Spectral properties of partial automorphisms of a binary rooted tree

Eugenia Kochubinska

Communicated by A. P. Petravchuk

Abstract. We study asymptotics of the spectral measure of a randomly chosen partial automorphism of a rooted tree. To every partial automorphism x we assign its action matrix A_{x}. It is shown that the uniform distribution on eigenvalues of A_{x} converges weakly in probability to δ_{0} as $n \rightarrow \infty$, where δ_{0} is the delta measure concentrated at 0 .

Introduction

We consider a semigroup of partial automorphisms of a binary n level rooted tree. Throughout the paper by a partial automorphism we mean root-preserving injective tree homomorphism defined on a connected subtree. This semigroup was studied, in particular, in $[4,5]$.

We are interested in spectral properties of this semigroup. There is a lot of paper dealing with spectrum of action matrices for the action of finitely generated groups on a regular rooted tree. The exhaustive research on spectra of fractal groups is provided in [1]. The eigenvalues of random wreath product of symmetric group were studied by Evans in [2]; he assigned equal probabilities to the eigenvalues of a randomly chosen automorphism of a regular rooted tree, and considered the random measure Θ_{n} on the unit circle C. He has shown that Θ_{n} converges weakly

[^0]in probability to λ as $n \rightarrow \infty$, where λ is the normalized Lebesgue measure on the unit circle.

Let $B_{n}=\left\{v_{i}^{n} \mid i=1, \ldots, 2^{n}\right\}$ be the set of vertices of the nth level of the n-level binary rooted tree. To a randomly chosen partial automorphism x, we assign the action matrix $A_{x}=\left(\mathbf{1}_{\left\{x\left(v_{i}^{n}\right)=v_{j}^{n}\right\}}\right)_{i, j=1}^{2^{n}}$. Let

$$
\Xi_{n}=\frac{1}{2^{n}} \sum_{k=1}^{2^{n}} \delta_{\lambda_{k}}
$$

be the uniform distribution on eigenvalues of A_{x}. We show that Ξ_{n} converges weakly in probability to δ_{0} as $n \rightarrow \infty$, where δ_{0} is the delta measure concentrated at 0 . This result can be generalized to a regular rooted tree, however, this generalization is not straightforward and will be studied elsewhere.

The remaining of the paper is organized as follows. Section 2 contains basic facts on a partial wreath product of semigroup and its connection with a semigroup of partial automorphisms of a regular rooted tree. The main result is stated and proved in Section 3.

1. Preliminaries

For a set $X=\{1,2\}$ consider the set \mathcal{I}_{2} of all partial bijections. List all of them using standard tableax representation:

$$
\left\{\left(\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right),\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 2 \\
1 & \varnothing
\end{array}\right),\left(\begin{array}{ll}
1 & 2 \\
\varnothing & 2
\end{array}\right),\left(\begin{array}{ll}
1 & 2 \\
2 & \varnothing
\end{array}\right),\left(\begin{array}{ll}
1 & 2 \\
\varnothing & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 2 \\
\varnothing & \varnothing
\end{array}\right)\right\}
$$

This set forms an inverse semigroup under natural composition law, namely, $f \circ g: \operatorname{dom}(f) \cap f^{-1} \operatorname{dom}(g) \ni x \mapsto g(f(x))$ for $f, g \in \mathcal{I}_{2}$. Obviously, \mathcal{I}_{2} is a particular case of the well-known inverse symmetric semigroup. Detailed description of it can be found in [3, Chapter 2].

Recall the definition of a partial wreath product of semigroups. Let S be an arbitrary semigroup. For functions $f: \operatorname{dom}(f) \rightarrow S, g: \operatorname{dom}(g) \rightarrow S$ define the product $f g$ as:

$$
\operatorname{dom}(f g)=\operatorname{dom}(f) \cap \operatorname{dom}(g),(f g)(x)=f(x) g(x) \text { for all } x \in \operatorname{dom}(f g)
$$

For $a \in \mathcal{I}_{2}, f: \operatorname{dom}(f) \rightarrow S$, define f^{a} as:

$$
\left(f^{a}\right)(x)=f\left(x^{a}\right), \operatorname{dom}\left(f^{a}\right)=\left\{x \in \operatorname{dom}(a) ; x^{a} \in \operatorname{dom}(f)\right\}
$$

