Finite automaton actions of free products of groups

Mariia Fedorova and Andriy Oliynyk

Communicated by A. P. Petravchuk

Abstract. It is shown that for groups G and H that act faithfully by finite state automorphisms on regular rooted trees their free product $G * H$ admits a faithful action by finite state automorphisms on some regular rooted tree.

The class of groups that act faithfully on regular rooted trees by finite state automorphisms (equivalently, groups defined by finite initial automata over finite alphabets) constitute a remarkable family among residually finite groups. It is rich of many interesting and important groups with a solid influence on different branches of mathematics. One can easily show that this class is closed under finite direct products. The KaloujnineKrasner theorem implies that it is closed under finite extensions as well. The purpose of this short note is to show that this class is closed under finite free products. Thus, we positively solve the following problem from Kourovka Notebook (see [1, Problem 16.85]).

Suppose that groups G, H act faithfully on a regular rooted tree by finite state automorphisms. Can their free product $G * H$ act faithfully on a regular rooted tree by finite state automorphisms?

In fact, to obtain the affirmative solution it is sufficient to prove the following

Theorem 1. The free product FAut $T_{n} *$ FAut T_{n} is isomorphic to a subgroup of FAut $T_{3 n}, n \geqslant 2$.

2010 MSC: 20E08, 20E06, 20F65.
Key words and phrases: rooted tree, tree automorphism, finite automaton, free product.

All notions and notations we use are standard for groups defined by finite automata and can be found in [2] and [3]. In particular, by FAut $T_{m}, m \geqslant 2$ we denote the group of all finite state automorphisms of m-regular rooted tree.

The idea of the main construction used in the proof is influenced by the paper [4].

Proof of Theorem 1. We start with three disjoint alphabets X, Y and Z , each of cardinality n. We assume that their elements are enumerated, i.e. let

$$
\mathbf{X}=\left\{x_{0}, \ldots, x_{n-1}\right\}, \quad \mathrm{Y}=\left\{y_{0}, \ldots, y_{n-1}\right\} \quad \text { and } \quad Z=\left\{z_{0}, \ldots, z_{n-1}\right\}
$$

Consider two isomorphic copies G and H of the group FAut T_{n} as groups whose elements are defined by finite initial automata over alphabets X and Y correspondingly. The elements of the group FAut $T_{3 n}$ will be defined by finite initial automata over the alphabet $\mathrm{X} \cup \mathrm{Y} \cup \mathrm{Z}$. We will construct isomorphic embeddings Ψ_{1} and Ψ_{2} of the groups G and H correspondingly into the group FAut $T_{3 n}$ and show that the subgroup generated by their images splits into the free product $\Psi_{1}(G) * \Psi_{2}(H)$. The proof is divided into three parts.

Step 1. Construction of Ψ_{1}, Ψ_{2}.
We describe the map $\Psi_{1}: G \rightarrow$ FAut $T_{3 n}$. The map Ψ_{2} is defined analogously replacing X by Y and vice versa in the constructions below.

For each element $g \in G$ fix a finite initial automaton

$$
A_{g}=\left(Q, \mathrm{X}, \lambda, \mu, q_{g}\right)
$$

such that g is defined by A_{g}. Here Q denotes the set of inner states of A_{g}, λ and μ its transition and output functions respectively, q_{g} the initial state.

The definition of Ψ_{1} consists of two stages.
At the first stage we define another automaton B_{g} by adding to the set Q of states of A_{g} two states s_{g}, d_{g}. The functions λ, μ are extended by the equalities

$$
\begin{gathered}
\lambda\left(s_{g}, x_{0}\right)=q_{g}, \quad \lambda\left(s_{g}, x\right)=d_{g}, x \in \mathbf{X} \backslash\left\{x_{0}\right\}, \quad \lambda\left(d_{g}, x\right)=d_{g}, x \in \mathbf{X}, \\
\mu\left(s_{g}, x\right)=\mu\left(d_{g}, x\right)=x, x \in \mathbf{X} .
\end{gathered}
$$

Then

$$
B_{g}=\left(Q \cup\left\{s_{g}, d_{g}\right\}, \mathrm{X}, \lambda, \mu, s_{g}\right)
$$

