Total global neighbourhood domination S. V. Siva Rama Raju and I. H. Nagaraja Rao

Communicated by D. Simson

ABSTRACT. A subset D of the vertex set of a connected graph G is called a total global neighbourhood dominating set(tgnd-set) of G if and only if D is a total dominating set of G as well as G^N , where G^N is the neighbourhood graph of G. The total global neighbourhood domination number(tgnd-number) is the minimum cardinality of a total global neighbourhood dominating set of G and is denoted by $\gamma_{\text{tgn}}(G)$. In this paper sharp bounds for γ_{tgn} are obtained. Exact values of this number for paths and cycles are presented as well. The characterization result for a subset of the vertex set of G to be a total global neighbourhood dominating set of a subset of the vertex set of G to be a total global neighbourhood dominating set for G is given and also characterized the graphs of order $n \geq 3$ having tgnd-numbers 2, n - 1, n.

Introduction and preliminaries

Domination is an active topic in graph theory and has numerous applications to distributed computing, the web graph and adhoc networks. Haynes *et al.* gave a comprehensive introduction to the theoretical and applied facets of domination in graphs.

A subset D of the vertex set V is called a *dominating set* [8] of the graph G if and only if each vertex not in D is adjacent to some vertex in D. The *domination number* $\gamma(G)$ is the minimum cardinality of the dominating set of G.

²⁰¹⁰ MSC: 05C69.

Key words and phrases: semi complete graph, total dominating set, connected dominating set.

Many variants of the domination number have been studied. For instance a dominating set S of graph G is called a *total dominating set* [3] if and only if every vertex in V is adjacent to a distinct vertex in D. The *total domination number* of G, denoted by $\gamma_t(G)$ is the smallest cardinality of the total dominating set of G. A set D is called a *connected dominating set* of G if and only if D is a dominating set of G and $\langle D \rangle$ is connected. The *connected domination number* [4] of G, denoted by $\gamma_c(G)$ is the smallest cardinality of the connected dominating set of G. A dominating set Dof connected graph G is called a *connected dominating set* of G if the induced subgraph $\langle D \rangle$ is connected. The *connected domination number* of G, denoted by $\gamma_c(G)$ is the least cardinality of the connected dominating set of G [7].

If G is a connected graph, then the Neighbourhood Graph [7] of G, denoted by N(G) (or) G^N , is the graph having the same vertex set as that of G and edge set being $\{uv/u, v \in V(G), \text{ there is } w \in V(G) \text{ such that } uw, wv \in E(G)\}$ [2].

In [5], a new type of graphs, called *semi complete graphs*, are introduced as follows. A connected graph G is said to be *semi complete* if any two vertices in G have a common neighbour.

A subset D of the vertex set V is called a global neighbourhood dominating set [6] of the graph G if and only if D is a dominating set of G, as well as G^N . The global neighbourhood domination number, $\gamma_{gn}(G)$ is the minimum cardinality of the global neighbourhood dominating set of G.

In the present paper, we introduce a new graph parameter, the *total* global neighbourhood domination number, for a connected graph G. We call $D \subseteq V$ a total global neighbourhood dominating set(tgnd-set) of G if and only if D is a total dominating set for both G, G^N . The total global neighbourhood domination number is the minimum cardinality of a total global neighbourhood dominating set of G and is denoted by $\gamma_{tgn}(G)$. By a γ_{tgn} -set of G, we mean a total global neighbourhood dominating set for G of minimum cardinality.

All graphs considered in this paper are simple, finite, undirected and connected. For all graph theoretic terminology not defined here, the reader is referred to [1] and [8].

In this paper sharp bounds for γ_{tgn} are given. A characterization result for a proper subset of the vertex set of G to be a tgnd-set of G is obtained and also characterized the graphs whose tgnd-numbers are 2, n, n - 1.

Note. If G is a simple graph such that G has isolates, then clearly γ_{tgn} -set of G does not exist. So, unless otherwise stated, throughout this paper G stands for a connected graph such that G^N has no isolates.

