-
rameters of the river were divided into training,
validation, and test sets. Training data were used to
train the network, validation for tuning, and test
data for evaluating the model’s accuracy. The se-
lected ratio was 70%:15%:15%.

The selection of the optimal number of neurons in
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Fig. 2. Regression Plots: a - Artificial Neural Network
with architecture 10-8-10; b - Artificial Neural Net-
work with architecture 13-8-10
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the hidden layer was carried out to achieve the best
accuracy. Several tests with different numbers of
neurons were conducted, choosing the option that
showed the best results.

Coefficient of determination (R2) and mean
squared error (MSE) were used to assess accuracy.
The optimal model was chosen based on these
metrics and tested on the test dataset.

To assess the adequacy of the models, we ana-
lyzed their convergence on separate sections accord-
ing to known data by comparing actual and pre-
dicted values determined using the ANN method.
The adequacy of the models was assessed by evalu-
ating convergence on sections with actual data as
well as at points of maximum and minimum. Devia-
tions between actual data and predicted values gen-
erated using the ANN method were analyzed and
compared in Table 3.

Table 3 demonstrates that the first variant of
ANN performs better. The highest error within the
average data range (trial 2) calculated by ANN
amounts to 1.41%; the lowest error is -1.09%. How-
ever, during sharp changes in conditions, such as
minimal decrease in parameter concentration (trial
1) or sharp increase (trial 3), the first ANN displays
significant error. On average, this error is mitigated
as abnormal parameter changes are less frequent
within the input data range.

Assessing the second variant of ANN constructed
based on water quality parameters from preceding
points, a considerably higher prediction error is ob-
served within the average data range (1.74%). None-
theless, it’s worth noting that the error size remains
almost unchanged when predicting data model
variations (0.76%).

Table 3 provides a comparative analysis of the
results between two model types: the traditional
model and the model accounting for hydrochemical
regime. Various chemical indicators of the aquatic
environment measured in three trials are used for
analysis.

One of the indicators is NH4+, which reflects the
ammonia concentration in water. Compared to
known data, both models exhibit absolute and rela-
tive deviations. For this indicator, it is noteworthy
that the traditional model demonstrates less relative
deviation in trial 2 than the model considering the
hydrochemical regime (-1.81% versus 6.30%, respec-
tively).

Another indicator, BOD5, reflecting the amount
of organic substances in water, is also analyzed. In
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this case, the model considering the hydrochemical
regime shows better results, reducing the relative
deviation in trial 2 by 6.25% compared to the tradi-
tional model, which has a relative deviation of -
27.05%.

Additionally, the dissolved oxygen level (02),
indicating the oxygen regime of the aquatic environ-
ment, is analyzed. In this case, the model consider-
ing the hydrochemical regime proves to be more
accurate again, showing less relative deviation in all
three trials compared to the traditional model.

Based on the assessment of the determination co-
efficient error and mean square error, it can be con-
cluded that the proposed ANN models are ad-
equate. Therefore, it can be said that the model with
the architecture 13-8-10 demonstrates good predic-
tive characteristics in the occurrence of new local
sources of pollution, while the ANN model with the
architecture 10-8-10 demonstrates extremely high
accuracy under stable conditions.

Discussion

One of the key findings of the analysis is the identi-
fication of a strong positive correlation between ni-
trate-ion and phosphate-ion (polyphosphates) con-
centrations. The correlation coefficient value of 0.57
indicates that with an increase in nitrate concentra-
tions, the concentration of phosphates is likely to
increase, and vice versa. This strong positive corre-
lation suggests a possible interaction between these
substances in the aquatic ecosystem, possibly due to
a common source of origin, such as the formation of
nitrogen-phosphorus compounds.

A moderate positive correlation was also found
between ammonium-ion concentration and BODS5,
although it is less pronounced with a correlation
coefficient of 0.11. This correlation may indicate the
potential influence of ammonium ions on the activ-
ity of bacteria and other microorganisms that utilize
oxygen for their life processes.

