Total global neighbourhood domination

S. V. Siva Rama Raju and I. H. Nagaraja Rao

Communicated by D. Simson

Abstract

A subset D of the vertex set of a connected graph G is called a total global neighbourhood dominating set(tgnd-set) of G if and only if D is a total dominating set of G as well as G^{N}, where G^{N} is the neighbourhood graph of G. The total global neighbourhood domination number(tgnd-number) is the minimum cardinality of a total global neighbourhood dominating set of G and is denoted by $\gamma_{\operatorname{tgn}}(G)$. In this paper sharp bounds for γ_{tgn} are obtained. Exact values of this number for paths and cycles are presented as well. The characterization result for a subset of the vertex set of G to be a total global neighbourhood dominating set for G is given and also characterized the graphs of order $n(\geqslant 3)$ having tgnd-numbers $2, n-1, n$.

Introduction and preliminaries

Domination is an active topic in graph theory and has numerous applications to distributed computing, the web graph and adhoc networks. Haynes et al. gave a comprehensive introduction to the theoretical and applied facets of domination in graphs.

A subset D of the vertex set V is called a dominating set [8] of the graph G if and only if each vertex not in D is adjacent to some vertex in D. The domination number $\gamma(G)$ is the minimum cardinality of the dominating set of G.

2010 MSC: 05C69.
Key words and phrases: semi complete graph, total dominating set, connected dominating set.

Many variants of the domination number have been studied. For instance a dominating set S of graph G is called a total dominating set [3] if and only if every vertex in V is adjacent to a distinct vertex in D. The total domination number of G, denoted by $\gamma_{t}(G)$ is the smallest cardinality of the total dominating set of G. A set D is called a connected dominating set of G if and only if D is a dominating set of G and $\langle D\rangle$ is connected. The connected domination number [4] of G, denoted by $\gamma_{c}(G)$ is the smallest cardinality of the connected dominating set of G. A dominating set D of connected graph G is called a connected dominating setof G if the induced subgraph $\langle D\rangle$ is connected. The connected domination number of G, denoted by $\gamma_{c}(G)$ is the least cardinality of the connected dominating set of G [7].

If G is a connected graph, then the Neighbourhood Graph [7] of G, denoted by $N(G)($ or $) G^{N}$, is the graph having the same vertex set as that of G and edge set being $\{u v / u, v \in V(G)$, there is $w \in$ $V(G)$ such that $u w, w v \in E(G)\}[2]$.

In [5], a new type of graphs, called semi complete graphs, are introduced as follows. A connected graph G is said to be semi complete if any two vertices in G have a common neighbour.

A subset D of the vertex set V is called a global neighbourhood dominating set [6] of the graph G if and only if D is a dominating set of G, as well as G^{N}. The global neighbourhood domination number, $\gamma_{g n}(G)$ is the minimum cardinality of the global neighbourhood dominating set of G.

In the present paper, we introduce a new graph parameter, the total global neighbourhood domination number, for a connected graph G. We call $D \subseteq V$ a total global neighbourhood dominating set(tgnd-set) of G if and only if D is a total dominating set for both G, G^{N}. The total global neighbourhood domination number is the minimum cardinality of a total global neighbourhood dominating set of G and is denoted by $\gamma_{\operatorname{tgn}}(G)$. By a γ_{tgn}-set of G, we mean a total global neighbourhood dominating set for G of minimum cardinality.

All graphs considered in this paper are simple, finite, undirected and connected. For all graph theoretic terminology not defined here, the reader is referred to [1] and [8].

In this paper sharp bounds for $\gamma_{\operatorname{tgn}}$ are given. A characterization result for a proper subset of the vertex set of G to be a tgnd-set of G is obtained and also characterized the graphs whose tgnd-numbers are $2, n, n-1$.
Note. If G is a simple graph such that G has isolates, then clearly $\gamma_{\operatorname{tgn}}$-set of G does not exist. So, unless otherwise stated, throughout this paper G stands for a connected graph such that G^{N} has no isolates.