1. Main results

We give the tgnd-numbers of some standard graphs.

Proposition 1. 1) $\gamma_{\text{tgn}}(K_n) = 2; n = 3, 4, \dots,$

2) $\gamma_{tgn}(C_3) = 2$ 3) $\gamma_{tgn}(C_4) = 4$ 4) $\gamma_{tgn}(P_n) = 4; n = 4, 5$ 5) $\gamma_{tgn}(P_n(or)C_n) = 4[\frac{n}{6}] + j; n = 6m + j; j = 0, 1, 2, 3.$ $= 4[\frac{n}{6}] + 4; n = 6m + j; j = 4, 5.$ 6) $\gamma_{tgn}(K_{m,n}) = 4; m, n \ge 2.$ 7) $\gamma_{tgn}(S_{m,n}) = 4.$ 8) $\gamma_{tgn}(C_n oK_2) = n$ 9) $\gamma_{tgn}(K_{1,n})$ does not exist.

Now, we give a characterization result for a total dominating set of G to be a total global neighbourhood dominating set of G. Also, we give a relation between connected dominating set and total global neighbourhood dominating set.

Theorem 1. For a graph G the following holds.

- (i) A total dominating set D of G is a total global neighbourhood dominating set of G if and only if from each vertex in D there is a path of length two to a vertex in D. (characterization result)
- (ii) Any connected dominating set for G of cardinality atleast four is a total global neighbourhood dominating set for G.

Proof. The proof of (i) is trivial.

The proof of (ii) is as follows. Let $D \subseteq V$ (vertex set of G) be a connected dominating set of G with $|D| \ge 4$. It is enough to prove that D is a total dominating set of G^N . If D = V, we are through. Otherwise, let v be any vertex in V - D. Suppose v is adjacent to all the vertices of D (in G). Since $\langle D \rangle$ is connected there are u, w in D such that $\langle uvw \rangle$ is a triangle in G. This implies uv, vw are in G^N (u, w are in D). If v is not adjacent to atleast one vertex in D, since D is connected there is w in D such that vw is in G^N . Hence in either case there is a w in D such that vw is in G^N .

Let v be an arbitrary vertex in D. Since D is a connected dominating set of G of cardinality atleast four, there is a v_1 in D such that vv_1 lies on C_3 (in G) or $d_G(v, v_1) = 2$. In either case vv_1 is in G^N .

Hence D is a total dominating set of G^N .

Remark. For any connected graph G of order $n \ge 4$, we have $\gamma_t(G) \le \gamma_{tgn}(G) \le \gamma_c(G)$.

Lemma 1. If H is a spanning subgraph of a connected graph G, then $\gamma_{\text{tgn}}(G) \leq \gamma_{\text{tgn}}(H)$.

Lemma 2. For a graph G with $n \ge 1$ vertices, we have $2 \le \gamma_{\text{tgn}}(G) \le n$.

Proof. The proof follows by the characterization result.

Now, we characterize the graphs attaining lower bound.

Theorem 2. $\gamma_{tgn}(G) = 2$ if and only if there is an edge uv in G that lies on C_3 such that any vertex in $V - \{u, v\}$ is adjacent to atleast one of u, v.

Proof. Assume that $\gamma_{tgn}(G) = 2$. So there is a pair of vertices u, v in V such that $\{u, v\}$ is a total dominating set for G, G^N . This implies u, v are adjacent in G, G^N . Hence uv lies on a cycle $C_3 = \langle uvwu \rangle$ in G. Since $\{u, v\}$ is a total dominating set for G, for $x \in V - \{u, v\}$, xv or xu is an edge in G.

The inverse implication is clear.

Now, we characterize the graphs attaining upper bound.

Theorem 3. $\gamma_{\text{tgn}}(G) = n$ if and only if $G = C_4$ or P_4 .