Definition 1. The partial wreath square of the semigroup \mathcal{I}_{2} is the set

$$
\left\{(f, a) \mid a \in \mathcal{I}_{2}, f: \operatorname{dom}(a) \rightarrow \mathcal{I}_{2}\right\}
$$

with composition defined by

$$
(f, a) \cdot(g, b)=\left(f g^{a}, a b\right)
$$

Denote it by $\mathcal{I}_{2} \imath_{p} \mathcal{I}_{2}$.
The partial wreath square of \mathcal{I}_{2} is a semigroup, moreover, it is an inverse semigroup [6, Lemmas 2.22 and 4.6]. We may recursively define any partial wreath power of the finite inverse symmetric semigroup. Denote by \mathcal{P}_{n} the nth partial wreath power of \mathcal{I}_{2}.
Definition 2. The partial wreath n-th power of semigroup \mathcal{I}_{2} is defined as a semigroup

$$
\mathcal{P}_{n}=\left(\mathcal{P}_{n-1}\right) \imath_{p} \mathcal{I}_{2}=\left\{(f, a) \mid a \in \mathcal{I}_{2}, f: \operatorname{dom}(a) \rightarrow \mathcal{P}_{n-1}\right\}
$$

with composition defined by

$$
(f, a) \cdot(g, b)=\left(f g^{a}, a b\right)
$$

where \mathcal{P}_{n-1} is the partial wreath $(n-1)$-th power of semigroup \mathcal{I}_{2}
Proposition 1. Let N_{n} be the number of elements in the semigroup \mathcal{P}_{n}. Then $N_{n}=2^{2^{n+1}-1}-1$

Proof. We proceed by induction.
If $n=1$, then $2^{2^{2}-1}-1=7$. This is exactly the number of elements in \mathcal{I}_{2}.

Assume that $N_{n-1}=2^{2^{n}-1}-1$. Then

$$
\begin{aligned}
N_{n} & =\left|\left\{(f, a) \mid a \in \mathcal{I}_{2}, f: \operatorname{dom}(a) \rightarrow N_{n-1}\right\}\right| \\
& =\sum_{a \in \mathcal{I}_{2}} N_{n-1}^{|\operatorname{dom}(a)|}=\sum_{a \in \mathcal{I}_{2}}\left(2^{2^{n}-1}-1\right)^{|\operatorname{dom}(a)|} \\
& =1+4 \cdot\left(2^{2^{n}-1}-1\right)+2 \cdot\left(2^{2^{n}-1}-1\right)^{2} \\
& =1+4 \cdot 2^{2^{n}-1}-4+2 \cdot 2^{2^{n+1}-2}-4 \cdot 2^{2^{n}-1}+2=2^{2^{n+1}}-1 .
\end{aligned}
$$

Remark 1. Let T be an n-level binary rooted tree. We define a partial automorphism of a tree T as an isomorphism $x: \Gamma_{1} \rightarrow \Gamma_{2}$ of subtrees Γ_{1} and Γ_{2} of T containing a root. Denote $\operatorname{dom}(x):=\Gamma_{1}, \operatorname{ran}(x):=\Gamma_{2}$ domain and image of x respectively. Let PAut T be the set of all partial automorphisms of T. Obviously, PAut T forms a semigroup under natural composition law. It was proved in [4, Theorem 1] that the partial wreath power \mathcal{P}_{n} is isomorphic to PAut T.

2. Asymptotic behaviour of a spectral measure of a binary rooted tree

We identify $x \in \mathcal{P}_{n}$ with a partial automorphism from PAut T. Recall, that B_{n} denotes the set of vertices of the nth level of T. Clearly, $\left|B_{n}\right|=2^{n}$. Let us enumerate the vertices of B_{n} by positive integers from 1 to 2^{n} :

$$
B_{n}=\left\{v_{i}^{n} \mid i=1, \ldots, 2^{n}\right\} .
$$

To a randomly chosen transformation $x \in \mathcal{P}_{n}$, we assign the matrix

$$
A_{x}=\left(\mathbf{1}_{\left\{x\left(v_{i}^{n}\right)=v_{j}^{n}\right\}}\right)_{i, j=1}^{2^{n}}
$$

In other words, (i, j) th entry of A_{x} is equal to 1 , if a transformation x maps v_{i}^{n} to v_{j}^{n}, and 0 , otherwise.

