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Abstract. This paper sheds a light on periodic soluble
groups whose subgroups of infinite special rank are transitively
normal.

Introduction

Groups with certain prescribed properties of subgroups form one
of the central subjects of research in group theory. Their investigation
introduced many important notions such as finiteness conditions, local
nilpotence, local solubility, group rank, and others. Choosing specific pres-
cribed properties and concrete families of subgroups, which possess these
properties, we come to distinct classes of groups. There is an enormous
array of papers devoted to these topics. This particular article discloses
the influence of a family of subgroups of finite special rank and the one
of transitively normal groups on a group structure.

A group G is said to have a finite special rank r if every finitely
generated subgroup of G can be generated by at most r elements and there
exists a finitely generated subgroup H, which has exactly r generators [1].
The theory of groups of finite special rank is one of the most profoundly
developed parts of the group theory (for instance, surveys [2, 3, 4]). In a
paper [5] M.R. Dixon, M.J. Evans and H. Smith have considered groups
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whose subgroups of infinite special rank have some fixed property P . A
bunch of authors expanded the research area taking into account distinct
natural properties P (for example, survey [4]). This paper focuses on
groups whose subgroups of infinite special rank are transitively normal.

A subgroup H of a group G is transitively normal if H is normal in
every subgroup K > H, in which H is subnormal [6]. In [7] these subgroups
have been introduced under a different denomination. Namely, a subgroup
H of a group G is said to satisfy the subnormalizer condition in G if for
every subgroup K, such that H is normal in K, we have NG(K) 6 NG(H).
There are many natural types of subgroups, which are transitively normal,
for instance, pronormal subgroups and their generalizations (see [8]).

A relation “to be a normal subgroup” is not transitive. A group G is
said to be a T -group if this relation is transitive in G. A group G is said
to be a T̄ -group if every subgroup of G is a T -group. It is obvious that
every subgroup of G is transitively normal if and only if G is a T̄ -group.

A locally nilpotent residual GLN of a group G is the intersection of
all normal subgroups H such that G/H is locally nilpotent. Note, that if
G is locally finite, then G/GLN is locally nilpotent.

Theorem 1. Let G be a locally finite group whose subgroups are tran-
sitively normal, and let L be a locally nilpotent residual of G. Then G
satisfies the following conditions:

(i) L is an abelian and G is a metabelian group;
(ii) Every subgroup of L is a G-invariant;
(iii) 2 /∈ Π(L);
(iv) Π(L)

⋂
Π(G/L) = ∅;

(v) G/L is a Dedekind group and G/CG(L) is an abelian group.

Conversely, if G satisfies conditions (i)–(v), then every subgroup of G
is a transitively normal one.

Indeed, a finite group whose subgroups are transitively normal is a
metabelian one [9], so that G is a metabelian group. Now, we can apply
the results of [10].

This paper aims at describing periodic soluble groups whose subgroups
of infinite special rank are transitively normal. The main results are
summarized as follows.

Theorem 2. Let G be a periodic soluble group of infinite special rank
whose subgroups of infinite special rank are transitively normal. Then
every subgroup of G is a transitively normal one.
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1. On the structure of locally nilpotent subgroups

Lemma 1. Let G be a group whose subgroups of infinite special rank are
transitively normal.

If H is a subgroup of G, then every subgroup of H with infinite special
rank is transitively normal in H.

If L is a normal subgroup of G, such that G/H has infinite special
rank, then every subgroup of G/L with infinite special rank is transitively
normal in G/L.

If U , V are subgroups of G, such that U is normal in V and V/U has
infinite special rank, then every subgroup of V/U with infinite special rank
is transitively normal in V/U .

The proof of this assertion is evident.

Lemma 2. Let G be a group and F be a finite subgroup of G. Suppose that
A is an infinite elementary abelian p-subgroup of G, where p is a prime.
If A is an F -invariant, then A includes a subgroup B = Drn∈N Bn where
Bn is a finite F -invariant subgroup for each n ∈ N and F

⋂
B = 〈1〉.