Proof. Assume that $\gamma_{tgn}(G) = n$. Suppose that $diam(G) \ge 4$. Then $d_G(u, v) \ge 4$ for some u, v in G. Clearly u or v is not a cut vertex in G. Hence $V - \{u\}$ or $V - \{v\}$ is connected dominating set of cardinality atleast four. By Theorem.1(ii), $V - \{u\}$ or $V - \{v\}$ is a tgnd-set of G of cardinality n - 1, a contrary to our assumption.

Suppose that diam(G) = 3. Without loss of generality assume that $d_G(u, v) = 3$ for some u, v in G. Let $P = \langle uv_1v_2v \rangle$ be a diammetral path in G. Form a spanning tree of G say G' by preserving the diammetral path. Clearly diam $(G') \ge 3$. If $G' \ne P$, then $V - \{w\}$ (w is a pendant vertex in G') is a tgnd-set of G'. By Lemma 1, $V - \{w\}$ is a tgnd-set of G of cardinality n - 1, a contrary to our assumption. If G' = P, then G is not cyclic. This implies that G is tree with diameter three. Clearly G cannot have more than two pendant vertices. Hence $G = P_4$.

Suppose that diam(G) = 2. By hypothesis, G cannot be acyclic. Also G cannot have pendant vertices. Therefore G is cyclic and each vertex lies on a cycle. Suppose that g(G) = 3. If $G = C_3$, $\gamma_{\text{tgn}}(G) = 2 < 3$ a contradiction. If $G \neq C_3$, then $V(C_3) \subset V$. If all the vertices in $V - V(C_3)$

323

are adjacent to C_3 , then $\gamma_{\text{tgn}}(G) = 3 < n$, a contrary to our assumption. If there is atleast one vertex v_4 in $V - V(C_3)$ not adjacent to C_3 , then $V - \{v_4\}$ is a tgnd-set of G which is again a contradiction. Hence $g(G) \neq 3$.

Suppose that g(G) = 4. Let $C_4 = \langle v_1 v_2 v_3 v_4 \rangle$ be a cycle in G. If $V = V(C_4)$, then we have two possibilities $G = C_4, G \neq C_4$. If $G \neq C_4$, we have g(G) = 3 which is not possible. If $G = C_4$, then $\gamma_{\text{tgn}}(G) = 4(=n)$. If $V \neq V(C_4)$ (i.e. $V(C_4) \subset V$). Notice that G has no pendant vertices. Since g(G) = 4, any vertex in $V - V(C_4)$ can be adjacent to exactly two non adjacent vertices of C_4 . If all the vertices in $V - V(C_4)$ are adjacent to vertices in C_4 , then $\gamma_{\text{tgn}}(G) < n$, a contrary to our assumption. If there is a vertex v_5 in $V - V(C_4)$ not adjacent to C_4 , then $V - \{v_5\}$ is a tgnd-set of G, a contrary to our assumption. Hence by our assumption g(G) = 4 implies $G = C_4$.

Suppose that g(G) = 5. Then we have two possibilities, $G = C_5$, $G \neq C_5$. If $G = C_5$, then $\gamma_{tgn}(G) = 4$, a contrary to our assumption. If $G \neq C_5$, then $V = V(C_5)$ or $V \neq V(C_5)$. If $V = V(C_5)$, then g(G) < 5 a contradiction to our supposition. If $V \neq V(C_5)(i.e.V(C_5) \subset V)$. Since g(G) = 5, each vertex in $V - V(C_5)$ is adjacent to at most one vertex in C_5 . If all the vertices in $V - V(C_5)$ are adjacent to C_5 , then $V(C_5)$ is a tgnd-set of G, a contrary to our assumption. Suppose that there is a vertex v_7 in $V - V(C_5)$ adjacent to $C_5(= \langle v_1 v_2 v_3 v_4 v_5 v_1 \rangle)$. Since diam(G) = 2, v_7 is at a distance two from each vertex of C_5 . Then $V - \{v_6 v_7\}$ ($\langle v_1 v_6 v_7 \rangle$ is a path) is a tgnd-set of G, a contrary to our assumption. So $g(G) \neq 5$. Clearly diam $(G) \neq 1$. Hence we have $G = C_4$ or $G = P_4$. The inverse implication is clear.