Denote by $\psi_{1}(g)$ the element of the group G defined by the automaton B_{g}. Then the rule

$$
g \mapsto \psi_{1}(g)
$$

defines an isomorphic embedding of G into G. Indeed, the definition of the automaton B_{g} implies that for arbitrary $x \in \mathrm{X}, w \in \mathrm{X}^{*}$ the following equality holds

$$
(x w)^{\psi_{1}(g)}= \begin{cases}x w^{g}, & \text { if } x=x_{0} \\ x w & \text { otherwise }\end{cases}
$$

Hence, ψ_{1} is injective and preserves multiplication.
Note, that the map ψ_{1} is nothing but the identification of G with the first term in the direct product

$$
G^{(0)} \times \ldots \times G^{(n-1)}, \quad G^{(i)} \simeq G, 0 \leqslant i \leqslant n-1
$$

This direct product is a natural subgroup of G as soon as we look at the action of G on X^{*}.

Let us proceed to the second stage of the definition. We construct a finite initial automaton C_{g} over the alphabet $\mathrm{X} \cup \mathrm{Y} \cup \mathrm{Z}$. Its set of inner states is $Q \cup\left\{s_{g}, d_{g}\right\} \cup Q \times \mathbf{Z}$.

The transition function λ is extended by the following rules:

$$
\begin{gathered}
\lambda\left(d_{g}, y\right)=d_{g}, \quad y \in \mathrm{Y}, \quad \lambda\left(d_{g}, z\right)=s_{g}, \quad z \in \mathbf{Z}, \\
\lambda(q, y)=s_{g}, \quad q \in Q \cup\left\{s_{g}\right\} \cup Q \times \mathbf{Z}, y \in \mathrm{Y}, \\
\lambda\left(s_{g}, z\right)=s_{g}, \quad z \in \mathrm{Z}, \quad \lambda(q, z)=(q, z), \quad q \in Q, \quad z \in \mathbf{Z}, \\
\lambda((q, z), t)=s_{g}, \quad q \in Q, z \in \mathrm{Z}, \quad t \in \mathrm{Y} \cup \mathrm{Z}, \\
\lambda((q, z), x)=\lambda\left(s_{g}, x\right), \quad q \in Q, z \in \mathbf{Z}, x \in \mathbf{X} .
\end{gathered}
$$

The output function μ is extended on new states by the rule:

$$
\mu((q, z), x)=\mu\left(s_{g}, x\right), \quad q \in Q, z \in \mathbf{Z}, x \in \mathbf{X}
$$

Let us define the action of the output function μ in new states on letters from Y. For arbitrary $q \in Q, i, j \in\{0, \ldots, n-1\}$ the value $\mu\left(q, x_{(j-i) \bmod n}\right)$ is a well-defined letter $x \in \mathrm{X}$. Then $x=x_{k}$ for some $k \in\{0, \ldots, n-1\}$ and we define

$$
\mu\left(\left(q, z_{i}\right), y_{j}\right)=y_{(k+i) \bmod n}
$$

In other words, the permutation π_{Y} on the alphabet Y defined in the state $\left(q, z_{i}\right)$ "mimics" the permutation π_{X} on X defined in the state q. More
precisely, if we denote by σ the one-to-one correspondence between X and Y given by the rule $x_{j} \mapsto y_{(j+k) \bmod n}, 0 \leqslant j \leqslant n-1$, then $\pi_{\mathrm{Y}}=\sigma\left(\pi_{\mathrm{X}}\left(\sigma^{-1}\right)\right)$.

None of the rest of the states change letters from Y. Finally, none of the states change letters from Z .

Then the automaton

$$
C_{g}=\left(Q \cup\left\{s_{g}, d_{g}\right\} \cup Q \times \mathrm{Z}, \mathrm{X} \cup \mathrm{Y} \cup \mathrm{Z}, \lambda, \mu, s_{g}\right)
$$

is well-defined.
Denote by $\Psi_{1}(g)$ the element of the group FAut $T_{3 n}$ defined by the automaton C_{g}.