1. Main results

We give the tgnd-numbers of some standard graphs.
Proposition 1. 1) $\gamma_{\operatorname{tgn}}\left(K_{n}\right)=2 ; n=3,4, \ldots$,
2) $\gamma_{\operatorname{tgn}}\left(C_{3}\right)=2$
3) $\gamma_{\operatorname{tgn}}\left(C_{4}\right)=4$
4) $\gamma_{\operatorname{tgn}}\left(P_{n}\right)=4 ; n=4,5$
5) $\gamma_{\operatorname{tgn}}\left(P_{n}(\right.$ or $\left.) C_{n}\right)=4\left[\frac{n}{6}\right]+j ; n=6 m+j ; j=0,1,2,3$.
$=4\left[\frac{n}{6}\right]+4 ; n=6 m+j ; j=4,5$.
6) $\gamma_{\operatorname{tgn}}\left(K_{m, n}\right)=4 ; m, n \geqslant 2$.
7) $\gamma_{\operatorname{tgn}}\left(S_{m, n}\right)=4$.
8) $\gamma_{\operatorname{tgn}}\left(C_{n} o K_{2}\right)=n$
9) $\gamma_{\operatorname{tgn}}\left(K_{1, n}\right)$ does not exist.

Now, we give a characterization result for a total dominating set of G to be a total global neighbourhood dominating set of G. Also, we give a relation between connected dominating set and total global neighbourhood dominating set.

Theorem 1. For a graph G the following holds.
(i) A total dominating set D of G is a total global neighbourhood dominating set of G if and only if from each vertex in D there is a path of length two to a vertex in D. (characterization result)
(ii) Any connected dominating set for G of cardinality atleast four is a total global neighbourhood dominating set for G.

Proof. The proof of (i) is trivial.
The proof of (ii) is as follows. Let $D \subseteq V$ (vertex set of G) be a connected dominating set of G with $|D| \geqslant 4$. It is enough to prove that D is a total dominating set of G^{N}. If $D=V$, we are through. Otherwise, let v be any vertex in $V-D$. Suppose v is adjacent to all the vertices of D (in G). Since $\langle D\rangle$ is connected there are u, w in D such that $\langle u v w\rangle$ is a triangle in G. This implies $u v, v w$ are in $G^{N}(u, w$ are in $D)$. If v is not adjacent to atleast one vertex in D, since D is connected there is w in D such that $v w$ is in G^{N}. Hence in either case there is a w in D such that $v w$ is in G^{N}.

Let v be an arbitrary vertex in D. Since D is a connected dominating set of G of cardinality atleast four, there is a v_{1} in D such that $v v_{1}$ lies on C_{3} (in G) or $d_{G}\left(v, v_{1}\right)=2$. In either case $v v_{1}$ is in G^{N}.

Hence D is a total dominating set of G^{N}.

Remark. For any connected graph G of order $n \geqslant 4$, we have $\gamma_{t}(G) \leqslant$ $\gamma_{\operatorname{tgn}}(G) \leqslant \gamma_{c}(G)$.

Lemma 1. If H is a spanning subgraph of a connected graph G, then $\gamma_{\operatorname{tgn}}(G) \leqslant \gamma_{\operatorname{tgn}}(H)$.

Lemma 2. For a graph G with $n \geqslant 1$ vertices, we have $2 \leqslant \gamma_{\operatorname{tgn}}(G) \leqslant n$.
Proof. The proof follows by the characterization result.
Now, we characterize the graphs attaining lower bound.
Theorem 2. $\gamma_{\operatorname{tgn}}(G)=2$ if and only if there is an edge $u v$ in G that lies on C_{3} such that any vertex in $V-\{u, v\}$ is adjacent to atleast one of u, v.

Proof. Assume that $\gamma_{\operatorname{tgn}}(G)=2$. So there is a pair of vertices u, v in V such that $\{u, v\}$ is a total dominating set for G, G^{N}. This implies u, v are adjacent in G, G^{N}. Hence $u v$ lies on a cycle $C_{3}=\langle u v w u\rangle$ in G. Since $\{u, v\}$ is a total dominating set for G, for $x \in V-\{u, v\}, x v$ or $x u$ is an edge in G.

The inverse implication is clear.
Now, we characterize the graphs attaining upper bound.
Theorem 3. $\gamma_{\operatorname{tgn}}(G)=n$ if and only if $G=C_{4}$ or P_{4}.
Proof. Assume that $\gamma_{\operatorname{tgn}}(G)=n$. Suppose that $\operatorname{diam}(G) \geqslant 4$. Then $d_{G}(u, v) \geqslant 4$ for some u, v in G. Clearly u or v is not a cut vertex in G. Hence $V-\{u\}$ or $V-\{v\}$ is connected dominating set of cardinality atleast four. By Theorem.1(ii), $V-\{u\}$ or $V-\{v\}$ is a tgnd-set of G of cardinality $n-1$, a contrary to our assumption.