On the other hand, a weak negative correlation
between suspended solids and dissolved oxygen
(correlation coefficient -0.21) may indicate that an
increase in the concentration of one parameter leads
to a decrease in the other. This could be related to
physicochemical processes in the water, where an
elevated concentration of suspended solids may af-
fect oxygen solubility.

An important aspect is the absence of a signifi-
cant correlation between dissolved oxygen concen-
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Table 3. Deviation of data predicted by the model from actual data
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Indicator Model Traditional Model Model Incorporating
Hydrochemical Regime

Trial 1 2 3 1 2 3
Model Errors

R 0,98871 0,90084

MSE 0,0159 0,0215

Gradient error 0,0009 1.09-11

Mu 1-5 1-8
KD* 0,11 1,60 3,30 0,11 1,60 3,30

Y1-NH," MD** 0,12 1,63 3,63 0,12 1,50 3,53
?Error*** -0,01 -0,03 -0,33 -0,01 0,10 -0,23
RAError*** -12,83 -1,81 -10,07 -6,60 6,30 -6,90

Y2 - BOD5 KD 5,00 5,00 5,00 5,00 5,00 5,00
MD 6,35 492 4,70 5,31 4,59 5,02
?Error -1,35 0,08 0,30 -0,31 0,41 -0,02
RAError -27,05 1,61 6,02 -6,25 8,25 -0,40

Y3 - Suspended KD 6,00 10,00 9,00 6,00 10,00 9,00

solids MD 6,09 10,13 9,74 6,76 11,12 10,15
AError -0,09 -0,13 -0,74 -0,76 -1,12 -1,15
RAError -1,45 -1,27 -8,27 -12,67 -11,24 -12,83

Y4 -0, KD 9,30 7,10 6,20 9,30 7,10 6,20
MD 10,26 7,20 6,60 10,80 8,00 7,14
?Error -0,96 -0,10 -0,40 -1,50 -0,90 -0,94
RAError -10,27 -1,41 -6,39 -16,14 -12,64 -15,22

Y5- NO,

KD 1,01 4,20 3,60 1,01 4,20 3,60
MD 0,74 4,25 3,90 1,15 4,54 3,86
?Error 0,27 -0,05 -0,30 -0,14 -0,34 -0,26
RAError 26,35 -1,09 -8,47 -14,07 -8,15 -7,13

Y6 - NO,

KD 0,11 0,09 0,12 0,11 0,09 0,12
MD 0,11 0,09 0,11 0,12 0,10 0,13
?Error 0,00 0,00 0,01 -0,01 -0,01 -0,01
RAError -3,85 -1,25 4,37 -7,47 -7,87 -6,88

Y7- SOF

KD 34,90 34,90 0,00 34,90 34,90 0,00
MD 49,91 35,54 0,05 37,74 39,10 0,00
?Error -15,01 -0,64 -0,05 -2,84 -4,20 0,00
RAError -43,02 -1,83 -100,00 -8,15 -12,03 0,00

Y8- PO*

KD 0,19 1,32 3,05 0,19 1,32 3,05
MD 0,23 1,34 3,71 0,22 1,49 3,45
?Error -0,04 -0,02 -0,66 -0,03 -0,17 -0,40
RAError -20,39 -1,65 -21,49 -14,22 -12,88 -13,02

Y9 - CI KD 54,20 41,80 45,30 54,20 41,80 45,30
MD 49,41 42,25 44,78 58,45 45,92 48,57
?Error 4,79 -0,45 0,52 -4,25 -4,12 -3,27
RAError 8,83 -1,07 1,15 -7,85 -9,85 -7,22

Y10 - WPI

KD 0,60 0,13 1,20 0,60 0,13 1,20
MD 0,61 0,13 1,28 0,66 0,14 1,33
?Error -0,01 0,00 -0,08 -0,06 -0,01 -0,13
RAError -1,37 -1,35 -6,46 -9,48 -7,85 -11,11

*Known Data; **Model Data; ***Absolute Error; ****Relative Absolute Error,%



BEREZENKO ET AL

tration and other parameters, except for a weak
negative correlation with BOD5. This may indicate
that although dissolved oxygen is an important fac-
tor for the existence of aquatic organisms, its concen-
tration is less sensitive to changes than other chemi-
cal parameters.