Step 2. Ψ_{1}, Ψ_{2} are isomorphic embeddings.
As above, we consider Ψ_{1} only. The proof for Ψ_{2} is completely analogous.

Let $g \in G, w \in(\mathrm{X} \cup \mathrm{Y} \cup \mathrm{Z})^{*}$. We examine the word $w^{\Psi_{1}(g)}$ to show that Ψ_{1} preserve multiplication in G. The main idea is to split w into sub-words such that under the action of $\Psi_{1}(g)$ each image coincides with the one obtained by the action of g. Under the action of $\Psi_{1}(g)$ in w letters from $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ are transformed into the letters of the same alphabet. The letters from Z are preserved under the action of $\Psi_{1}(g)$.

For $w \in \mathrm{X}^{*}$ the definition of the automaton C_{g} directly implies the equality

$$
w^{\Psi_{1}(g)}=w^{\psi_{1}(g)} .
$$

In particular, the mapping Ψ_{1} is injective.
Let the first letter of w belongs to X and differs from x_{0}. If w contain no letters from \mathbf{Z} then w is a fixed point under $\Psi_{1}(g)$. In other case $w=x w_{1} z w_{2}$ for some $w_{1} \in(\mathrm{X} \cup \mathrm{Y})^{*}, z \in \mathbf{Z}, w_{2} \in(\mathrm{X} \cup \mathrm{Y} \cup \mathrm{Z})^{*}$. Then

$$
w^{\Psi_{1}(g)}=\left(x w_{1} z w_{2}\right)^{\Psi_{1}(g)}=x w_{1} z w_{2}^{\Psi_{1}(g)} .
$$

Assume that $w \in(X \cup Y \cup Z)^{*} \backslash X^{*}$ and the first letter of w either belongs to $\mathrm{Y} \cup \mathrm{Z}$ or equals x_{0}. Then w can be uniquely written in the form

$$
w=w_{1} u_{1} w_{2} u_{2}
$$

where $w_{1}, w_{2} \in \mathbf{X}^{*}, u_{1} \in(\mathbf{Y} \cup \mathbf{Z})^{+}, u_{2} \in(\mathbf{X} \cup \mathbf{Y} \cup \mathbf{Z})^{*}$ and the word w_{1} either empty or its first letter equals x_{0}. In the former case from the definition of C_{g} we obtain the following equality:

$$
\left(w_{1} u_{1} w_{2} u_{2}\right)^{\Psi_{1}(g)}=w_{1} u_{1}\left(w_{2} u_{2}\right)^{\Psi_{1}(g)}
$$

In the latter case if the first letter of u_{1} belongs to Y or the length of u_{1} is greater than 1 and the first and the second letters of u_{1} belong to Z the definition of C_{g} implies

$$
\left(w_{1} u_{1} w_{2} u_{2}\right)^{\Psi_{1}(g)}=w_{1}^{\Psi_{1}(g)} u_{1}\left(w_{2} u_{2}\right)^{\Psi_{1}(g)}
$$

It is left to consider two cases.
Case I. Let $w_{1}=x_{0} w_{3}$ for some $w_{3} \in \mathbf{X}^{*}, u_{1}=z$ for some $z \in \mathbf{Z}$ and the word w_{2} is non-empty. In this case $w=x_{0} w_{3} z x w_{4} u_{2}$ for some $x \in \mathbf{X}, w_{4} \in \mathbf{X}^{*}$ and we obtain

$$
\left(x_{0} w_{3} z x w_{4} u_{2}\right)^{\Psi_{1}(g)}=x_{0} w_{3}^{g} z\left(x w_{4} u_{2}\right)^{\Psi_{1}(g)}
$$

Case II. Let $w_{1}=x_{0} w_{3}$ for some $w_{3} \in \mathrm{X}^{*}$ and $u_{1}=z y u_{3}$ for some $z \in$ $\mathrm{Z}, y \in \mathrm{Y}, u_{3} \in(\mathrm{Y} \cup \mathrm{Z})^{*}$. Then $y=y_{j}, z=z_{i}$ for some $i, j \in\{0, \ldots, n-1\}$, $w=x_{0} w_{3} z_{i} y_{j} u_{3} w_{2} u_{2}$ and we obtain

$$
\left(x_{0} w_{3} z_{i} y_{j} u_{3} w_{2} u_{2}\right)^{\Psi_{1}(g)}=\left(x_{0} w_{3} z_{i} y_{j}\right)^{\Psi_{1}(g)} u_{3}\left(w_{2} u_{2}\right)^{\Psi_{1}(g)}
$$