Suppose that $\operatorname{diam}(G)=3$. Without loss of generality assume that $d_{G}(u, v)=3$ for some u, v in G. Let $P=\left\langle u v_{1} v_{2} v\right\rangle$ be a diammetral path in G. Form a spanning tree of G say G^{\prime} by preserving the diammetral path. Clearly $\operatorname{diam}\left(G^{\prime}\right) \geqslant 3$. If $G^{\prime} \neq P$, then $V-\{w\}(w$ is a pendant vertex in G^{\prime}) is a tgnd-set of G^{\prime}. By Lemma $1, V-\{w\}$ is a tgnd-set of G of cardinality $n-1$, a contrary to our assumption. If $G^{\prime}=P$, then G is not cyclic. This implies that G is tree with diameter three. Clearly G cannot have more than two pendant vertices. Hence $G=P_{4}$.

Suppose that $\operatorname{diam}(G)=2$. By hypothesis, G cannot be acyclic. Also G cannot have pendant vertices. Therefore G is cyclic and each vertex lies on a cycle. Suppose that $g(G)=3$. If $G=C_{3}, \gamma_{\operatorname{tgn}}(G)=2<3$ a contradiction. If $G \neq C_{3}$, then $V\left(C_{3}\right) \subset V$. If all the vertices in $V-V\left(C_{3}\right)$
are adjacent to C_{3}, then $\gamma_{\operatorname{tgn}}(G)=3<n$, a contrary to our assumption. If there is atleast one vertex v_{4} in $V-V\left(C_{3}\right)$ not adjacent to C_{3}, then $V-\left\{v_{4}\right\}$ is a tgnd-set of G which is again a contradiction. Hence $g(G) \neq 3$.

Suppose that $g(G)=4$. Let $C_{4}=\left\langle v_{1} v_{2} v_{3} v_{4}\right\rangle$ be a cycle in G. If $V=V\left(C_{4}\right)$, then we have two possibilities $G=C_{4}, G \neq C_{4}$. If $G \neq C_{4}$, we have $g(G)=3$ which is not possible. If $G=C_{4}$, then $\gamma_{\operatorname{tgn}}(G)=4(=n)$. If $V \neq V\left(C_{4}\right)$ (i.e. $\left.V\left(C_{4}\right) \subset V\right)$. Notice that G has no pendant vertices. Since $g(G)=4$, any vertex in $V-V\left(C_{4}\right)$ can be adjacent to exactly two non adjacent vertices of C_{4}. If all the vertices in $V-V\left(C_{4}\right)$ are adjacent to vertices in C_{4}, then $\gamma_{\operatorname{tgn}}(G)<n$, a contrary to our assumption. If there is a vertex v_{5} in $V-V\left(C_{4}\right)$ not adjacent to C_{4}, then $V-\left\{v_{5}\right\}$ is a tgnd-set of G, a contrary to our assumption. Hence by our assumption $g(G)=4$ implies $G=C_{4}$.

Suppose that $g(G)=5$. Then we have two possibilities, $G=C_{5}$, $G \neq C_{5}$. If $G=C_{5}$, then $\gamma_{\operatorname{tgn}}(G)=4$, a contrary to our assumption. If $G \neq C_{5}$, then $V=V\left(C_{5}\right)$ or $V \neq V\left(C_{5}\right)$. If $V=V\left(C_{5}\right)$, then $g(G)<5$ a contradiction to our supposition. If $V \neq V\left(C_{5}\right)$ (i.e. $\left.V\left(C_{5}\right) \subset V\right)$. Since $g(G)=5$, each vertex in $V-V\left(C_{5}\right)$ is adjacent to at most one vertex in C_{5}. If all the vertices in $V-V\left(C_{5}\right)$ are adjacent to C_{5}, then $V\left(C_{5}\right)$ is a tgnd-set of G, a contrary to our assumption. Suppose that there is a vertex v_{7} in $V-V\left(C_{5}\right)$ adjacent to $C_{5}\left(=\left\langle v_{1} v_{2} v_{3} v_{4} v_{5} v_{1}\right\rangle\right)$. Since $\operatorname{diam}(G)=2$, v_{7} is at a distance two from each vertex of C_{5}. Then $V-\left\{v_{6} v_{7}\right\}\left(\left\langle v_{1} v_{6} v_{7}\right\rangle\right.$ is a path) is a tgnd-set of G, a contrary to our assumption. So $g(G) \neq 5$. Clearly $\operatorname{diam}(G) \neq 1$. Hence we have $G=C_{4}$ or $G=P_{4}$. The inverse implication is clear.