Theorem 4. If diam $(G) \neq 2, 3$. Then, $\gamma_{\text{tgn}}(G) = n - 1$ if and only if $G = P_5$ or C_3 .

Proof. Assume that $\gamma_{\text{tgn}}(G) = n-1$. Suppose that $\operatorname{diam}(G) \ge 5$. Forming a spanning tree G' of G, we get $\gamma_{\text{tgn}}(G) \le \gamma_{\text{tgn}}(G') \le n-m < n-1$, a contrary to our assumption(here m is the number of pendant vertices in G'). Therefore $\operatorname{diam}(G) \le 4$.

Suppose that diam(G) = 4. If $G = P_5$, then $\gamma_{\text{tgn}}(G) = 4 = 5 - 1$. If $G \neq P_5$, forming a spanning tree G' of G, we have $\gamma_{\text{tgn}}(G) < n - 1$, a contrary to our assumption. Hence $G = P_5$. Suppose that diam(G) = 1. This implies $G = K_n (n \ge 3)$. By Theorem 2, $\gamma_{\text{tgn}}(G) = 2 < n - 1$ whenever $n \ge 4$, a contrary to our assumption. So $G = C_3$. The inverse implication is clear.

Theorem 5. Suppose $n \ge 5$ and diam(G) = 2. Then, $\gamma_{tgn}(G) = n - 1$ if and only if $G = C_5$ or G is isomorphic to H given by

Proof. Assume that $\gamma_{\text{tgn}}(G) = n - 1$. By hypothesis $g(G) \leq 5$. Suppose that g(G) = 5. If $G = C_5$, then $\gamma_{\text{tgn}}(G) = n - 1(n = 5)$. If $G \neq C_5$, then $V = V(C_5)$ or $V \neq V(C_5)$. If $V = V(C_5)$, then g(G) < 5, a contradiction. If $V \neq V(C_5)$ i.e., $V(C_5) \subset V$. Clearly G has no pendant vertices. By hypothesis any vertex in $V - V(C_5)$ is adjacent to atleast two non adjacent vertices of C_5 or at a distance two from each vertex of C_5 . From the former case or later case we get g(G) = 4, a contradiction. So $V \neq V(C_5)$. Hence g(G) = 5 implies $G = C_5$.

Suppose that g(G) = 4. Then $G = C_4$ or $G \neq C_4$. If $G = C_4$, $\gamma_{\text{tgn}}(G) = 4 = n > n - 1$ a contrary to our assumption. If $G \neq C_4$, then we have $V = V(C_4)$ or $V \neq V(C_4)$. If $V = V(C_4)$, then g(G) = 3a contradiction to our supposition. If $V \neq V(C_4)$ i.e., $V(C_4) \subset V$. By hypothesis and our supposition G has no pendant vertices and any vertex v in $V - V(C_4)$ is adjacent to exactly two non adjacent vertices of C_4 or v is at a distance two from each vertex of C_4 or v is at a distance two from a vertex of C_4 and adjacent to a vertex of C_4 , non adjacent to the former. Except in the first case we can form a spanning tree G' of G with $\operatorname{diam}(G') \geq 5$. So $\gamma_{\text{tgn}}(G) \leq \gamma_{\text{tgn}}(G') \leq n - m < n - 1$, a contrary to our assumption(here m is the number of pendant vertices in G'). If G has more than one vertex of first kind, then $\gamma_{\text{tgn}}(G) < n - 1$ a contrary to our assumption. If G has exactly one vertex of first kind, then $\gamma_{\text{tgn}}(G) = n - 1$ and G is isomorphic to H.

