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Abstract. We construct a free abelian trioid and describe

the least abelian congruence on a free trioid.

1. Introduction

Trioids first appeared in the paper of J.-L. Loday and M. O. Ronco [5]
at the study of ternary planar trees. An algebraic system (T,⊣,⊢,⊥) with
three binary associative operations ⊣, ⊢, and ⊥ is called a trioid if for all
x, y, z ∈ T the following conditions hold:

(x ⊣ y) ⊣ z = x ⊣ (y ⊢ z), (T1)

(x ⊢ y) ⊣ z = x ⊢ (y ⊣ z), (T2)

(x ⊣ y) ⊢ z = x ⊢ (y ⊢ z), (T3)

(x ⊣ y) ⊣ z = x ⊣ (y ⊥ z), (T4)

(x ⊥ y) ⊣ z = x ⊥ (y ⊣ z), (T5)

(x ⊣ y) ⊥ z = x ⊥ (y ⊢ z), (T6)

(x ⊢ y) ⊥ z = x ⊢ (y ⊥ z), (T7)

(x ⊥ y) ⊢ z = x ⊢ (y ⊢ z). (T8)

The notion of a trioid is a basis of the notion of a trialgebra [5], besides
trioids generalize dimonoids [6]. Recall that a nonempty set T equipped
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with two binary associative operations ⊣ and ⊢ satisfying axioms (T1)–(T3)
is called a dimonoid. Dimonoids and related algebras have been studied in
different papers (see, e.g., [7, 10–12, 16, 22, 23, 29]), and now dimonoids
play a prominent role in problems from the theory of Leibniz algebras [4,8].
If operations of a trioid or a dimonoid coincide then it becomes a semigroup.
Thus, trioids and dimonoids are an extension of semigroups.

The construction of a free trioid of rank 1 was defined in [5]. Later,
it was shown that the free trioid of an arbitrary rank has the similar
structure (see [20,28]). More convenient isomorphic constructions of the
free monogenic trioid and the free trioid of an arbitrary rank were proposed
in [30] and [19], respectively. Besides, in [30] the endomorphism monoid
of the free trioid of rank 1 was described (see also the case for dimonoids
of rank 1 [31]). The structure of free commutative trioids and other
relatively free trioids was presented in [15,18]. Certain congruences on free
trioids were found in [14]. Abelian digroups and their examples appeared
in [2]. Note that the idea of the notion of a digroup was proposed by
J.-L. Loday [6]. A digroup is a dimonoid which satisfies some additional
conditions (see, e.g., [17]). Abelian and symmetric generalized digroups,
and free abelian monogenic digroups were considered in [9, 24]. Abelian
dimonoids and the construction of the free abelian dimonoid of an arbitrary
rank were described in [26]. Abelian doppelsemigroups and free objects
in the variety of abelian doppelsemigroups were studied in [13]. Free
abelian dibands and automorphisms of their endomorphism semigroups
were investigated in [21, 25]. In this paper, we study the structure of free
objects in the variety of abelian trioids.

The paper is organised as follows. In section 2, we define abelian
trioids and give examples of such algebras. In section 3, we construct
a free abelian trioid of an arbitrary rank and, in particular, consider a free
abelian monogenic trioid. In section 4, we find the least congruence on
the free trioid such that the corresponding quotient-trioid and the free
abelian trioid are isomorphic.

2. Examples of abelian trioids

Following [2], a digroup (D,⊣,⊢) is called abelian if for all x, y ∈ D,

x ⊢ y = y ⊣ x.

Abelianity was also considered in such classes of algebras as dimonoids,
doppelsemigroups, generalized digroups and generalized dimonoids. It is
quite natural to define the variety of abelian trioids.
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Fix ∗, ◦ ∈ {⊣,⊢,⊥}, where ∗ 6= ◦. A trioid (T,⊣,⊢,⊥) will be called
(∗, ◦)-abelian if for all x, y ∈ T ,

x ∗ y = y ◦ x.