Overall, the obtained results of the water quality
criteria’s impact on the Southern Bug River indicate
that there is a systematic increase in suspended sol-
ids concentration in the water from the river’s
sources downstream. This leads to an increase in the
BODS indicator and a decrease in dissolved oxygen
levels.

It has been established that various sources of
pollution contribute to suspended solids, including
liquid waste, discharges, and livestock waste. Addi-
tionally, unauthorized discharges from enterprises
and domestic sewage have been identified. These
discharges may include chemical substances and
various polluting components, exacerbating water
quality issues.

The increase in suspended solids leads to a de-
crease in dissolved oxygen in the water and an in-
crease in the BODS5 indicator.

Analyzing water quality parameters, particularly
BODS5, provides an overview of the overall state of
water resources. A significant increase in the BOD5
indicator indicates an increase in water pollution
and suggests the presence of organic substances
subject to biological decomposition. This phenom-
enon may be associated with increased discharges of
untreated wastewater or excessive discharge of or-
ganic pollutants into the water body.

Regarding the BOD5 indicator, its increase can
serve as an indicator of the intensity of the biologi-
cal process of water pollution. High values of the
indicator indicate intensive decomposition of or-
ganic substances in water, which may be caused by
high levels of bacterial activity, leading to oxygen
consumption by water. In turn, this phenomenon
results in ecosystems downstream facing the prob-
lem of insufficient oxygen to support aquatic life.

The hypothesis regarding the effectiveness of
constructing a prediction model considering the
hydrochemical regime of the river has been practi-
cally verified in the study.

Two ANN models have been constructed: using
the traditional method based on monitoring point
data, which is evaluated, and using the method con-
sidering the hydrochemical regime of the river with
data from previous points.The results of comparing
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two types of models, traditional and hydrochemical
regime-aware models, are presented for ten indica-
tors (Y1-Y10), which include various chemical sub-
stances in rivers (Table 1). For each indicator, both
known and model-predicted data are provided,
along with their absolute and relative deviations.
The analysis shows that the effectiveness of the
models varies depending on the specific indicator;
however, generally, the traditional model often
demonstrates better accuracy, although the
hydrochemical regime-aware model may be more
accurate in certain cases.

It should be noted that despite the first model
impressing with its high accuracy in predicting the
water quality of the Southern Bug River, the second
model has practical advantages. The second model,
although less accurate with an error of 0.93, appears
less accurate only in terms of overall error. It is note-
worthy that the second model considers a greater
number of parameters, including water quality pa-
rameters at previous monitoring points from the es-
tuary. This gives the model a unique ability to more
accurately predict sharp changes in water quality,
such as the entry of chemical substances or other
pollutants (Table 3). This capability of the model
finds practical application in situations where it is
important not only to determine the overall water
quality but also to accurately predict specific
changes for effective water quality management and
environmental conservation.

Therefore, despite being somewhat less accurate
(by 7%) in overall forecasts, the second model
proves to be more practical in real conditions, pro-
viding practical application for the effective detec-
tion and prediction of specific water pollutants.

The advantages of the presented study over stud-
ies (Lu et al., 2023; Yang et al., 2021; Kim et al., 2017)
lie in its comprehensive approach to analyzing wa-
ter quality in the Southern Bug River. It includes
water quality analysis at various monitoring points,
allowing for the identification of different sources of
pollution in the river and establishing correlations
between water quality parameters. Such an ap-
proach allows for a more complete picture of the
state of water resources.

In the proposed study, predictive models of wa-
ter quality considering the hydrochemical regime of
the river have been constructed for different moni-
toring points. This allows for water quality forecasts
to be made considering changes in hydrological and
hydrochemical conditions of the river, which is im-
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portant for effective water resource management.
This indicates that the model considering the
hydrochemical regime is more accurate and reliable
for predicting water quality.