Further we obtain

$$
\left(x_{0} w_{3} z_{i} y_{j}\right)^{\Psi_{1}(g)}=\left(x_{0} w_{3}\right)^{\psi_{1}(g)} z_{i} y_{(i+k) \bmod n}
$$

where number k is uniquely determined by the equality

$$
\left(x_{0} w_{3} x_{(j-i) \bmod n}\right)^{\Psi_{1}(g)}=x_{0} w_{3}^{g} x_{k}
$$

The last equality means that $\Psi_{1}(g)$ acts on words of the form $x_{0} w_{3} z_{i} y_{j}$ as g acts on words $w_{3} x_{(j-i) \bmod n}$, i.e. corresponding permutation groups are isomorphic.

Step 3. $\left\langle\Psi_{1}(G), \Psi_{2}(H)\right\rangle$ splits as $\Psi_{1}(G) * \Psi_{2}(H)$.
It is required to prove that for arbitrary positive integer m and nonidentity elements $g_{1}, \ldots, g_{m} \in G, h_{1}, \ldots, h_{m} \in H$ the product

$$
\Psi_{1}\left(g_{1}\right) \Psi_{2}\left(h_{1}\right) \ldots \Psi_{1}\left(g_{m}\right) \Psi_{2}\left(h_{m}\right)
$$

defines a non-trivial permutation on the set $(X \cup Y \cup Z)^{*}$. Denote by $a_{1}, b_{1}, \ldots, a_{m}, b_{m}$, the elements

$$
\Psi_{1}\left(g_{1}\right), \quad \Psi_{1}\left(g_{1}\right) \Psi_{2}\left(h_{1}\right), \quad \ldots, \quad \Psi_{1}\left(g_{1}\right) \Psi_{2}\left(h_{1}\right) \ldots \Psi_{1}\left(g_{m}\right) \Psi_{2}\left(h_{m}\right)
$$

correspondingly. We will find words

$$
u_{1}, \ldots, u_{m}, u_{m+1} \in \mathrm{X}^{*} \quad \text { and } \quad v_{1}, \ldots, v_{m} \in \mathrm{Y}^{*}
$$

and letters

$$
t_{1}, \ldots, t_{m}, s_{1}, \ldots, s_{m} \in \mathbf{Z}
$$

such that the word w of the form

$$
w=u_{1} t_{1} v_{1} s_{1} \ldots u_{m} t_{m} v_{m} s_{m} u_{m+1}
$$

is not a fixed point under the action of the element b_{m}.
For any non-trivial element $g \in G$ there exist a non-empty word from X^{*} that is not a fixed point under the action of g. In each non-fixed word of the shortest possible length the last letter does not coincide with the last letter of its image under g. Note, that all other letters are preserved under the action of g. Hence, there exist a word $w(g) \in \mathrm{X}^{*}$ and numbers $i(g), k(g) \in\{0, \ldots, n-1\}$ such that $i(g) \neq k(g)$ and

$$
\left(w(g) x_{i(g)}\right)^{g}=w(g) x_{k(g)}
$$

Denote $j(g)=(i(g)-k(g)) \bmod n$. Then $j(g) \neq 0$. In the same way for any non-trivial element $h \in H$ one can choose a word $w(h) \in \mathrm{Y}^{*}$ and numbers $i(h), k(h) \in\{0, \ldots, n-1\}$ such that $i(h) \neq k(h)$ and

$$
\left(w(h) y_{i(h)}\right)^{h}=w(h) y_{k(h)}
$$

Denote $j(h)=(i(h)-k(h)) \bmod n$. Then $j(h) \neq 0$.
Now define

$$
\begin{gathered}
u_{1}=x_{0} w\left(g_{1}\right), \quad u_{r}=x_{j\left(h_{r-1}\right)} w\left(g_{r}\right), 2 \leqslant r \leqslant m, \quad u_{m+1}=x_{j\left(h_{m}\right)} \\
v_{r}=y_{j\left(g_{r}\right)} w\left(h_{r}\right), 1 \leqslant r \leqslant m, \quad \text { and } \quad t_{r}=z_{k\left(g_{r}\right)}, s_{r}=z_{k\left(h_{r}\right)}, 1 \leqslant r \leqslant m
\end{gathered}
$$