Obviously, a trioid (T,⊣,⊢,⊥) is (∗, ◦)-abelian if and only if it is (◦, ∗)-
abelian. It means that three classes of trioids appear, namely, (⊣,⊢)-abelian
trioids, (⊣,⊥)-abelian trioids and (⊢,⊥)-abelian trioids. Clearly, the class
of all (∗, ◦)-abelian trioids forms a variety which does not coincide with
the variety of commutative trioids [15]. A trioid which is free in the variety
of (∗, ◦)-abelian trioids will be called a free (∗, ◦)-abelian trioid. In the
present paper, we consider (⊣,⊢)-abelian trioids only and so refer to them
as simply abelian trioids.

Remark 1. We note that if in a trioid (T,⊣,⊢,⊥) the condition x∗y = y◦x
holds for all ∗, ◦ ∈ {⊣,⊢,⊥} with ∗ 6= ◦ and x, y ∈ T , then operations of
such trioid obviously coincide. If for a trioid (T,⊣,⊢,⊥) any two from the
following identities

(i) x ⊣ y = y ⊢ x, (ii) x ⊢ y = y ⊥ x, (iii) x ⊥ y = y ⊣ x

hold, then two suitable operations of this trioid coincide. For example,
⊣ = ⊥ if conditions (i) and (ii) hold.

Remark 2. We observe that normal forms of elements of free (⊣,⊢)-
abelian trioids (T,⊣,⊢,⊥) with a commutative operation ⊥ were presented
in [3].

Let (S, ◦) be an arbitrary semigroup. A semigroup (S, ∗) is called
a dual semigroup to (S, ◦) if x ∗ y = y ◦ x for all x, y ∈ S. A semigroup
(S, ◦) is called left commutative (respectively, right commutative) if it
satisfies the identity x ◦ y ◦ a = y ◦ x ◦ a (respectively, a ◦ x ◦ y = a ◦ y ◦ x).

Proposition 1. Let (S, ◦) be an arbitrary right commutative semigroup

and (S, ∗) be a dual semigroup to (S, ◦). Then algebras (S, ◦, ∗, ◦) and

(S, ◦, ∗, ∗) are abelian trioids.

Proof. It follows from Proposition 3 of [26] and the definition of a trioid.

If (S, ∗) is a left commutative semigroup and (S, ◦) is a dual semigroup
to (S, ∗), then algebras (S, ◦, ∗, ◦) and (S, ◦, ∗, ∗) are abelian trioids, too.
It follows from Proposition 4 of [26] and the definition of a trioid.
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Let (S,⊥) be an arbitrary semigroup. We define two binary operations
⊣ and ⊢ on S in the following way

a ⊣ b = a, a ⊢ b = b.

Proposition 2 ([19]). The algebra (S,⊣,⊢,⊥) is an abelian trioid.

A dimonoid (D,⊣,⊢) is abelian [26] if the semigroup (D,⊢) is dual to
(D,⊣). Different examples of abelian dimonoids and, in particular, abelian
digroups, can be found, e.g., in [17,26].

Proposition 3. Let (D,⊣,⊢) be an arbitrary abelian dimonoid. Then

algebras (D,⊣,⊢,⊣) and (D,⊣,⊢,⊢) are abelian trioids.

Proof. It is obvious.

Moreover, trioids (D,⊣,⊢,⊣) and (D,⊣,⊢,⊢) from Proposition 3 are
(⊢,⊥)-abelian trioids with ⊥ = ⊣ and, respectively, (⊣,⊥)-abelian trioids
such that ⊥ = ⊢.

Let S be an arbitrary additive commutative semigroup, S1, S2, . . . , Sn,
n > 2, be subsemigroups of S, and Sα = S for some α ∈ {1, 2, . . . , n}. We
denote by S∗ the direct product

∏n
i=1 Si of semigroups Sj , 1 6 j 6 n. For

all s = (s1, s2, . . . , sn) ∈ S∗ we put s+ = s1 + s2 + · · ·+ sn.
Take arbitrary x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ S∗ and

define three binary operations ⊣α, ⊢α, and ⊥α on S∗ by

x ⊣α y = (x1, . . . , xα + y+, . . . , xn),

x ⊢α y = (y1, . . . , yα + x+, . . . , yn),

x⊥α y = (x1 + y1, x2 + y2, . . . , xn + yn).

Observe that operations ⊣α and ⊢α first appeared in [26].