Theorem 4. If $\operatorname{diam}(G) \neq 2,3$. Then, $\gamma_{\operatorname{tgn}}(G)=n-1$ if and only if $G=P_{5}$ or C_{3}.

Proof. Assume that $\gamma_{\operatorname{tgn}}(G)=n-1$. Suppose that $\operatorname{diam}(G) \geqslant 5$. Forming a spanning tree G^{\prime} of G, we get $\gamma_{\operatorname{tgn}}(G) \leqslant \gamma_{\operatorname{tgn}}\left(G^{\prime}\right) \leqslant n-m<n-1$, a contrary to our assumption(here m is the number of pendant vertices in $\left.G^{\prime}\right)$. Therefore $\operatorname{diam}(G) \leqslant 4$.

Suppose that $\operatorname{diam}(G)=4$. If $G=P_{5}$, then $\gamma_{\operatorname{tgn}}(G)=4=5-1$. If $G \neq P_{5}$, forming a spanning tree G^{\prime} of G, we have $\gamma_{\operatorname{tgn}}(G)<n-1$, a contrary to our assumption. Hence $G=P_{5}$. Suppose that $\operatorname{diam}(G)=1$. This implies $G=K_{n}(n \geqslant 3)$. By Theorem $2, \gamma_{\operatorname{tgn}}(G)=2<n-1$ whenever $n \geqslant 4$, a contrary to our assumption. So $G=C_{3}$. The inverse implication is clear.

Theorem 5. Suppose $n \geqslant 5$ and $\operatorname{diam}(G)=2$. Then, $\gamma_{\operatorname{tgn}}(G)=n-1$ if and only if $G=C_{5}$ or G is isomorphic to H given by

Proof. Assume that $\gamma_{\operatorname{tgn}}(G)=n-1$. By hypothesis $g(G) \leqslant 5$. Suppose that $g(G)=5$. If $G=C_{5}$, then $\gamma_{\operatorname{tgn}}(G)=n-1(n=5)$. If $G \neq C_{5}$, then $V=V\left(C_{5}\right)$ or $V \neq V\left(C_{5}\right)$. If $V=V\left(C_{5}\right)$, then $g(G)<5$, a contradiction. If $V \neq V\left(C_{5}\right)$ i.e., $V\left(C_{5}\right) \subset V$. Clearly G has no pendant vertices. By hypothesis any vertex in $V-V\left(C_{5}\right)$ is adjacent to atleast two non adjacent vertices of C_{5} or at a distance two from each vertex of C_{5}. From the former case or later case we get $g(G)=4$, a contradiction. So $V \neq V\left(C_{5}\right)$. Hence $g(G)=5$ implies $G=C_{5}$.

Suppose that $g(G)=4$. Then $G=C_{4}$ or $G \neq C_{4}$. If $G=C_{4}$, $\gamma_{\operatorname{tgn}}(G)=4=n>n-1$ a contrary to our assumption. If $G \neq C_{4}$, then we have $V=V\left(C_{4}\right)$ or $V \neq V\left(C_{4}\right)$. If $V=V\left(C_{4}\right)$, then $g(G)=3$ a contradiction to our supposition. If $V \neq V\left(C_{4}\right)$ i.e., $V\left(C_{4}\right) \subset V$. By hypothesis and our supposition G has no pendant vertices and any vertex v in $V-V\left(C_{4}\right)$ is adjacent to exactly two non adjacent vertices of C_{4} or v is at a distance two from each vertex of C_{4} or v is at a distance two from a vertex of C_{4} and adjacent to a vertex of C_{4}, non adjacent to the former. Except in the first case we can form a spanning tree G^{\prime} of G with $\operatorname{diam}\left(G^{\prime}\right) \geqslant 5$. So $\gamma_{\operatorname{tgn}}(G) \leqslant \gamma_{\operatorname{tgn}}\left(G^{\prime}\right) \leqslant n-m<n-1$, a contrary to our assumption(here m is the number of pendant vertices in G^{\prime}). If G has more than one vertex of first kind, then $\gamma_{\operatorname{tgn}}(G)<n-1$ a contrary to our assumption. If G has exactly one vertex of first kind, then $\gamma_{\operatorname{tgn}}(G)=n-1$ and G is isomorphic to H.