This approach allows for more accurate detection
and understanding of variations in water quality,
which is crucial for effective water resource man-
agement. Additionally, the application of machine
learning methods in the study allows for the genera-
tion of necessary data for assessing and predicting
water quality, avoiding limitations associated with
data collection. Such an approach leads to a more
comprehensive and reliable analysis of the state of
water resources, thereby contributing to making
more informed decisions in water system manage-
ment.

Compared to studies focusing on the WQI meth-
odology (Zhu et al., 2019; Abba et al., 2020; Kimat al.,
2015; Asadollah et al., 2021; Kouadri et al., 2021), the
proposed study addresses some drawbacks inherent
in other studies in this field.

Firstly, compared to the article (Zhu et al., 2019),
which uses an extreme learning machine-based
model to predict water temperature, the study on
the Southern Bug River considers the analysis of
various water quality parameters at different moni-
toring points, providing a more comprehensive un-
derstanding of pollution.

Studies (Abba et al., 2020; Kim et al., 2015) use dif-
ferent models to predict the water quality index in
the river basin; however, as noted, these studies
have limitations regarding the use of only one data
source and the lack of analysis of the impact of an-
thropogenic activities on water quality. In contrast,
the proposed study analyzes water quality param-
eters considering various pollution sources in the
river, providing a more objective understanding of
the situation and the stability of the methodology’s
results under different conditions. In comparison,
the study on the Southern Bug River is conducted on
a specific water body considering various pollution
sources, providing a more detailed understanding
of the situation and the effectiveness of control mea-
sures.

The limitations of the study are its territorial at-
tachment. This means that since the seasonal dy-
namics of the hydrochemical regime of rivers vary,
the model can only be applied to the Southern Bug
River. For a general case, it is advisable to apply
only the ANN modeling method. Addressing this
limitation involves conducting a large-scale analysis
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of various rivers. However, in this case, the forecast-
ing efficiency will suffer.The study’s limitation lies
in the insufficient consideration of the soil influence
factor. Since the obtained data fall within the distri-
bution range of two types of soil - chernozem and
gray forest soils - which during the period of maxi-
mum moisture saturation in the watershed, the in-
put of a small amount of salts is relatively insignifi-
cant. This means that they do not have a significant
impact on the hydrochemical regime of the river in
this area.

Therefore, there is a need to expand the study to
understand how infiltration waters entering the
river network through heavy clayey and medium-
clayey saline chernozems affect it.

The proposed methodology for studying the
Southern Bug River and its aquatic ecosystems
proves to be superior due to several features. Firstly,
considering the influence of water parameters at
previous monitoring points allows predicting the
water pollution level along the river under the influ-
ence of any anthropogenic factor.

For example, if there is a random discharge of
pollutants due to a technological accident or waste
mismanagement at the upper monitoring point, this
impact can be accounted for using the proposed
methodology. This will enable a more accurate as-
sessment of water quality at downstream river sec-
tions and, consequently, provide the opportunity to
react promptly to potential threats to aquatic ecosys-
tems and public health.

Secondly, the spatial structure of the input-output
model allows analyzing the river’s flow and predict-
ing possible changes in pollution levels in case of
pollutant entry. For instance, if there is an industrial
zone along a certain stretch of the river, the method-
ology can help determine the impact of discharges
from this zone on water quality downstream.

Thus, the ability to predict the river’s pollution
level depending on anthropogenic interventions be-
comes a crucial aspect, giving this methodology a
specific advantage over traditional approaches.

Conclusion

The study of the influence of physico-chemical wa-
ter quality criteria on the Southern Bug River has
yielded significant results, reflecting key parameters
of the aquatic environment. Examination of the
physico-chemical water quality criteria of the South-
ern Bug River has revealed substantial differences in
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the levels of individual indicators between various
monitoring points. These differences indicate di-
verse influences of anthropogenic and natural fac-
tors in different areas of the basin. For example,
monitoring points in Khmilnyk and Hushchynets
demonstrate higher average levels of ammonium
ions, BOD5, and nitrates compared to other points.