Proposition 4. For every α ∈ {1, 2, . . . , n} the algebra (S∗,⊣α,⊢α,⊥α)
is an abelian trioid.

Proof. Similarly as in Proposition 2 of [26] one can show that the algebra
(S∗,⊣α,⊢α) is an abelian dimonoid. Obviously, ⊥α is associative. Now
show that axioms (T4)− (T8) hold.

Let x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn), z = (z1, z2, . . . , zn) ∈ S∗.
Then

(x ⊣α y) ⊣α z = (x1, . . . , xα + y+, . . . , xn) ⊣α (z1, z2, . . . , zn)

= (x1, . . . , xα + y+ + z+, . . . , xn)

= (x1, x2, . . . , xn) ⊣α (y1 + z1, y2 + z2, . . . , yn + zn)

= x ⊣α (y ⊥α z),
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(x⊥α y) ⊣α z = (x1 + y1, x2 + y2, . . . , xn + yn) ⊣α (z1, z2, . . . , zn)

= (x1 + y1, . . . , xα + yα + z+, . . . , xn + yn)

= (x1, x2, . . . , xn)⊥α (y1, . . . , yα + z+, . . . , yn)

= x⊥α (y ⊣α z),

(x ⊣α y)⊥α z = (x1, . . . , xα + y+, . . . , xn)⊥α (z1, z2, . . . , zn)

= (x1 + z1, . . . , xα + y+ + zα, . . . , xn + zn)

= (x1, x2, . . . , xn)⊥α (z1, . . . , zα + y+, . . . , zn)

= x⊥α (y ⊢α z),

(x ⊢α y)⊥α z = (y1, . . . , yα + x+, . . . , yn)⊥α (z1, z2, . . . , zn)

= (y1 + z1, . . . , yα + x+ + zα, . . . , yn + zn)

= (x1, x2, . . . , xn) ⊢α (y1 + z1, y2 + z2, . . . , yn + zn)

= x ⊢α (y ⊥α z),

(x⊥α y) ⊢α z = (x1 + y1, x2 + y2, . . . , xn + yn) ⊢α (z1, z2, . . . , zn)

= (z1, . . . , zα + x+ + y+, . . . , zn)

= (x1, x2, . . . , xn) ⊢α (z1, . . . , zα + y+, . . . , zn)

= x ⊢α (y ⊢α z).

Thus, (S∗,⊣α,⊢α,⊥α) is an abelian trioid.

Let (S, ∗) be an arbitrary semigroup and let (T, ·) be a commutative
semigroup such that there exists a homomorphism ξ : S → T . Define
three binary operations ⊣, ⊢, and ⊥ on the direct product S × T by

(a, b) ⊣ (c, d) = (a, b · (cξ) · d),

(a, b) ⊢ (c, d) = (c, d · (aξ) · b),

(a, b)⊥ (c, d) = (a ∗ c, b · d).

Proposition 5. The algebra (S × T,⊣,⊢,⊥) is an abelian trioid.

Proof. It is clear that operations ⊣, ⊢, and ⊥ are associative, besides the
semigroup (S × T,⊢) is dual to (S × T,⊣).

Let (a, b), (c, d), (e, f) ∈ S × T. Then

((a, b) ⊣ (c, d)) ⊣ (e, f) = (a, b · cξ · d) ⊣ (e, f)

= (a, b · cξ · d · eξ · f) = (a, b · eξ · f · cξ · d)

= (a, b) ⊣ (e, f · cξ · d) = (a, b) ⊣ ((c, d) ⊢ (e, f)),
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((a, b) ⊢ (c, d)) ⊣ (e, f) = (c, d · aξ · b) ⊣ (e, f)

= (c, d · aξ · b · eξ · f) = (c, d · eξ · f · aξ · b)

= (a, b) ⊢ (c, d · eξ · f) = (a, b) ⊢ ((c, d) ⊣ (e, f)),

((a, b) ⊣ (c, d)) ⊢ (e, f) = (a, b · cξ · d) ⊢ (e, f)

= (e, f · aξ · b · cξ · d) = (e, f · cξ · d · aξ · b)

= (a, b) ⊢ (e, f · cξ · d) = (a, b) ⊢ ((c, d) ⊢ (e, f)).