Proof. We have A = Drλ∈Λ〈aλ〉, where the set of indices Λ is infinite
and |aλ| = p for each λ ∈ Λ. Since F

⋂
A is cyclic, there exists a finite

subset M ⊆ Λ, such that Supp(F
⋂

A) ⊆ Drλ∈M 〈aλ〉. Then a subset
∑

= ΛM ‚ is infinite and F
⋂

Drλ∈Σ〈aλ〉 = 〈1〉. Put Drλ∈Σ〈aλ〉 = A0.
Then an index |A : A0| is finite. The subgroup Ax

0 has finite index in
A for each element x ∈ F and family {Ax

0 |x ∈ F} is finite, because a
subgroup F is finite. Then, a subgroup

⋂
x∈F Ax

0 = D has finite index in
A. In particular, D is infinite. Since D 6 A0, F

⋂
D = 〈1〉. By the choice,

a subgroup D is an F -invariant. Let 1 6= b1 ∈ D and B1 = 〈b1〉F . Since
D is an elementary abelian subgroup, then there exists a subgroup A1 of
D, such that D = B1 × A1. Finiteness of B1 implies that a subgroup A1

has finite index in D. Using the above-mentioned arguments we obtain
that a subgroup

⋂
x∈F Ax

1 = D1 has finite index in D. An inclusion
D1 6 A1 shows that B1

⋂
D1 = 〈1〉. By the choice, a subgroup D1 is an

F -invariant. Let 1 6= b2 ∈ D1 and B2 = 〈b2〉F . A subgroup B2 is finite
and B1

⋂
B2 = 〈1〉. Since D is an elementary abelian subgroup, then

there exists a subgroup A2 of D, such that D = (B1B2) × A2. Repeating
the above-mentioned arguments, we construct a family {Bn|n ∈ N} of
finite F -invariant subgroups, such that B = 〈Bn|n ∈ N〉 = Drn∈N Bn and
B

⋂
F = 〈1〉.
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Lemma 3. Let G be a group whose subgroups of infinite special rank are
transitively normal. If L is a periodic locally nilpotent subgroup of G with
infinite special rank, then L is a Dedekind subgroup.

Proof. Firstly, suppose that there exists a prime p, such that the Sylow
p-subgroup P of L has infinite special rank. Let 1 6= g ∈ P , 1 6= x ∈ P
and F = 〈g, x〉. Then F is a finite subgroup. Since P has infinite special
rank, it includes an infinite elementary abelian subgroup A, which is an F -
invariant [11]. By Lemma 2 A includes an infinite subgroup B = Drn∈N Bn

such that Bn = 〈bn〉F and B
⋂

F = 〈1〉. In particular, |Bn| 6 pk, where
k = |F |. Since FBn is a p-subgroup, Bn 6 ζk(FBn). It is true for each
n ∈ N , therefore B 6 ζk(FB). It follows that a subgroup FB is a nilpotent
one. Then every subgroup of FB is a subnormal one.

Choose two infinite subsets Γ, ∆ ⊆ N , such that Γ
⋂

∆ = ∅ and
Γ

⋃
∆ = N . Then each subgroup C = Drn∈ΓBn and D = Drn∈∆Bn is

an infinite and F -invariant one. Then the both subgroups 〈g〉C and 〈g〉D
have infinite special rank, and, hence, are transitively normal in G. Being
transitively normal and subnormal in FB, 〈g〉C and 〈g〉D are normal in
FB. The choice of subgroups C, D implies that 〈g〉C

⋂
〈g〉D = 〈g〉. It

follows that a subgroup 〈g〉 is normal in FB. In particular, 〈g〉 is 〈x〉-
invariant. Since it is true for each element x ∈ P , 〈g〉 is P -invariant, and
hence 〈g〉 is L-invariant. It follows that every subgroup of P is L-invariant,
in particular, P is a Dedekind group.