Hence, we put

$$
\begin{aligned}
& w=x_{0} w\left(g_{1}\right) z_{k\left(g_{1}\right)} y_{j\left(g_{1}\right)} w\left(h_{1}\right) z_{k\left(h_{1}\right)} x_{j\left(h_{1}\right)} \ldots \\
& \ldots x_{j\left(h_{m-1}\right)} w\left(g_{m}\right) z_{k\left(g_{m}\right)} y_{j\left(g_{m}\right)} w\left(h_{m}\right) z_{k\left(h_{m}\right)} x_{j\left(h_{m}\right)}
\end{aligned}
$$

The definition of Ψ_{1} and Ψ_{2} implies that under the action of mappings $a_{1}, b_{1}, \ldots, b_{m-1}, a_{m}, b_{m}$ in the word w letters

$$
y_{j\left(g_{1}\right)}, x_{j\left(h_{1}\right)}, \ldots, x_{j\left(h_{m-1}\right)}, y_{j\left(g_{m}\right)}, x_{j\left(h_{m}\right)}
$$

one by one become

$$
y_{0}, x_{0}, \ldots, x_{0}, y_{0}, x_{0}
$$

More precisely, one can verify by induction the following $2 m$ equalities

$$
\begin{aligned}
& w^{a_{1}}=\left(u_{1}\right)^{a_{1}} t_{1} y_{0} w\left(h_{1}\right) s_{1} u_{2} \ldots u_{m} t_{m} v_{m} s_{m} u_{m+1}, \\
& w^{b_{1}}=\left(u_{1} t_{1} v_{1}\right)^{b_{1}} s_{1} x_{0} w\left(g_{2}\right) \ldots u_{m} t_{m} v_{m} s_{m} u_{m+1}, \\
& \ldots \\
& w^{a_{m}}=\left(u_{1} t_{1} v_{1} s_{1} \ldots u_{m}\right)^{a_{m}} t_{m} y_{0} w\left(g_{m}\right) s_{m} u_{m+1}, \\
& w^{b_{m}}=\left(u_{1} t_{1} v_{1} s_{1} \ldots u_{m} t_{m} v_{m}\right)^{b_{m}} s_{m} x_{0} .
\end{aligned}
$$

In particular, $w^{b_{m}} \neq w$. The proof is complete.

References

[1] E.I. Khukhro (ed.), V.D. Mazurov (ed.), Unsolved Problems in Group Theory. The Kourovka Notebook. 18th edition, Novosibirsk (2014). (English version available online at http://arxiv.org/abs/1401.0300)
[2] R.I.Grigorchuk, V.V.Nekrashevych, V.I.Sushchanskii Automata, Dynamical Systems, and Groups, Proceedings of the Steklov Institute of Mathematics. -2000. - 231. p. 128-203.
[3] V.V.Nekrashevych Self-similar groups, Mathematical Surveys and Monographs, 117. AMS, Providence, RI, 2005. xii+231 pp.
[4] V.Salo A note on subgroups of automorphism groups of full shifts, Ergodic Theory and Dynamical Systems, 2016, 1-13. doi:10.1017/etds.2016.95

Contact information

$\begin{array}{ll}\text { M. Fedorova, } & \text { Taras Shevchenko National University of Kyiv, } \\ \text { A. Oliynyk } & \text { Volodymyrska 60, Kyiv, Ukraine, } 01033 \\ & E-M a i l(s): \text { mfed@univ.kiev.ua, } \\ & \text { olijnyk@univ.kiev.ua }\end{array}$
Received by the editors: 10.06.2017
and in final form 13.06.2017.