Therefore, (S × T,⊣,⊢) is an abelian dimonoid. Since

((a, b) ⊣ (c, d)) ⊣ (e, f) = (a, b · cξ · d · eξ · f)

= (a, b · (c ∗ e)ξ · d · f) = (a, b) ⊣ (c ∗ e, d · f)

= (a, b) ⊣ ((c, d)⊥ (e, f)),

((a, b)⊥ (c, d)) ⊢ (e, f) = (a ∗ c, b · d) ⊢ (e, f)

= (e, f · (a ∗ c)ξ · b · d) = (e, f · cξ · d · aξ · b)

= (a, b) ⊢ ((c, d) ⊢ (e, f)),

axioms (T4) and (T8) hold. In addition,

((a, b)⊥ (c, d)) ⊣ (e, f) = (a ∗ c, b · d) ⊣ (e, f)

= (a ∗ c, b · d · eξ · f) = (a, b)⊥ (c, d · eξ · f)

= (a, b)⊥ ((c, d) ⊣ (e, f)),

((a, b) ⊣ (c, d))⊥ (e, f) = (a ∗ e, b · cξ · d · f)

= (a ∗ e, b · f · cξ · d) = (a, b)⊥ (e, f · cξ · d)

= (a, b)⊥ ((c, d) ⊢ (e, f)),

((a, b) ⊢ (c, d))⊥ (e, f) = (c, d · aξ · b)⊥ (e, f) =

= (c ∗ e, d · aξ · b · f) = (a, b) ⊢ (c ∗ e, d · f)

= (a, b) ⊢ ((c, d)⊥ (e, f))

which completes the verification of axioms (T5)− (T7).

The obtained abelian trioid (S × T,⊣,⊢,⊥) is denoted by S × T (ξ).
Note that for every element t of an arbitrary (⊣,⊢)-abelian trioid the

degrees
tn
⊣
= t ⊣ t ⊣ · · · ⊣ t︸ ︷︷ ︸

n

and tn
⊢
= t ⊢ t ⊢ · · · ⊢ t︸ ︷︷ ︸

n

coincide, therefore we will write tn instead of tn
⊣

(= tn
⊢
).
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3. The free abelian trioid

Let X be an arbitrary nonempty set and let N be the set of all natural
numbers. Denote by F(X) and FCm(X) the free semigroup on X and,
respectively, the free commutative monoid on X with the identity ε. Words
of FCm(X) we write as w = wα1

1 wα2

2 . . . wαn
n , where w1, w2, . . . , wn ∈ X

are pairwise distinct, and α1, α2, . . . , αn ∈ N ∪ {0}. Here w0
i , 1 6 i 6 n,

is the empty word ε and w1 = w for all w ∈ X.

We denote by ∗ the homomorphism F(X) → FCm(X) : w 7→ w∗

which induces the least commutative semigroup congruence on the free
semigroup F(X) (see, e.g., [1]). Further we put

FAt(X) = F(X)× FCm(X)

and define three binary operations ⊣, ⊢, and ⊥ on FAt(X) by

(u, v) ⊣ (p, q) = (u, vp∗q),

(u, v) ⊢ (p, q) = (p, qu∗v),

(u, v) ⊥ (p, q) = (up, vq).

Theorem 1. The algebra (FAt(X),⊣,⊢,⊥) is the free abelian trioid.

Proof. By Proposition 5, (FAt(X),⊣,⊢,⊥) is an abelian trioid. Let (u, v) ∈
FAt(X), where u = u1u2 . . . um, ui ∈ X, 1 6 i 6 m, v = vα1

1 vα2

2 . . . vαn
n ,

vj ∈ X, 1 6 j 6 n. Taking to account Theorem 1 of [26], we have the
following canonical representation:

(u, v) = (u1, ε) ⊥ (u2, ε) ⊥ . . . ⊥ (um, ε)

⊣ (v1, ε)
α1 ⊣ (v2, ε)

α2 ⊣ · · · ⊣ (vn, ε)
αn

which is unique up to an order of (vj , ε), 1 6 j 6 n. In addition, 〈X×ε〉 =
(FAt(X),⊣,⊢,⊥).