Let q ∈ Π(L) and q 6= p. Let Q be a Sylow q-subgroup of L. Choose
again the arbitrary elements y, z ∈ Q. A subgroup K = 〈y, z〉 is a finite
one, in particular, it is nilpotent. Choose an infinite elementary abelian
p-subgroup V in P . Then V K is nilpotent. There are infinite subgroups
U , W of V , such that V = U × W . Then both subgroups 〈y〉U and 〈y〉W
have infinite special rank, and, hence. are transitively normal in G. Being
transitively normal and subnormal in KV , 〈y〉U and 〈y〉W are normal
in KV . The choice of subgroups U , W implies that 〈y〉 = 〈y〉U

⋂
〈y〉W .

It follows that a subgroup 〈y〉 is normal in KV . In particular, 〈y〉 is 〈z〉-
invariant. Since it is true for each element z ∈ Q, 〈y〉 is Q-invariant, and
hence 〈y〉 is L-invariant. It follows that every subgroup of Q is L-invariant.
It is true for each prime q, which follows that L is a Dedekind group.

Suppose now that the Sylow p-subgroup has finite special rank for each
prime p. We have L = Drp∈Π(L)Lp where Lp is a Sylow p-subgroup of L.
Since L has infinite special rank, then the set Π(L) is infinite and the set
{r(Lp)|p ∈ Π(L)} is not bounded. The fact that Lp has finite special rank
implies that it is Chernikov subgroup [12]. Being a Chernikov p-group, Lp
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is hypercentral. It is true for all primes p, thus L is hypercentral. It follows
that every subgroup of L is ascendant. Let d be an arbitrary element of
L. There exists a finite subset there exists a finite subset M ⊆ Π(L) such
that 〈g〉

⋂
Drp∈M Lp = 〈1〉. Then the subset Σ = Π(L)M is infinite and a

subgroup Drp∈ΣLp has infinite special rank. Since Σ is infinite, we can
choose in Σ two infinite subsets Λ, Θ such that Λ

⋂
Θ = ∅, Λ

⋃
Θ = Σ and

the both subgroups X = Drp∈ΛLp and Y = Drp∈ΘLp have infinite special
rank. Then the both subgroups 〈d〉X and 〈d〉Y have infinite special rank,
and, hence. are transitively normal in G. Being transitively normal and
ascendant in L, the subgroup 〈d〉X and 〈d〉Y are normal in L [6]. The
choice of subgroups X, Y implies that 〈d〉X

⋂
〈d〉Y = 〈d〉. It follows that

a subgroup 〈d〉 is normal in L. It follows that L is a Dedekind group.

Corollary 1. Let G be a group whose subgroups of infinite special rank
are transitively normal. If L is a periodic locally nilpotent subgroup of G
with infinite special rank, and H = NG(L), then every subgroup of L is
H-invariant.

Proof. By Lemma 3 L is a Dedekind group. Let x be an arbitrary element
of L. Using the arguments from the proof of Lemma 3, we can find in L two
subgroups A, B with infinite special rank, such that 〈x〉 = 〈x〉A

⋂
〈x〉B.

The subgroups 〈x〉A and 〈x〉B are normal in L, so that they are subnormal
in H. Since the both subgroups 〈x〉A and 〈x〉B have infinite special
rank, they are transitively normal in G. Being transitively normal and
subnormal in H, 〈x〉A and 〈x〉B are normal in H. Then and subgroup
〈x〉 = 〈x〉A

⋂
〈x〉B is normal in H. It follows that every cyclic subgroup

of L is H-invariant, which follows that that every subgroup of L is H-
invariant.

Corollary 2. Let G be a periodic group whose subgroups of infinite special
rank are transitively normal, and let L be a locally nilpotent radical of
G. If L has infinite special rank, then every subgroup of L is G-invariant
and G/CG(L) is abelian.