Suppose that g(G) = 3. Clearly G has a cycle $C_3 (= \langle v_1 v_2 v_3 v_1 \rangle)$. If $G \neq C_3$, then $V(C_3) \subset V$. Clearly G cannot have more than one pendant vertex. Suppose G has exactly one pendant vertex, say v. Since diam(G) = 2, there is a vertex w on C_3 such that vw is in G. Without loss of generality assume that $w = v_1$. Clearly $\{v_1, v_2\}$ or $\{v_1, v_3\}$ or $\{v_1, v\}$ is a tgnd-set for G a contrary to our assumption. This implies G has no pendant vertices. So any vertex in $V - V(C_3)$ is adjacent to C_3 or at a distance two from atleast one vertex of C_3 . In either case $\gamma_{\text{tgn}}(G) < n-1$. The inverse implication is clear. **Theorem 6.** Suppose that $n \ge 5$ and diam(G) = 3. Then $\gamma_{tgn}(G) = n-1$ if and only if G is isomorphic to H given by

Proof. Assume that $\gamma_{\text{tgn}}(G) = n - 1$. Clearly g(G) is not greater than 6.

Suppose that g(G) = 5. By hypothesis $G \neq C_5$. This implies $V(C_5) \subset V$. Clearly G cannot have more than two pendant vertices. Suppose G has exactly one pendant vertex, say v. By hypothesis v is adjacent to a vertex of $C_5(\langle v_1v_2v_3v_4v_5v_1 \rangle)$, say v_1 . Then clearly $V - \{v_2, v_3\}$ is a tgnd-set of G, a contrary to our assumption. Suppose G has exactly two pendant vertices. Since diam(G) = 3 they are adjacent to a vertex on C_5 or adjacent to end vertices of an edge in C_5 . In either case $\gamma_{\text{tgn}}(G) = n - 2 < n - 1$, a contrary to our assumption. So G cannot have pendant vertices. Since diam(G) = 3 and g(G) = 5, G cannot have more than two cycles. Hence $g(G) \neq 5$.

Suppose g(G) = 3. Clearly $G \neq C_3$ (since $n \geq 5$). Also G cannot have pendant vertices. If |V(G)| = 5 or all the vertices in $V - V(C_3)$ are adjacent to C_3 or there is a vertex at a distance two from C_3 , we get a contrary to our assumption. Hence $g(G) \neq 3$.

Suppose g(G) = 4. Since diam(G) = 3, $G \neq C_4$. Clearly G cannot have more than two pendant vertices. If |V(G)| = 5, since diam(G) = 3 the vertex in $V - V(C_4)$ is a pendant vertex. This implies $\gamma_{\text{tgn}}(G) = 4 = 5 - 1 =$ n - 1. Suppose $|V(G)| \ge 6$. If all the vertices in $V - V(C_4)$ are adjacent to C_4 (each vertex in $V - V(C_4)$ can be adjacent to exactly two non adjacent vertices in C_4 (since g(G) = 4)), then $\gamma_{\text{tgn}}(G) = 4 \le n - 2 < n - 1$ a contrary to our assumption. If not, there is atleast one vertex in $V - V(C_4)$ at a distance two from C_4 (say v). Then $V - \{v, v_5\}$ is a tgnd-set of G $(C_4 = \langle v_1 v_2 v_3 v_4 \rangle, v_1 v_5$ is an edge in G) which is again a contradiction. So |V(G)| is not greater than or equal to 6. Hence $G \cong H$.

Theorem 7. Suppose g(G) = 3 and $\operatorname{diam}(G) = 2$. Then $\gamma_{\operatorname{tgn}}(G) = n - 2$ if and only if $G = K_4$ or $G \cong K_4 - \{e\}$ or G is isomorphic to H given by

Proof. Assume that $\gamma_{\text{tgn}}(G) = n - 2$. Since g(G) = 3 there is a cycle $C_3 = \langle v_1 v_2 v_3 \rangle$ in G. Clearly $V(C_3) \subset V$. Suppose there is a vertex v in $V - V(C_3)$ which is not adjacent to C_3 . Since diam(G) = 2 there are paths of length 2 from v to each vertex of C_3 , say $\langle vv_4 v_1 \rangle, \langle vv_5 v_2 \rangle, \langle vv_6 v_3 \rangle$.