Show that the trioid (FAt(X),⊣,⊢,⊥) is free abelian. Let (T ′,⊣′,⊢′,⊥′)
be an arbitrary abelian trioid and let ξ be any mapping of X × ε into
T ′. We naturally extend ξ to a mapping Ξ of FAt(X) into T ′ using the
canonical representation of elements of (FAt(X),⊣,⊢,⊥), i.e.,

(u, v)Ξ = (u1, ε)ξ ⊥′ (u2, ε)ξ ⊥′ . . . ⊥′ (um, ε)ξ

⊣′ ((v1, ε)ξ)
α1 ⊣′ ((v2, ε)ξ)

α2 ⊣′ · · · ⊣′ ((vn, ε)ξ)
αn

for any (u, v) ∈ FAt(X).
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Prove that Ξ is a homomorphism of (FAt(X),⊣) into (T ′,⊣′). Take
any (u, v), (p, q) ∈ FAt(X) such that u = u1u2 . . . um, v = vα1

1 vα2

2 . . . vαn
n ,

and p = p1p2 . . . ps, q = qβ1

1 q
β2

2 . . . qβt

t , and p∗ = pγ1i1 p
γ2
i2
. . . pγrir . Then

((u, v) ⊣ (p, q))Ξ = (u, vp∗q)Ξ

= (u1, ε)ξ ⊥′ . . . ⊥′ (um, ε)ξ ⊣
′ ((v1, ε)ξ)

α1 ⊣′ · · · ⊣′ ((vn, ε)ξ)
αn

⊣′ ((pi1 , ε)ξ)
γ1 ⊣′ · · · ⊣′ ((pir , ε)ξ)

γr ⊣′ ((q1, ε)ξ)
β1

⊣′ · · · ⊣′ ((qt, ε)ξ)
βt .

On the other hand, by the help of associativity of ⊣′ and ⊥′, axioms
(T4) and (T5), the induction by s, and the right commutativity of (T ′,⊣′)
which holds in any abelian trioid, we have

(u, v)Ξ ⊣′ (p, q)Ξ

= [(u1, ε)ξ ⊥
′ · · · ⊥′ (um, ε)ξ ⊣

′ ((v1, ε)ξ)
α1 ⊣′ · · · ⊣′ ((vn, ε)ξ)

αn ]

⊣′ [(p1, ε)ξ ⊥
′ · · · ⊥′ (ps, ε)ξ ⊣

′ ((q1, ε)ξ)
β1 ⊣′ · · · ⊣′ ((qt, ε)ξ)

βt ]

= (u1, ε)ξ ⊥
′ · · · ⊥′ (um, ε)ξ ⊣

′ ((v1, ε)ξ)
α1

⊣′ · · · ⊣′ ((vn, ε)ξ)
αn ⊣′ (p1, ε)ξ

⊣′ [(p2, ε)ξ ⊥
′ · · · ⊥′ (ps, ε)ξ ⊣

′ ((q1, ε)ξ)
β1 ⊣′ · · · ⊣′ ((qt, ε)ξ)

βt ]

= · · · = (u1, ε)ξ ⊥
′ · · · ⊥′ (um, ε)ξ ⊣

′ ((v1, ε)ξ)
α1 ⊣′ · · · ⊣′ ((vn, ε)ξ)

αn

⊣′ (p1, ε)ξ ⊣
′ · · · ⊣′ (ps, ε)ξ ⊣

′ ((q1, ε)ξ)
β1 ⊣′ · · · ⊣′ ((qt, ε)ξ)

βt

= (u1, ε)ξ ⊥
′ · · · ⊥′ (um, ε)ξ ⊣

′ ((v1, ε)ξ)
α1 ⊣′ · · · ⊣′ ((vn, ε)ξ)

αn

⊣′ ((pi1 , ε)ξ)
γ1 ⊣′ · · · ⊣′ ((pir , ε)ξ)

γr ⊣′ ((q1, ε)ξ)
β1

⊣′ · · · ⊣′ ((qt, ε)ξ)
βt

= (u, vp∗q)Ξ.