Proof. Since NG(L) = G, Corollary 1 shows that every subgroup of L
is G-invariant. The fact, that G/CG(L) is abelian, follows, for example,
from [13, Theorem 1.5.1].

Corollary 3. Let G be a periodic radical group, whose subgroups of infinite
special rank are transitively normal, and let L be a locally nilpotent radical
of G. If L has infinite special rank, then every subgroup of L is G-invariant
and G/L is abelian.
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Proof. In fact, locally nilpotent radical of a radical group includes its
centralizer [14, Theorem 7].

Corollary 4. Let G be a locally finite group, whose subgroups of infinite
special rank are transitively normal. If M is a family of normal sub-
groups of G, having infinite special rank and H =

⋂
M∈M

M , then G/H
is metabelian.

Proof. Indeed, every subgroup of factor-group G/M , M ∈ M, is transiti-
vely normal and Theorem 1 shows that this factor-group is metabelian.
Using a Remak’s theorem, we obtain that G/H is likewise metabelian.

2. Proof of the main theorem

Lemma 4. Let G be a group whose subgroups of infinite special rank are
transitively normal. Suppose that G includes normal subgroups C, D such
that C 6 D, C is a Chernikov subgroups, D/C is a p-group of infinite
special rank, where p is a prime and p /∈ Π(C). Then G is metabelian.

Proof. Let K = CD(C). Since D is periodic, D/K is a Chernikov group
(see, for example, [15, Theorem 1.5.16 ]). Let Z = K

⋂
C, then K/Z

is a p-group, having infinite special rank. By Lemma 1 and Lemma 3
K/Z is a Dedekind group. In particular, K/Z is nilpotent. An inclusion
Z 6 ζ(K) implies that K is nilpotent. Then K = Z × P and P is an
unique Sylow p-subgroup of K. Moreover, P has infinite special rank and
is a Dedekind group. If P is not abelian, then p = 2 and P = Q × B
where Q is a quaternion group and B is an infinite elementary abelian
2-subgroup [16]. Then A = ζ(Q) × B is a G-invariant infinite elementary
abelian 2-subgroup of P . If P is abelian, then the fact that P has infinite
rank implies that Ω1(P ) = A is infinite. So in every case P includes a
G-invariant infinite elementary abelian p-subgroup A. Then A = A1 × A2

where the both subgroups A1, A2 are infinite. In particular, A1, A2 have
infinite rank and hence transitively normal in G. On the other hand, A1,
A2 are subnormal in G. Being transitively normal and subnormal, they
are normal in G. Then Corollary 4 implies that G is metabelian.

Corollary 5. Let G be a group, whose subgroups of infinite special rank
are transitively normal. Suppose that G includes the normal subgroups
C, D such that C 6 D, C is a locally finite subgroups, having Chernikov
Sylow q-subgroups for each prime q, D/C is a p-group of infinite rank,
where p is a prime and p /∈ Π(C). Then G is metabelian.
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Proof. Let Rq = Oq(C), then Rq is G-invariant and C/Rq is a Chernikov
group (see, for example, [15, Theorems 2.5.12 and 3.5.15]). By Lemma 4
G/Rq is metabelian. The equation 〈1〉 =

⋂
q∈Π(C) Oq(C) = 〈1〉 together

with Corollary 4 shows that G is a metabelian group.

Lemma 5. Let G be a group and H a normal subgroup of G. Suppose
that H includes a finite G-invariant subgroup F such that H/F is a
locally finite p-group for some prime p. Then H includes a G-invariant
p-subgroup P such that H/P is finite.

Proof. The subgroup C = CG(F ) is normal in G and has finite index in G.
Then B = C

⋂
H is normal in G and has finite index in H. The center of B

includes E = C
⋂

F . Since B/E is a p-group,B is locally nilpotent, so that
B = Q × P where P (respectively Q) is a Sylow p-subgroup (respectively
p′-subgroup) of B. In particular, P is a characteristic subgroup of B and
therefore normal in G. Finiteness of indexes |H : B| and |B : P | implies
that H/P is likewise finite.