Suppose that $g(G)=3$. Clearly G has a cycle $C_{3}\left(=\left\langle v_{1} v_{2} v_{3} v_{1}\right\rangle\right)$. If $G \neq C_{3}$, then $V\left(C_{3}\right) \subset V$. Clearly G cannot have more than one pendant vertex. Suppose G has exactly one pendant vertex, say v. Since $\operatorname{diam}(G)=2$, there is a vertex w on C_{3} such that $v w$ is in G. Without loss of generality assume that $w=v_{1}$. Clearly $\left\{v_{1}, v_{2}\right\}$ or $\left\{v_{1}, v_{3}\right\}$ or $\left\{v_{1}, v\right\}$ is a tgnd-set for G a contrary to our assumption. This implies G has no pendant vertices. So any vertex in $V-V\left(C_{3}\right)$ is adjacent to C_{3} or at a distance two from atleast one vertex of C_{3}. In either case $\gamma_{\operatorname{tgn}}(G)<n-1$. The inverse implication is clear.

Theorem 6. Suppose that $n \geqslant 5$ and $\operatorname{diam}(G)=3$. Then $\gamma_{\operatorname{tgn}}(G)=n-1$ if and only if G is isomorphic to H given by

Proof. Assume that $\gamma_{\operatorname{tgn}}(G)=n-1$. Clearly $g(G)$ is not greater than 6 .
Suppose that $g(G)=5$. By hypothesis $G \neq C_{5}$. This implies $V\left(C_{5}\right) \subset$ V. Clearly G cannot have more than two pendant vertices. Suppose G has exactly one pendant vertex, say v. By hypothesis v is adjacent to a vertex of $C_{5}\left(\left\langle v_{1} v_{2} v_{3} v_{4} v_{5} v_{1}\right\rangle\right)$, say v_{1}. Then clearly $V-\left\{v_{2}, v_{3}\right\}$ is a tgnd-set of G, a contrary to our assumption. Suppose G has exactly two pendant vertices. Since $\operatorname{diam}(G)=3$ they are adjacent to a vertex on C_{5} or adjacent to end vertices of an edge in C_{5}. In either case $\gamma_{\operatorname{tgn}}(G)=n-2<n-1$, a contrary to our assumption. So G cannot have pendant vertices. Since $\operatorname{diam}(G)=3$ and $g(G)=5, G$ cannot have more than two cycles. Hence $g(G) \neq 5$.

Suppose $g(G)=3$. Clearly $G \neq C_{3}$ (since $n \geqslant 5$). Also G cannot have pendant vertices. If $|V(G)|=5$ or all the vertices in $V-V\left(C_{3}\right)$ are adjacent to C_{3} or there is a vertex at a distance two from C_{3}, we get a contrary to our assumption. Hence $g(G) \neq 3$.

Suppose $g(G)=4$. Since $\operatorname{diam}(G)=3, G \neq C_{4}$. Clearly G cannot have more than two pendant vertices. If $|V(G)|=5$, since $\operatorname{diam}(G)=3$ the vertex in $V-V\left(C_{4}\right)$ is a pendant vertex. This implies $\gamma_{\operatorname{tgn}}(G)=4=5-1=$ $n-1$. Suppose $|V(G)| \geqslant 6$. If all the vertices in $V-V\left(C_{4}\right)$ are adjacent to C_{4} (each vertex in $V-V\left(C_{4}\right)$ can be adjacent to exactly two non adjacent vertices in $C_{4}($ since $g(G)=4)$), then $\gamma_{\operatorname{tgn}}(G)=4 \leqslant n-2<n-1$ a contrary to our assumption. If not, there is atleast one vertex in $V-V\left(C_{4}\right)$ at a distance two from C_{4} (say v). Then $V-\left\{v, v_{5}\right\}$ is a tgnd-set of G $\left(C_{4}=\left\langle v_{1} v_{2} v_{3} v_{4}\right\rangle, v_{1} v_{5}\right.$ is an edge in $\left.G\right)$ which is again a contradiction. So $|V(G)|$ is not greater than or equal to 6 . Hence $G \cong H$.