Using the fact that trioids (FAt(X),⊣,⊢,⊥) and (T ′,⊣′,⊢′,⊥′) are
abelian, we immediately obtain

((u, v) ⊢ (p, q))Ξ = ((p, q) ⊣ (u, v))Ξ

= (p, q)Ξ ⊣′ (u, v)Ξ = (u, v)Ξ ⊢′ (p, q)Ξ.

Further, for convenience, we put

a = (u1, ε)ξ ⊥
′ · · · ⊥′ (um, ε)ξ, b = ((v1, ε)ξ)

α1 ⊣′ · · · ⊣′ ((vn, ε)ξ)
αn ,

c = (p1, ε)ξ ⊥
′ · · · ⊥′ (ps, ε)ξ, d = ((q1, ε)ξ)

β1 ⊣′ · · · ⊣′ ((qt, ε)ξ)
βt .
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By means associativity of ⊣′, abelianity of (T ′,⊣′,⊢′,⊥′) and axioms
(T5), (T6) we have

(u, v)Ξ ⊥′ (p, q)Ξ

= [ (u1, ε)ξ ⊥
′ · · · ⊥′ (um, ε)ξ ⊣

′ ((v1, ε)ξ)
α1 ⊣′ · · · ⊣′ ((vn, ε)ξ)

αn ]

⊥′ [ (p1, ε)ξ ⊥
′ · · · ⊥′ (ps, ε)ξ ⊣

′ ((q1, ε)ξ)
β1 ⊣′ · · · ⊣′ ((qt, ε)ξ)

βt ]

= (a ⊣′ b)⊥′ (c ⊣′ d) = ((a ⊣′ b)⊥′ c) ⊣′ d

= (a⊥′ (b ⊢′ c)) ⊣′ d = a⊥′ ((b ⊢′ c) ⊣′ d)

= a⊥′ ((c ⊣′ b) ⊣′ d) = a⊥′ (c ⊣′ (b ⊣′ d))

= (a⊥′ c) ⊣′ (b ⊣′ d)

= (u1, ε)ξ ⊥′ . . . ⊥′ (um, ε)ξ ⊥′ (p1, ε)ξ ⊥′ . . . ⊥′ (ps, ε)ξ

⊣′ ((v1, ε)ξ)
α1 ⊣′ · · · ⊣′ ((vn, ε)ξ)

αn ⊣′ ((q1, ε)ξ)
β1

⊣′ · · · ⊣′ ((qt, ε)ξ)
βt

= (up, vq)Ξ = ((u, v) ⊥ (p, q))Ξ.

Thus, Ξ is a trioid homomorphism which completes the proof.

The cardinality of a set X is a rank of the constructed free abelian
trioid (FAt(X),⊣,⊢,⊥).

Remark 3. From the construction of (FAt(X),⊣,⊢,⊥) it follows that
the free abelian trioid is determined uniquely up to an isomorphism by
rank. Hence the automorphism group of (FAt(X),⊣,⊢,⊥) is isomorphic
to the symmetric group on X.

Remark 4. For convenient, we can define operations ⊣ and ⊢ of the free
abelian trioid (FAt(X),⊣,⊢,⊥) without using the homomorphism ∗ (see,
e.g., [27]).

Now we consider the structure of the free abelian trioid of rank 1.

Let (N0,+) be the additive semigroup of all non-negative integers.
Clearly, η : N → N0 : x 7→ x is a monomorphism of the additive semigroup
(N,+) into (N0,+). By Proposition 5, N ×N0(η) is an abelian trioid. We
denote operations of this trioid by ⊣′,⊢′, and ⊥′, that is, N ×N0(η) =
(N ×N0,⊣′,⊢′,⊥′).

Proposition 6. The free abelian trioid (FAt(X),⊣,⊢,⊥) of rank 1 is

isomorphic to the trioid N ×N0(η).
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Proof. Let X = {x}, then FAt(X) = {(xn, xm) | n ∈ N,m ∈ N0}. Define
a mapping ψ of (FAt(X),⊣,⊢,⊥) into N ×N0(η) by

ψ : (xn, xm) 7→ (n,m)

for any (xn, xm) ∈ FAt(X).
It is obvious that ψ is a bijection. In addition, for all (xn, xm), (xk, xl) ∈

FAt(X) we obtain

((xn, xm) ⊣ (xk, xl))ψ = (xn, xm+k+l)ψ = (n,m+ k + l)

= (n,m) ⊣′ (k, l) = (xn, xm)ψ ⊣′ (xk, xl)ψ,

((xn, xm) ⊥ (xk, xl))ψ = (xn+k, xm+l)ψ = (n+ k,m+ l)

= (n,m) ⊥′ (k, l) = (xn, xm)ψ ⊥′ (xk, xl)ψ.