Corollary 6. Let G be a group whose subgroups of infinite special rank
are transitively normal. Suppose that G includes normal subgroups C, D
such that C 6 D, C is a locally finite subgroup having Chernikov Sylow
q-subgroups for each prime q, D/C is a p-group of infinite rank, where p
is a prime. Then G is metabelian.

Proof. Let R = Op′(C), then R is G-invariant and C/R is a Chernikov
group (see, for example, [15, Theorems 2.5.12 and 3.5.15 ]). Moreover,
the divisible part E/R is a p-subgroup. By Lemma 5 D/E includes a
G-invariant p-subgroup K/E with finite index in D/E. It follows that
K/E has infinite rank. Then and a p-group K/R has infinite rank. Now,
we can apply Corollary 5.

Corollary 7. Let G be a soluble periodic group whose subgroups of infinite
special rank are transitively normal. Suppose, that there exists a prime
p such that G has a Sylow p-subgroup with infinite rank. Then G is
metabelian.

Proof. Being soluble, G has finite series of normal subgroups

〈1〉 = R0 6 R1 6 . . . 6 Rn = G

whose factors are locally nilpotent. By our conditions there exist a po-
sitive integer k such that Rk has Chernikov Sylow q-subgroups for all
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primes q and Rk+1/Rk has a Sylow p-subgroup P/Rk of infinite rank.
Since Rk+1/Rk is locally nilpotent, P is normal in G. Now we can apply
Corollary 6.

Lemma 6. Let G be a group whose subgroups of infinite special rank
are transitively normal. Suppose that G includes normal subgroups C, D,
such that C 6 D, C is a Chernikov subgroup, D/C is a locally nilpotent
group with Chernikov q-subgroup for all primes q. If D/C has infinite
special rank, then G is metabelian.

Proof. Let K = CD(C). Since D is periodic, D/K is a Chernikov group
(see, for example, [15, Theorem 1.5.16 ]). Let Z = K

⋂
C, then K/Z is a

locally nilpotent group, having infinite special rank. Since Z 6 ζ(K), K
is locally nilpotent. We have K = Drp∈Π(K)Kp, where Kp is Chernikov
Sylow p-subgroup of K, p ∈ Π(K). Since K has infinite special rank, then
the set Π(K) is infinite and the set {r(Kp)|p ∈ Π(K)} is not bounded.
Then K includes two G-invariant subgroups R, T , having infinite special
rank, such that R

⋂
T = 〈1〉. Using Corollary 4, we obtain that G is

metabelian.

Lemma 7. Let G be a group whose subgroups of infinite special rank
are transitively normal. Suppose that G includes the normal subgroups
C, D such that C 6 D, C is a locally finite subgroups, having Chernikov
Sylow q-subgroups for each prime q, D/C is a locally nilpotent group with
Chernikov p-subgroup for all primes p. If D/C has infinite special rank,
then G is metabelian.

Proof. Let Rq = Oq′(C), then Rq is G-invariant and C/Rq is a Chernikov
group (see, for example, [15, Theorems 2.5.12 and 3.5.15 ]). By Lemma 6
G/Rq is metabelian. The equation 〈1〉 =

⋂
q∈Π(C) Oq′(C) = 〈1〉 together

with Corollary 4 shows that G is a metabelian group.

Corollary 8. Let G be a soluble periodic group of infinite special rank
whose subgroups of infinite special rank are transitively normal. If G has
infinite special rank, then G is metabelian.