Remark 2. In an automorphism group of a tree such a matrix describes completely the action of an automorphism. Unfortunately, for a semigroup this is not the case.

Example 1. Consider the partial automorphism $x \in \mathcal{P}_{2}$, which acts in the following way

(dotted lines mean that these edges are not in domain of x).
Then the corresponding matrix for x is

$$
A_{x}=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Note that if v_{2}^{1} were not in the $\operatorname{dom}(x)$ with action on other vertices preserved, then the corresponding matrix would be the same.

Let $\chi_{x}(\lambda)$ be the characteristic polynomial of A_{x} and $\lambda_{1}, \ldots, \lambda_{2^{n}}$ be its roots respecting multiplicity. Denote

$$
\Xi_{n}=\frac{1}{2^{n}} \sum_{k=1}^{2^{n}} \delta_{\lambda_{k}}
$$

the uniform distribution on eigenvalues of A_{x}.
Theorem 1. For any function $f \in C(D)$, where $D=\{z \in \mathbb{C}| | z \mid \leqslant 1\}$ is a unit disc,

$$
\begin{equation*}
\int_{D} f(x) \Xi_{n}(d x) \xrightarrow{\mathbb{P}} f(0), \quad n \rightarrow \infty . \tag{1}
\end{equation*}
$$

In other words, Ξ_{n} converges weakly in probability to δ_{0} as $n \rightarrow \infty$, where δ_{0} is the delta-measure concentrated at 0 .

Remark 3. Evans [2] has studied asymptotic behaviour of a spectral measure of a randomly chosen element σ of n-fold wreath product of the symmetric group \mathcal{S}_{d}.

He considered the random measure Θ_{n} on the unit circle C, assigning equal probabilities to the eigenvalues of σ.

Evans has shown that if f is a trigonometric polynomial, then

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left\{\int_{C} f(x) \Theta_{n}(d x) \neq \int f(x) \lambda(d x)\right\}=0
$$

where λ is the normalized Lebesgue measure on the unit circle. Consequently, Θ_{n} converges weakly in probability to λ as $n \rightarrow \infty$.

In fact, Theorem 1 speaks about the number of non-zero roots of characteristic polynomial $\chi_{x}(\lambda)$. Let us find an alternative description for them. Denote

$$
S_{n}(x)=\bigcap_{m \geqslant 1} \operatorname{dom}\left(x^{m}\right)=\left\{v_{j}^{n} \mid v_{j}^{n} \in \operatorname{dom}\left(x^{m}\right) \text { for all } m \geqslant 1\right\}
$$

the vertices of the nth level, which "survive" under the action of x, and define the ultimate rank of x by $\mathrm{rk}_{n}(x)=\left|S_{n}(x)\right|$. Let R_{n} denote the total number of these vertices over all $x \in \mathcal{P}_{n}$, that is

$$
R_{n}=\sum_{x \in \mathcal{P}_{n}} \mathrm{rk}_{n}(x)
$$

We call the number R_{n} the total ultimate rank.

Lemma 1. For $x \in \mathcal{P}_{n}$ the number of non-zero roots of χ_{x} with regard for multiplicity is equal to the ultimate rank $\mathrm{rk}_{n}(x)$ of x.

Proof. Let $x \in \mathcal{P}_{n}$ and A_{x} be its action matrix. Consider A_{x} as a matrix in a standard basis. Let w be some basis vector. It follows from the definition of A_{x} that there are two possibilities: if the vertex v corresponding to w is in domain of x, then A_{x} sends w to another basis vector, otherwise, to the zero vector. Since x is a partial bijection, applying A_{x} repeatedly, we can either get the same vector or the zero vector; $A_{x}^{n} w=0$ means that $v \notin \operatorname{dom} x^{n}$. In the first case, the vector w corresponds to a non-zero root of χ_{x} (some root of unity), and the vertex v contributes to the ultimate rank. In the second case, the vector is a root vector for the zero eigenvalue, so it corresponds to a zero root of A_{x}, while the corresponding vector does not contribute to the ultimate rank.