Analysis of the concentrations of various sub-
stances in the water of the Southern Bug River at
different monitoring points has shown significant
variability, which may be associated with different
sources of pollution and spatial unevenness in their
distribution. In particular, the oxygen-containing
nitrates and phosphates have the most significant
impact on prediction results.

Correlation analysis has revealed statistical rela-
tionships between various chemical parameters in
the water. For instance, a weak positive correlation
between nitrate ion content and BOD5 has been
identified, indicating a possible increase in bio-
chemical oxygen demand with an increase in nitrate
ion content in the water.

The obtained results allow understanding the
complex influence of various factors on the water
quality of the Southern Bug River and indicate the
need for a systematic approach to water resource
management, considering their geographical loca-
tion and pollution specifics.

The main quantitative parameters of the Southern
Bug River at different monitoring points have been
investigated. For example, the average concentra-
tion of ammonium ions ranges from 0.42 to 0.72
mg/dm3, with the highest level recorded at the
Khmilnyk point and the lowest at the Mankivka
point. As for BODS, it varies from 5.25 to 7.00 mgO/
dms3, with the highest value at the Khmilnyk point.
Additionally, concentrations of other substances
such as nitrate ions, nitrite ions, sulfate ions, phos-
phate ions, and chloride ions also differed between
different monitoring points, allowing for an accurate
assessment of water quality and identification of
potential pollution problems. Considering these cri-
teria, effective management of water resources can
be achieved, and measures for the preservation and
restoration of riverine ecosystems can be developed.

Further examination of physico-chemical water
parameters has also allowed understanding the re-
lationship between different factors and their impact
on water quality. For instance, it has been found that
an increase in water temperature may lead to a de-
crease in dissolved oxygen concentration, negatively
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impacting the aquatic ecosystem and biodiversity.
These findings underscore the importance of con-
tinuous monitoring of water quality parameters and
the development of strategies for their improve-
ment.

It is also necessary to note that knowledge of the
physico-chemical water criteria of the Southern Bug
River is crucial for making decisions regarding the
conservation of water resources and ensuring their
sustainable use. The research results can be used in
developing strategies for environmental protection
and reducing the impact of anthropogenic factors on
aquatic ecosystems. Such an approach will help en-
sure ecological resilience and preserve the
biodiversity of water resources of the Southern Bug
River for the future.

A water quality prediction model has been devel-
oped, considering the hydrochemical regime of the
river, yielding important results that open up new
perspectives in the study and management of water
resources. In particular, the developed model allows
for accurate prediction of water pollution levels in
the Southern Bug River, taking into account
hydrochemical parameters.

The obtained results demonstrate the high effec-
tiveness of the model considering the hydrochemical
regime in predicting water quality. Comparative
assessments indicate that this model exhibits an ac-
curacy level of 70-75%, providing sufficient informa-
tion for management decisions. However, it is worth
noting that during sharp anthropogenic changes in
water resources, the accuracy of this model increases
to 80-85%, which is highly significant in the context
of prompt response to negative impacts.

These results indicate the advantage of using the
model considering the hydrochemical regime com-
pared to traditional prediction methods. They also
demonstrate the advantage of employing a compre-
hensive approach, which considers not only the
physico-chemical indicators of water at a single
monitoring point but also data from other river seg-
ments. Consideration of hydrochemical parameters
allows for a more precise assessment of water re-
source status and contributes to the development of
effective strategies for managing aquatic ecosys-
tems.

Interpretation of the obtained results lies in the
inclusion of additional water quality parameters
from other monitoring points, which enhances the
predictive characteristics of the model and enables
more accurate forecasting of river water quality.
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Quantitative evaluations of the result show that
the second approach provides less deviation of pre-
dicted data from actual data compared to the tradi-
tional approach. For example, the average relative
error of the second approach is 1.74%, which is
lower than the error of the traditional approach in
calculating relative deviations within the average
data range (27.05%). Such comparative assessments
confirm the effectiveness of the second approach in
modeling water quality predictions considering the
hydrochemical regime.

Thus, the developed prediction model is an im-
portant tool for ensuring sustainable use of water
resources of the Southern Bug River and maintain-
ing ecological balance in this region.
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