Case 1: $v_4 \neq v_5 \neq v_6$. Then $V - \{v, v_4, v_5\}$ is a tgnd-set of G.

Case 2: two of them are equal. Without loss of generality assume that $v_4 = v_5$. Clearly G cannot have pendant vertices. Then $V - \{v, v_4, v_1\}$ is a tgnd-set of G.

Case 3: $v_4 = v_5 = v_6$. Clearly G cannot have pendant vertices. Then $V - \{v_1, v_2, v_3\}$ is a tgnd-set of G.

In each of the three cases, we get a contradiction with our assumption. So our supposition is false. Hence all the vertices in $V - V(C_3)$ are adjacent to C_3 . Clearly C_3 has exactly one neighbour in $V - V(C_3)$, say v. If v is adjacent to exactly one vertex of C_3 , then $\gamma_{\text{tgn}}(G) = 2 = 4 - 2$ and $G \cong H$. If v is adjacent to exactly two vertices of C_3 , then $\gamma_{\text{tgn}}(G) = 2 = 4 - 2$ and $G \cong K_4 - \{e\}$. If v is adjacent to all vertices of C_3 , then $\gamma_{\text{tgn}}(G) = 2 = 4 - 2$ and $G \cong K_4 - \{e\}$. If v is adjacent to all vertices of C_3 , then $\gamma_{\text{tgn}}(G) = 2 = 4 - 2$ and $G \cong K_4 - \{e\}$.

The inverse implication is clear.

Theorem 8. If $\delta(G) \ge 3$ and g(G) > 4, then

$$2e - n(n-3) \leqslant \gamma_{\operatorname{tgn}}(G) \leqslant n - \Delta(G) + 1.$$

Proof. Suppose that D is a γ_{tgn} -set of G. Since g(G) > 4, for each vertex in V there is a vertex in D which is non adjacent to the former. This implies $e \leq n_{C_2} - [n - \gamma_{\text{tgn}}] - \frac{\gamma_{\text{tgn}}}{2}$. Hence $2e - n(n-3) \leq \gamma_{\text{tgn}}(G)$.

Suppose $d_G(v) = \Delta(G)$ for some v in V. Let $N_G(v) = \{v_1, v_2, \ldots, v_{\Delta(G)}\}$. Now consider the set $D = [V - N_G(v)] \bigcup \{v_i : i \text{ is exactly one of } 1, 2, \ldots, \Delta(G)\}$. Without loss of generality assume that $D = [V - N_G(v)] \bigcup \{v_{\Delta(G)}\}$. Let $u_1 \in V$.

Case 1: $u_1 \in V - D$. This implies $u_1 \in \{v_1, v_2, \ldots, v_{\Delta(G)-1}\}$. Without loss of generality assume that $u_1 = v_1$. Clearly $u_1 v$ is in G.

Case 2: $u_1 \in D$. This implies $u_1 \notin \{v_1, v_2, \ldots, v_{\Delta(G)-1}\}$. If $u_1 = v$ or $u_1 = v_{\Delta(G)}$, then $u_1v_{\Delta(G)}$ or u_1v is in G. If not since $\delta(G) \ge 3$ and g(G) > 4 there is $u_2 \notin \{v, v_1, v_2, \ldots, v_{\Delta(G)}\}$ such that u_1u_2 is in G. Hence D is a total dominating set of G.

We now show that D is a total dominating set of G^N . Let $u_1 \in V$. Case 1: $u_1 \in V - D$. This implies $u_1 \in \{v_1, v_2, \ldots, v_{\Delta(G)-1}\}$. Since $d_G(v_i, v_{\Delta(G)}) = 2, i = 1, 2, \ldots, \Delta(G) - 1$ we have $v_i v_{\Delta(G)}$ is in G^N . So $v_1, v_{\Delta(G)}$ is in G^N .