Denote $\operatorname{rank}_{n}(x)=\left|\operatorname{dom}(x) \cap B_{n}\right|$ and define the total rank

$$
R_{n}^{\prime}=\sum_{x \in \mathcal{P}_{n}} \operatorname{rank}_{n}(x)
$$

Remark 4. Clearly, for $x=(f, a)$, where $a \in \mathcal{I}_{2}, f: \operatorname{dom}(a) \rightarrow \mathcal{P}_{n-1}$,

$$
\begin{equation*}
\operatorname{rank}_{n}(x)=\sum_{y \in \operatorname{dom}(a)} \operatorname{rank}_{n-1}(f(y)) \tag{2}
\end{equation*}
$$

if $\operatorname{dom}(a) \neq \varnothing$ and $\operatorname{rank}_{n}(x)=0$ otherwise.
Lemma 2. Let R_{n}^{\prime} be the total rank of the semigroup \mathcal{P}_{n}. Then

$$
R_{n}^{\prime}=4 R_{n-1}^{\prime}+4 R_{n-1}^{\prime} N_{n-1}
$$

Proof. Thanks to (2),

$$
\begin{aligned}
R_{n}^{\prime}= & \sum_{x=(f, a) \in \mathcal{P}_{n}} \operatorname{rank}_{n}(x)=\sum_{x=(f, a) \in \mathcal{P}_{n}} \sum_{y \in \operatorname{dom}(a)} \operatorname{rank}_{n-1}(f(y)) \\
= & \sum_{\substack{a \in \mathcal{I}_{2} \\
|\operatorname{dom}(a)|=1}} \sum_{f_{1} \in \mathcal{P}_{n-1}} \operatorname{rank}_{n-1}\left(f_{1}\right) \\
& +\sum_{\substack{a \in \mathcal{I}_{2} \\
|\operatorname{dom}(a)|=2}} \sum_{f_{1}, f_{2} \in \mathcal{P}_{n-1}}\left(\operatorname{rank}_{n-1}\left(f_{1}\right)+\operatorname{rank}_{n-1}\left(f_{2}\right)\right) \\
= & 4 R_{n-1}^{\prime}+2 \sum_{f_{1}, f_{2} \in \mathcal{P}_{n-1}}\left(\operatorname{rank}_{n-1}\left(f_{1}\right)+\operatorname{rank}_{n-1}\left(f_{2}\right)\right) .
\end{aligned}
$$

We have

$$
\begin{aligned}
\sum_{f_{1}, f_{2} \in \mathcal{P}_{n-1}} \operatorname{rank}_{n-1}\left(f_{1}\right) & =\sum_{f_{1} \in \mathcal{P}_{n-1}} \sum_{f_{2} \in \mathcal{P}_{n-1}} \operatorname{rank}\left(f_{1}\right) \\
& =\sum_{f_{1} \in \mathcal{P}_{n-1}} N_{n-1} \operatorname{rank}\left(f_{1}\right)=N_{n-1} R_{n-1}^{\prime}
\end{aligned}
$$

Hence, by symmetry, $R_{n}^{\prime}=4 R_{n-1}^{\prime}+4 R_{n-1}^{\prime} N_{n-1}$.
Lemma 3. Let R_{n}^{\prime} be the total rank of the semigroup \mathcal{P}_{n}. Then

$$
R_{n}^{\prime}=2^{n-1}\left(1+N_{n}\right)=2^{2^{n}+n-2}
$$

Proof. We proceed by induction. A direct calculation gives

$$
R_{1}^{\prime}=8=1+N_{1}
$$

Assuming that

$$
R_{n-1}^{\prime}=2^{2^{n-1}+n-3}
$$

we have, thanks to Lemma 2 and Proposition 1,

$$
R_{n}^{\prime}=4 R_{n-1}^{\prime}\left(1+N_{n-1}\right)=4 \cdot 2^{2^{n-1}+n-3} \cdot 2^{2^{n-1}-1}=2^{2^{n}+n-2}
$$

as required.
Lemma 4. Let R_{n} be the total ultimate rank of the semigroup \mathcal{P}_{n}. Then

$$
R_{n} \leqslant 3 R_{n-1}+3 R_{n-1} N_{n-1}
$$

Proof. Represent R_{n} as a sum

$$
R_{n}=\sum_{x=(f, a) \in \mathcal{P}_{n}} \mathrm{rk}_{n}(x)=\sum_{\substack{x=(f, a) \in \mathcal{P}_{n} \\|\operatorname{dom}(a)|=1}} \mathrm{rk}_{n}(x)+\sum_{\substack{x=(f, a) \in \mathcal{P}_{n} \\|\operatorname{dom}(a)|=2}} \mathrm{rk}_{n}(x)
$$