Clearly, abelianity of (FAt(X),⊣,⊢,⊥) and N ×N0(η) implies that
ψ is a homomorphism of (FAt(X),⊢) to (N × N0,⊢′). Thus, trioids
(FAt(X),⊣,⊢,⊥), |X| = 1, and N ×N0(η) are isomorphic.

4. The least abelian congruence on the free trioid

Let ρ be an equivalence relation on a trioid (T,⊣,⊢,⊥) which is stable
on the left and on the right with respect to each of operations ⊣,⊢,⊥. In
this case ρ is called a congruence on (T,⊣,⊢,⊥). A congruence ρ on a trioid
(T,⊣,⊢,⊥) is called abelian if the quotient-trioid (T,⊣,⊢,⊥)/ρ is abelian.
If f : T1 → T2 is a homomorphism of trioids, then the corresponding
congruence on T1 will be denoted by △f .

Let X be an arbitrary set, X = {x | x ∈ X} and let F(X ∪ X) be
the free semigroup on X ∪ X. By Ft(X) we denote the subsemigroup
of F(X ∪X) which consists of words containing at least one element of
type x. For every w ∈ Ft(X) we denote by w̃ the word obtained from w
by replacing each x, x ∈ X, by x. The length of ω ∈ Ft(X) is denoted
by l(ω). For example, if w = xxxxxyz then w̃ = xxxxxyz and l(w) = 7.

Define three binary operations on Ft(X) by

u ≺ v = uṽ, u ≻ v = ũv, u ↑ v = uv.

Proposition 7 ([28], Proposition 1). The algebra (Ft(X),≺,≻, ↑) is the

free trioid of rank |X|.

Elements of Ft(X) are called words and X is the generating set of the
free trioid (Ft(X),≺,≻, ↑).
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It is well-known (see, e.g., [30]) that each element w ∈ Ft(X) can be
represented uniquely in the canonical form by one of the following ways:

w = (u
(0)
1 ≻ · · · ≻ u

(0)
k0

) ≻ (u
(1)
1 ≺ · · · ≺ u

(1)
k1

) ↑ . . . ↑ (u
(j)
1 ≺ · · · ≺ u

(j)
kj

),

where u
(i)
l ∈ X, 1 6 l 6 ki for all i ∈ {0, 1, . . . , j}, or

w = (u
(1)
1 ≺ · · · ≺ u

(1)
k1

) ↑ (u
(2)
1 ≺ · · · ≺ u

(2)
k2

) ↑ . . . ↑ (u
(j)
1 ≺ · · · ≺ u

(j)
kj

),

where u
(i)
l ∈ X, 1 6 l 6 ki for all i ∈ {1, 2, . . . , j}.

For every w ∈ Ft(X) of the canonical form above, we put Θ(w) =

u
(1)
1 u

(2)
1 . . . u

(j)
1 , and

Ω(w) = u
(0)
1 . . . u

(0)
k0
u
(1)
2 . . . u

(1)
k1
u
(2)
2 . . . u

(2)
k2
. . . u

(j−1)
kj−1

u
(j)
2 . . . u

(j)
kj

or
Ω(w) = u

(1)
2 . . . u

(1)
k1
u
(2)
2 . . . u

(2)
k2
. . . u

(j−1)
kj−1

u
(j)
2 . . . u

(j)
kj

if w 6= Θ(w), and Ω(w) = ε if w = Θ(w). Besides, we denote by qx(w),
x ∈ X, the quantity of all elements x ∈ X that are included in the
canonical form of w.

Now we can define a binary relation σ on Ft(X) as follows: u and v
of Ft(X) are σ-equivalent if for all x ∈ X,

qx(u) = qx(v) and Θ(u) = Θ(v).