Theorem 7. Suppose $g(G)=3$ and $\operatorname{diam}(G)=2$. Then $\gamma_{\operatorname{tgn}}(G)=n-2$ if and only if $G=K_{4}$ or $G \cong K_{4}-\{e\}$ or G is isomorphic to H given by

Proof. Assume that $\gamma_{\operatorname{tgn}}(G)=n-2$. Since $g(G)=3$ there is a cycle $C_{3}=\left\langle v_{1} v_{2} v_{3}\right\rangle$ in G. Clearly $V\left(C_{3}\right) \subset V$. Suppose there is a vertex v in $V-V\left(C_{3}\right)$ which is not adjacent to C_{3}. Since $\operatorname{diam}(G)=2$ there are paths of length 2 from v to each vertex of C_{3}, say $\left\langle v v_{4} v_{1}\right\rangle,\left\langle v v_{5} v_{2}\right\rangle,\left\langle v v_{6} v_{3}\right\rangle$.
Case 1: $v_{4} \neq v_{5} \neq v_{6}$. Then $V-\left\{v, v_{4}, v_{5}\right\}$ is a tgnd-set of G.
Case 2: two of them are equal. Without loss of generality assume that $v_{4}=v_{5}$. Clearly G cannot have pendant vertices. Then $V-\left\{v, v_{4}, v_{1}\right\}$ is a tgnd-set of G.
Case 3: $v_{4}=v_{5}=v_{6}$. Clearly G cannot have pendant vertices. Then $V-\left\{v_{1}, v_{2}, v_{3}\right\}$ is a tgnd-set of G.

In each of the three cases, we get a contradiction with our assumption. So our supposition is false. Hence all the vertices in $V-V\left(C_{3}\right)$ are adjacent to C_{3}. Clearly C_{3} has exactly one neighbour in $V-V\left(C_{3}\right)$, say v. If v is adjacent to exactly one vertex of C_{3}, then $\gamma_{\operatorname{tgn}}(G)=2=4-2$ and $G \cong H$. If v is adjacent to exactly two vertices of C_{3}, then $\gamma_{\operatorname{tgn}}(G)=2=4-2$ and $G \cong K_{4}-\{e\}$. If v is adjacent to all vertices of C_{3}, then $\gamma_{\operatorname{tgn}}(G)=2=4-2$ and $G=K_{4}$.

The inverse implication is clear.
Theorem 8. If $\delta(G) \geqslant 3$ and $g(G)>4$, then

$$
2 e-n(n-3) \leqslant \gamma_{\operatorname{tgn}}(G) \leqslant n-\Delta(G)+1
$$

Proof. Suppose that D is a γ_{tgn}-set of G. Since $g(G)>4$, for each vertex in V there is a vertex in D which is non adjacent to the former. This implies $e \leqslant n_{C_{2}}-\left[n-\gamma_{\operatorname{tgn}}\right]-\frac{\gamma_{\operatorname{tgn}}}{2}$. Hence $2 e-n(n-3) \leqslant \gamma_{\operatorname{tgn}}(G)$.

Suppose $d_{G}(v)=\Delta(G)$ for some v in V. Let $N_{G}(v)=$ $\left\{v_{1}, v_{2}, \ldots, v_{\Delta(G)}\right\}$. Now consider the set $D=\left[V-N_{G}(v)\right] \bigcup\left\{v_{i}\right.$: i is exactly one of $1,2, \ldots, \Delta(G)\}$. Without loss of generality assume that $D=\left[V-N_{G}(v)\right] \bigcup\left\{v_{\Delta(G)}\right\}$. Let $u_{1} \in V$.
Case 1: $u_{1} \in V-D$. This implies $u_{1} \in\left\{v_{1}, v_{2}, \ldots, v_{\Delta(G)-1}\right\}$. Without loss of generality assume that $u_{1}=v_{1}$. Clearly $u_{1} v$ is in G.
Case 2: $u_{1} \in D$. This implies $u_{1} \notin\left\{v_{1}, v_{2}, \ldots, v_{\Delta(G)-1}\right\}$. If $u_{1}=v$ or $u_{1}=v_{\Delta(G)}$, then $u_{1} v_{\Delta(G)}$ or $u_{1} v$ is in G. If not since $\delta(G) \geqslant 3$ and $g(G)>4$ there is $u_{2} \notin\left\{v, v_{1}, v_{2}, \ldots, v_{\Delta(G)}\right\}$ such that $u_{1} u_{2}$ is in G. Hence D is a total dominating set of G.