Case 2: $u_1 \in D$. This implies $u_1 \notin \{v_1, v_2, \dots, v_{\Delta(G)-1}\}$. Suppose $u_1 = v$. Since $\delta(G) \ge 3$ and g(G) > 4 we have vu_2 is in G^N . for some $u_2 \in N(N(v))$ and $u_2 \in D$. If $u_1 = v_{\Delta(G)}$. Suppose $u_1 \notin \{v, v_1, v_2, \dots, v_{\Delta(G)}\}$. If $u_1 \in N(v_i)$ for some $i = 1, 2, \dots, \Delta(G)$, then u_1v is an edge in G^N . If $u_1 \notin N(v_i)$ for any i.

Subcase a: $u_1 \in N(N(v_i))$ for some $i = 1, 2, ..., \Delta(G)$. Without loss of generality assume that $u_1 \in N(N(v_i))$. Since $\delta(G) \ge 3$, there are u_2 and u_3 in G, adjacent to u_1 . Since g(G) > 4, u_2 and u_3 cannot be adjacent to $\{v_1, v_2, \ldots, v_{\Delta(G)}\}$. This implies there is u_4 in D such that u_2u_4 or u_3u_4 is in G. Hence u_1u_4 is in G^N .

Subcase b: $u_1 \in V - [\{N(N(v_i)) : i = 1, 2, ..., \Delta(G)\} \cup \{v_1, v_2, ..., v_{\Delta(G)}\}].$ By hypothesis there is a u_2 in $D - \{v, v_{\Delta(G)}\}$ such that u_1u_2 is in G^N . D is a total dominating set of G^N .

Hence D is a tgnd-set of G whose cardinality is $n - \Delta(G) + 1$. So $\gamma_{\text{tgn}}(G) \leq n - \Delta(G) + 1$. This completes the proof.

Notation. For $n \ge 4$ and k = 2, 3 define a family of graphs \mathcal{G}_k as follows. $G \in \mathcal{G}_k$ if and only if there is $D \subset V$ such that |D| = k satisfying:

- (i) $\langle D \rangle$ is connected;
- (ii) at least two vertices of D lie on the same C_3 ;
- (iii) each vertex in V D is adjacent to a vertex in D.

Theorem 9. For $n \ge 4$, $\gamma_{tgn}(G) = 3$ if and only if $G \in \mathcal{G}_3 - \mathcal{G}_2$.

Proof. Assume that $\gamma_{\text{tgn}}(G) = 3$. Then there is a γ_{tgn} -set of G such that |D| = 3 and $\langle D \rangle$ is connected. By the characterization result for tgnd-set there is a path of length 2 between a pair of adjacent vertices in D. This implies at least two vertices of D lie on the same C_3 . So $G \in \mathcal{G}_3$. Since D is a γ_{tgn} -set, $G \in \mathcal{G}_2$. Hence $G \in \mathcal{G}_3 - \mathcal{G}_2$. The inverse implication is clear.

Before considering the next result, for convenience we introduce the following. For $n \ge 6$, define a family of trees \mathcal{T}_k as $T \in \mathcal{T}_k$ if and only if there is a $D \subset V$ with |D| = k satisfying:

(i) $\langle D \rangle$ is connected in G;

(ii) each vertex in V - D is adjacent to a vertex in D (in G).

Theorem 10. $\gamma_{\text{tgn}}(T) = 4$ if and only if $T \in \mathcal{T}_4 - \mathcal{T}_3$.

Proof. Suppose $\gamma_{\text{tgn}}(T) = 4$. Then there is a $\gamma_{\text{tgn}} - set$ of T (say D) such that D satisfies (i) and (ii) of the above mentioned family. This implies

 $T \in \mathcal{T}_4$. Clearly by characterization theorem $T \notin \mathcal{T}_3$. Hence $T \in \mathcal{T}_4 - \mathcal{T}_3$. The inverse implication is clear.