We note that qx(u) = qx(v) for all x ∈ X implies l(u) = l(v).
For example, if u = dabbac then the canonical form of u is the following

representation: u = (d ≺ a ≺ b) ↑ (b ≺ a ≺ c). In addition, Θ(u) = db,
Ω(u) = abac, and qa(u) = qb(u) = 2, qd(u) = qc(u) = 1.

Theorem 2. The binary relation σ is the least abelian congruence on the

free trioid (Ft(X),≺,≻, ↑).

Proof. It is not hard to see that σ is an equivalence relation on Ft(X). Take
arbitrary w ∈ Ft(X) and u, v ∈ Ft(X) such that uσv, i.e., Θ(u) = Θ(v)
and qx(u) = qx(v) for all x ∈ X. Then

u ≺ w = uw̃, v ≺ w = vw̃,

u ≻ w = ũw, v ≻ w = ṽw,

u ↑ w = uw, v ↑ w = vw,
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Taking into account

Θ(uw̃) = Θ(vw̃), Θ(ũw) = Θ(ṽw), Θ(uw) = Θ(vw)

and
qx(uw̃) = qx(vw̃), qx(ũw) = qx(ṽw), qx(uw) = qx(vw)

for any x ∈ X, we have (u ∗ w)σ(v ∗ w), where ∗ ∈ {≺,≻, ↑}. Similarly,
we can show that (w ∗ u)σ(w ∗ v) for every ∗ ∈ {≺,≻, ↑}. Therefore, σ is
a congruence.

The direct check shows that (u ≺ v)σ(v ≻ u) for all u, v ∈ Ft(X),
consequently (Ft(X),≺,≻, ↑)/σ is an abelian trioid, i.e., σ is abelian.

Now we show that the quotient-trioid (Ft(X),≺,≻, ↑)/σ is isomorphic
to the free abelian trioid (FAt(X),⊣,⊢,⊥) (see Theorem 1). Operations
of (Ft(X),≺,≻, ↑)/σ are denoted by ≺′,≻′, ↑′. An equivalence class of
(Ft(X),≺,≻, ↑)/σ which contains w is denoted by [w]. Define a mapping
ϕ of (Ft(X),≺,≻, ↑)/σ into (FAt(X),⊣,⊢,⊥) by

[w]ϕ = (Θ(w),Ω(w))

for any w ∈ Ft(X). In particular, [w]ϕ = (Θ(w), ε) for any w ∈ Ft(X)
such that w = Θ(w). Clearly, ϕ is a bijection.

For all [u], [v] ∈ (Ft(X),≺,≻, ↑)/σ, we have

([u] ≺′ [v])ϕ = [uṽ]ϕ = (Θ(uṽ),Ω(uṽ))

= (Θ(u),Ω(u)ṽ) = (Θ(u),Ω(u)Θ(v)Ω(v))

= (Θ(u),Ω(u)) ⊣ (Θ(v),Ω(v)) = [u]ϕ ⊣ [v]ϕ.

In addition, (Ft(X),≺,≻, ↑)/σ and (FAt(X),⊣,⊢,⊥) are abelian tri-
oids, therefore

([u] ≻′ [v])ϕ = ([v] ≺′ [u])ϕ = [v]ϕ ⊣ [u]ϕ = [u]ϕ ⊢ [v]ϕ.

Finally, for all [u], [v] ∈ (Ft(X),≺,≻, ↑)/σ we obtain

([u] ↑′ [v])ϕ = [uv]ϕ = (Θ(uv),Ω(uv)) = (Θ(u)Θ(v),Ω(u)Ω(v))

= (Θ(u),Ω(u)) ⊥ (Θ(v),Ω(v)) = [u]ϕ ⊥ [v]ϕ.

Thus, (Ft(X),≺,≻, ↑)/σ is free abelian and the composition η♮ ◦ ϕ,
where η♮ : (Ft(X),≺,≻, ↑) → (Ft(X),≺,≻, ↑)/σ is the natural homomor-
phism, is an epimorphism of (Ft(X),≺,≻, ↑) on (FAt(X),⊣,⊢,⊥) inducing
the least abelian congruence on (Ft(X),≺,≻, ↑). From the definition of
η♮ ◦ ϕ it follows that △η♮◦ϕ = σ.
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