We now show that D is a total dominating set of G^{N}. Let $u_{1} \in V$.
Case 1: $u_{1} \in V-D$. This implies $u_{1} \in\left\{v_{1}, v_{2}, \ldots, v_{\Delta(G)-1}\right\}$. Since $d_{G}\left(v_{i}, v_{\Delta(G)}\right)=2, i=1,2, \ldots, \Delta(G)-1$ we have $v_{i} v_{\Delta(G)}$ is in G^{N}. So $v_{1}, v_{\Delta(G)}$ is in G^{N}.

Case 2: $u_{1} \in D$. This implies $u_{1} \notin\left\{v_{1}, v_{2}, \ldots, v_{\Delta(G)-1}\right\}$. Suppose $u_{1}=v$. Since $\delta(G) \geqslant 3$ and $g(G)>4$ we have $v u_{2}$ is in G^{N}. for some $u_{2} \in N(N(v))$ and $u_{2} \in D$. If $u_{1}=v_{\Delta(G)}$. Suppose $u_{1} \notin\left\{v, v_{1}, v_{2}, \ldots, v_{\Delta(G)}\right\}$.If $u_{1} \in$ $N\left(v_{i}\right)$ for some $i=1,2, \ldots, \Delta(G)$, then $u_{1} v$ is an edge in G^{N}. If $u_{1} \notin N\left(v_{i}\right)$ for any i.
Subcase a: $u_{1} \in N\left(N\left(v_{i}\right)\right)$ for some $i=1,2, \ldots, \Delta(G)$. Without loss of generality assume that $u_{1} \in N\left(N\left(v_{i}\right)\right)$. Since $\delta(G) \geqslant 3$, there are u_{2} and u_{3} in G, adjacent to u_{1}. Since $g(G)>4, u_{2}$ and u_{3} cannot be adjacent to $\left\{v_{1}, v_{2}, \ldots, v_{\Delta(G)}\right\}$. This implies there is u_{4} in D such that $u_{2} u_{4}$ or $u_{3} u_{4}$ is in G. Hence $u_{1} u_{4}$ is in G^{N}.
Subcase b: $u_{1} \in V-\left[\left\{N\left(N\left(v_{i}\right)\right): i=1,2, \ldots, \Delta(G)\right\} \bigcup\left\{v_{1}, v_{2}, \ldots, v_{\Delta(G)}\right\}\right]$. By hypothesis there is a u_{2} in $D-\left\{v, v_{\Delta(G)}\right\}$ such that $u_{1} u_{2}$ is in $G^{N} . D$ is a total dominating set of G^{N}.

Hence D is a tgnd-set of G whose cardinality is $n-\Delta(G)+1$. So $\gamma_{\operatorname{tgn}}(G) \leqslant n-\Delta(G)+1$. This completes the proof.

Notation. For $n \geqslant 4$ and $k=2,3$ define a family of graphs \mathcal{G}_{k} as follows. $G \in \mathcal{G}_{k}$ if and only if there is $D \subset V$ such that $|D|=k$ satisfying:
(i) $\langle D\rangle$ is connected;
(ii) at least two vertices of D lie on the same C_{3};
(iii) each vertex in $V-D$ is adjacent to a vertex in D.

Theorem 9. For $n \geqslant 4, \gamma_{\operatorname{tgn}}(G)=3$ if and only if $G \in \mathcal{G}_{3}-\mathcal{G}_{2}$.
Proof. Assume that $\gamma_{\operatorname{tgn}}(G)=3$. Then there is a $\gamma_{\operatorname{tgn}}$-set of G such that $|D|=3$ and $\langle D\rangle$ is connected. By the characterization result for tgnd-set there is a path of length 2 between a pair of adjacent vertices in D. This implies at least two vertices of D lie on the same C_{3}. So $G \in \mathcal{G}_{3}$. Since D is a $\gamma_{\operatorname{tgn}}$-set, $G \in \mathcal{G}_{2}$. Hence $G \in \mathcal{G}_{3}-\mathcal{G}_{2}$. The inverse implication is clear.

Before considering the next result, for convenience we introduce the following. For $n \geqslant 6$, define a family of trees \mathcal{T}_{k} as $T \in \mathcal{T}_{k}$ if and only if there is a $D \subset V$ with $|D|=k$ satisfying:
(i) $\langle D\rangle$ is connected in G;
(ii) each vertex in $V-D$ is adjacent to a vertex in D (in $G)$.