Proof. Being soluble, G has finite series of normal subgroups

〈1〉 = R0 6 R1 6 . . . 6 Rn = G

whose factors are locally nilpotent. By our conditions there exist a positive
integer k such that Rk has finite special rank and Rk+1/Rk has infinite
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special rank. Since Rk+1/Rk is locally nilpotent, Rk+1/Rk = Drp∈πSp/Rk

where π = Π(Rk+1/Rk) and Sp/Rk is the Sylow p-subgroup of Rk+1/Rk,
p ∈ π. Since Rk+1/Rk has infinite special rank, then either there exists
a prime p such that Sp/Rk is not Chernikov, or Sp/Rk is Chernikov for
every prime p ∈ π, but the set π is infinite and the set {r(Sp/Rk)|p ∈ π}
is not bounded. In first case G is metabelian by Corollary 6. In the second
case we will apply Lemma 6.

Lemma 8. Let G be a periodic soluble group of infinite special rank whose
subgroups of infinite special rank are transitively normal. If L is a locally
nilpotent radical of G, then every subgroup of L is G-invariant.

Proof. If L has infinite special rank, then we can apply Corollary 2.
Therefore, suppose that L has finite special rank. Then a factor-group
G/L has infinite rank. By Corollary 8 G/L is abelian. Since L is locally
nilpotent, L = Drp∈Π(L)Lp, where Lp is a Sylow p-subgroup of L, p ∈ Π(L).
Let g be an arbitrary element of Lp. Put π = Π(L){p}‚ for each q ∈ π define
the subgroup Mq = Drr∈π,r 6=qLr. Then L/Mq

∼= Lp × Lq is Chernikov.
Since G/Mq is periodic, (G/Mq)/CG/Mq

(L/Mq) is a Chernikov group ( see,
for example, [15, Theorem 1.5.16 ]). It follows that C/Mq = CG/Mq

(L/Mq)
has infinite special rank. Since the factor (G/Mq)/((C/Mq)

⋂
(L/Mq))

is abelian and the center of C/Mq includes (C/Mq)
⋂

(L/Mq), C/Mq is
nilpotent. L/Mq is hypercentral, so the product (C/Mq)(L/Mq) is locally
nilpotent [14]. By Corollary 1 every subgroup of (C/Mq)(L/Mq) is G-
invariant. In particular, 〈g〉Mq is G-invariant. It is true for every prime
q ∈ π, thus

⋂
q∈π〈g〉Mq is G-invariant. But the choice of the subgroups

Mq shows that 〈g〉 =
⋂

q∈π〈g〉Mq. Thus, every primary cyclic subgroup of
L is G-invariant. It follows that every cyclic subgroup of L is G-invariant.
In turn out it follows that every subgroup of L is G-invariant.

Corollary 9. Let G be a soluble periodic group of infinite special rank
whose subgroups of infinite special rank are transitively normal. Then G
is hypercyclic.

Proof. Let L be a locally nilpotent radical of G. By Lemma 8 every
subgroup of L is G-invariant. Then L has an ascending series of G-
invariant subgroups with cyclic factors. By Corollary 8 G/L is abelian.
Hence the series of L can be extended to a series of a group G, whose
factors are cyclic.

Corollary 10. Let G be a soluble periodic group of infinite special rank
whose subgroups of infinite special rank are transitively normal. If R is a
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locally nilpotent residual of G, then R is abelian, every subgroup of R is
G-invariant and 2 /∈ Π(R).

Proof. By Corollary 8 G is metabelian. It follows that R is abelian. Being
normal and abelian, R contains a locally nilpotent radical L of G. Using
Lemma 8 we obtain that every subgroup of R is G-invariant. Finally, by
Corollary 9 G is hypercyclic. It follows that every finite subgroup of G
is supersoluble. Then every finite subgroup of G has the normal Sylow
2′-subgroup. It follows that G has the normal Sylow 2′-subgroup D. Since
G/D is a 2-group, R 6 D. Therefore, 2 /∈ Π(R).

Lemma 9. Let A be an abelian p-group and G be a finite p′-group of
automorphisms of A. If 〈1〉 6= [A, G] 6= A, then A includes a subgroup
which is not G-invariant.