Theorem 11. $\gamma_{\text{tgn}}(T) = 5$ if and only if $T \in \mathcal{T}_5 - \mathcal{T}_4$.

Theorem 12. If G is a graph satisfying the following two conditions: (i) each edge of C bigs on C on C:

- (i) each edge of G lies on C_3 or C_5 ;
- (ii) there is no path of length four between any pair non adjacent vertices in G, then

$$\frac{\gamma_t(G) + \gamma_t(G^N)}{2} \leqslant \gamma_{\text{tgn}}(G) \leqslant \gamma_t(G) + \gamma_t(G^N)$$

Proof. By the hypothesis, we have $G = G^{NN}$. Clearly $\gamma_t(G) \leq \gamma_{tgn}(G)$, $\gamma_t(G^N) \leq \gamma_{tgn}(G^N) = \gamma_{tgn}(G)$. Hence $\frac{\gamma_t(G) + \gamma_t(G^N)}{2} \leq \gamma_{tgn}(G)$. Clearly $\gamma_{tgn}(G) \leq \gamma_t(G) + \gamma_t(G^N)$. Thus the result follows.

Theorem 13. Assume that D is a γ_t -set of G. If there is a v in V - D adjacent to all the vertices in D, then $\gamma_{tgn}(G) \leq 1 + \gamma_t(G)$.

Proof. Clearly $D \cup \{v\}$ is a tgnd-set of G. Hence, the theorem follows. \Box

Theorem 14. If G is a semi complete graph, then $D \subseteq V$ is a total dominating set of G if and only if D is a tgnd-set of G.

Proof. The proof follows from the fact that each edge in a semi complete graph lies on C_3 .

Theorem 15. If G is a semi complete graph, then a set $D \subseteq V$ with $\delta_G(\langle D \rangle) \ge 1$ is a global dominating set of G if and only if D is a tgnd-set of G.

Proof. The proof follows from the fact that, for a semi complete graph G, we have $G^c = G^N$.

References

- Bondy J.A. and Murthy, U.S.R., Graph theory with Applications, The Macmillan Press Ltd (1976).
- [2] D.F. Rall, Congr.Numer., 80 (1991), 89–95.
- [3] E.J. Cockayne, et al., Total domination in graphs, Networks, 10 (1980), 211-219.
- [4] E. Sampathkumar, H.B. Walikar, The connected Domination Number of a Graph, J. Math.Phy. Sci, 13 (1979), 607–613.

- [5] I.H. Naga Raja Rao, S.V. Siva Rama Raju, On Semi Complete Graphs, International Journal of Computational Cognition, Vol.7(3), (2009),50–54.
- [6] I.H. Naga Raja Rao, S.V. Siva Rama Raju, Global Neighbourhood Domination, Proyecciones Journal of Mathematics, Vol.33(1), 2014.
- [7] R.C. Brigham, R.D. Dutton, On Neighbourhood Graphs, J. Combin. Inform. System Sci., 12, (1987), 75–85.
- [8] Teresa W. Haynes, et al., Fundamentals of dominations in graphs, Marcel Dekker, Inc., New York–Basel.

CONTACT INFORMATION

S. V. Siva Rama	Academic Support Department, Abu Dhabi
Raju	Polytechnic, Al Ain, United Arab Emirates;
	Department of Information Technology, Ibra col-
	lege of Technology, Ibra, Sultanate of Oman
	E-Mail(s): venkata.sagiraju@adpoly.ac.ae,
	shivram2006@yahoo.co.in
I. H. Nagaraja Rao	Laxmikan tham Institute of Advanced Studies, G.V.P. College of Engineering, Visakhapatnam, India $E\text{-}Mail(s)$: ihnrao@yahoo.com

Received by the editors: 19.10.2015 and in final form 06.11.2015.