Theorem 10. $\gamma_{\operatorname{tgn}}(T)=4$ if and only if $T \in \mathcal{T}_{4}-\mathcal{T}_{3}$.
Proof. Suppose $\gamma_{\operatorname{tgn}}(T)=4$. Then there is a $\gamma_{\operatorname{tgn}}-$ set of T (say $\left.D\right)$ such that D satisfies (i) and (ii) of the above mentioned family. This implies
$T \in \mathcal{T}_{4}$. Clearly by characterization theorem $T \notin \mathcal{T}_{3}$. Hence $T \in \mathcal{T}_{4}-\mathcal{T}_{3}$. The inverse implication is clear.

Theorem 11. $\gamma_{\operatorname{tgn}}(T)=5$ if and only if $T \in \mathcal{T}_{5}-\mathcal{T}_{4}$.
Theorem 12. If G is a graph satisfying the following two conditions:
(i) each edge of G lies on C_{3} or C_{5};
(ii) there is no path of length four between any pair non adjacent vertices in G,then

$$
\frac{\gamma_{t}(G)+\gamma_{t}\left(G^{N}\right)}{2} \leqslant \gamma_{\operatorname{tgn}}(G) \leqslant \gamma_{t}(G)+\gamma_{t}\left(G^{N}\right)
$$

Proof. By the hypothesis, we have $G=G^{N N}$. Clearly $\gamma_{t}(G) \leqslant \gamma_{\operatorname{tgn}}(G)$, $\gamma_{t}\left(G^{N}\right) \leqslant \gamma_{\operatorname{tgn}}\left(G^{N}\right)=\gamma_{\operatorname{tgn}}(G)$. Hence $\frac{\gamma_{t}(G)+\gamma_{t}\left(G^{N}\right)}{2} \leqslant \gamma_{\operatorname{tgn}}(G)$. Clearly $\gamma_{\operatorname{tgn}}(G) \leqslant \gamma_{t}(G)+\gamma_{t}\left(G^{N}\right)$. Thus the result follows.

Theorem 13. Assume that D is a γ_{t}-set of G. If there is a v in $V-D$ adjacent to all the vertices in D, then $\gamma_{\operatorname{tgn}}(G) \leqslant 1+\gamma_{t}(G)$.

Proof. Clearly $D \bigcup\{v\}$ is a tgnd-set of G. Hence, the theorem follows.
Theorem 14. If G is a semi complete graph, then $D \subseteq V$ is a total dominating set of G if and only if D is a tgnd-set of G.

Proof. The proof follows from the fact that each edge in a semi complete graph lies on C_{3}.

Theorem 15. If G is a semi complete graph, then a set $D \subseteq V$ with $\delta_{G}(\langle D\rangle) \geqslant 1$ is a global dominating set of G if and only if D is a tgnd-set of G.

Proof. The proof follows from the fact that, for a semi complete graph G, we have $G^{c}=G^{N}$.

References

[1] Bondy J.A. and Murthy, U.S.R., Graph theory with Applications, The Macmillan Press Ltd (1976).
[2] D.F. Rall, Congr.Numer., 80 (1991), 89-95.
[3] E.J. Cockayne,et al., Total domination in graphs, Networks, 10 (1980), 211-219.
[4] E. Sampathkumar, H.B. Walikar,The connected Domination Number of a Graph, J. Math.Phy. Sci, 13 (1979), 607-613.
[5] I.H. Naga Raja Rao, S.V. Siva Rama Raju, On Semi Complete Graphs, International Journal of Computational Cognition, Vol.7(3), (2009),50-54.
[6] I.H. Naga Raja Rao, S.V. Siva Rama Raju, Global Neighbourhood Domination, Proyecciones Journal of Mathematics, Vol.33(1), 2014.
[7] R.C. Brigham, R.D. Dutton, On Neighbourhood Graphs, J. Combin. Inform. System Sci., 12, (1987), 75-85.
[8] Teresa W. Haynes, et al., Fundamentals of dominations in graphs, Marcel Dekker, Inc., New York-Basel.

Contact information

S. V. Siva Rama	Academic Support Department, Abu Dhabi Raju Polytechnic, Al Ain, United Arab Emirates; Department of Information Technology, Ibra col- lege of Technology, Ibra, Sultanate of Oman \quad-Mail(s): venkata.sagiraju@adpoly. ac.ae, shivram2006@yahoo.co.in

I. H. Nagaraja Rao Laxmikantham Institute of Advanced Studies, G.V.P. College of Engineering, Visakhapatnam, India
E-Mail(s): ihnrao@yahoo.com
Received by the editors: 19.10.2015
and in final form 06.11.2015.