Proof. By Corollary 8 we have A = [A, G] × CA(G) (for example, [17,
Proposition 5.19]). Suppose the contrary, let every subgroup of A is G-
invariant. Choose the elements 1 6= a ∈ Ω1([A, G]), 1 6= c ∈ Ω1(CA(G)).
Since a /∈ CA(G), there is an element g ∈ G such that ag 6= a. The fact
that 〈a〉 is G-invariant implies that ag = ak for some positive integer
k such that 1 < k < p. Since a cyclic subgroup 〈ac〉 is G-invariant,
(ac)g = (ac)m = amcm for some positive integer m such that 1 < k < p.
On the other hand, (ac)g = agcg = akc. It follows that m ≡ k(modp) and
m ≡ 1(modp), and we obtain a contradiction, which proves a result.

Lemma 10. Let G be a periodic soluble group of infinite special rank
whose subgroups of infinite special rank are transitively normal. If R is a
locally nilpotent residual of G, then Π(R)

⋂
Π(G/R) = ∅.

Proof. Suppose the contrary, let Π(R)
⋂

Π(G/R) is not empty and choose
a prime p ∈ Π(L)

⋂
Π(G/L). Corollary 10 shows that p 6= 2. Let Rp

be a Sylow p-subgroup of R, then R = Rp × Q where Q is a Sylow p′-
subgroup of R. Since G/R is locally nilpotent, it has a non-trivial normal
Sylow p-subgroup P/R. Then P/Q is a normal Sylow p-subgroup of G/Q.
Suppose first that P/Q has infinite special rank. Lemma 1 and Corollary 1
imply that every subgroup of P/Q is G-invariant. In particular, P/Q is
a Dedekind group. The fact that p 6= 2 implies that P/Q is abelian
[16]. Since G/R is locally nilpotent, [P/Q, G/Q] 6 Rp/Q. In particular,
[P/Q, G/Q] 6= P/Q. If we suppose that [P/Q, G/Q] = 〈1〉, then G/Q is
locally nilpotent, and we obtain a contradiction with a choice of Q. This
contradiction proves that 〈1〉 6= [P/Q, G/Q]. But in this case Lemma 9
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implies that P/Q includes a subgroup, which is not G-invariant. This
contradiction shows that P/Q has a finite special rank.

It follows that Rp has finite special rank. Suppose that R has infinite
special rank. Then a subgroup Q has infinite special rank. In this case
every subgroup of a factor-group is transitively normal. Then Theorem 1
and the fact that R/Q is a locally nilpotent residual of G/Q give a
contradiction.

Finally, consider the case when R has finite special rank. Being a
normal p-subgroup, P/Q lies in a locally nilpotent radical of G/Q. By
Lemma 1 and Lemma 8 every subgroup of P/Q is G-invariant. Repeating
the above arguments, we obtain again a contradiction, which proves a
result.

Lemma 11. Let G be a periodic soluble group of infinite special rank
whose subgroups of infinite special rank are transitively normal. If R is a
locally nilpotent residual of G, then G/R is a Dedekind group.

Proof. If R has infinite special rank, then every subgroup of G/R is
transitively normal. Since G/R is locally nilpotent, it must be Dedekind.
Suppose now that R has a finite special rank. Then G/R has infinite
special rank. Since it is locally nilpotent, Lemma 1 and Lemma 3 shows
that G/R is a Dedekind group.

Proof of the main result of the paper — Theorem 2.

Proof. Let G be a periodic soluble group of infinite special rank whose
subgroups of infinite special rank are transitively normal. Denote by R
the locally nilpotent residual of G. By Lemma 11 G/R is a Dedekind
group. Lemma 10 shows that Π(R)

⋂
Π(G/R) = ∅. By Corollary 10 R is

abelian, every subgroup of R is G-invariant and R is a 2′-group. It follows
that G/CG(R) is abelian (see, for example, [13, Theorem 1.5.1]). Finally
Corollary 8 shows that G is metabelian. Thus, G satisfies all conditions of
Theorem 1. According to this theorem every subgroup of G is transitively
normal.
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