If $\operatorname{rank}(a)=1$, then we will be interested only in those a for which $a=(1)$ and $a=(2)$, since otherwise the ultimate rank of x is 0 . Therefore,

$$
\begin{aligned}
\sum_{\substack{x=(f, a) \in \mathcal{P}_{n} \\
|\operatorname{dom}(a)|=1}} \mathrm{rk}_{n}(x) & =\sum_{a \in\{(1),(2)\}} \sum_{f_{1} \in \mathcal{P}_{n-1}} \mathrm{rk}_{n-1}\left(f_{1}\right) \\
& =2 \sum_{f_{1} \in \mathcal{P}_{n-1}} \mathrm{rk}_{n-1}\left(f_{1}\right)=2 R_{n-1}
\end{aligned}
$$

If $\operatorname{rank}(a)=2$, then

$$
\sum_{\substack{x=(f, a) \in \mathcal{P}_{n} \\|\operatorname{dom}(a)|=2}} \mathrm{rk}_{n}(x)=\sum_{\substack{x=(f, a) \in \mathcal{P}_{n} \\ a=(1)(2)}} \mathrm{rk}_{n}(x)+\sum_{\substack{x=(f, a) \in \mathcal{P}_{n} \\ a=(12)}} \mathrm{rk}_{n}(x)=: S_{1}+S_{2}
$$

Clearly, if $x=(f, a)$ with $a=(1)(2)$, then $\operatorname{rk}_{n}(x)=\operatorname{rk}_{n-1}(f(1))+$ $\mathrm{rk}_{n-1}(f(2))$, whence

$$
\begin{aligned}
S_{1} & =\sum_{f_{1}, f_{2} \in \mathcal{P}_{n-1}}\left(\mathrm{rk}_{n-1}\left(f_{1}\right)+\mathrm{rk}_{n-1}\left(f_{2}\right)\right) \\
& =2 \sum_{f_{1}, f_{2} \in \mathcal{P}_{n-1}} \mathrm{rk}_{n-1}\left(f_{1}\right)=2 R_{n-1} N_{n-1}
\end{aligned}
$$

Further, if $x=(f, a)$ with $a=(12)$, then $\operatorname{rk}_{n}(x)=2 \operatorname{rk}_{n-1}(f(1)(f(2))$. So,

$$
S_{2}=2 \sum_{f_{1}, f_{2} \in \mathcal{P}_{n-1}} \operatorname{rk}_{n-1}\left(f_{1} f_{2}\right)
$$

Note that every element $x \in \mathcal{P}_{n}$ can be represented as a product $x=e \sigma$, where e is an idempotent on $\operatorname{dom}(x)$ and σ is a permutation on the set of the tree vertices. Then

$$
\sum_{x_{2} \in \mathcal{P}_{n-1}} \mathrm{rk}_{n-1}\left(x_{1} x_{2}\right)=\sum_{x_{2} \in \mathcal{P}_{n-1}} \mathrm{rk}_{n-1}\left(e \sigma x_{2}\right)=\sum_{x_{2} \in \mathcal{P}_{n-1}} \mathrm{rk}_{n-1}\left(e x_{2}\right)
$$

The last equality is true since transformation $x \mapsto \sigma x$ is bijective on \mathcal{P}_{n-1}.
It follows from above that

$$
\begin{aligned}
S_{2} & =2 \sum_{f_{1}, f_{2} \in \mathcal{P}_{n-1}} \operatorname{rk}_{n-1}\left(f_{1} f_{2}\right)=2 \sum_{f_{1} \in \mathcal{P}_{n-1}} \sum_{f_{2} \in \mathcal{P}_{n-1}} \operatorname{rk}_{n-1}\left(\operatorname{id}_{\operatorname{dom}\left(f_{1}\right)} f_{2}\right) \\
& \leqslant 2 \sum_{f_{1} \in \mathcal{P}_{n-1}} \sum_{f_{2} \in \mathcal{P}_{n-1}}\left|\operatorname{dom}\left(f_{1}\right) \cap S_{n-1}\left(f_{2}\right)\right| \\
& =2 \sum_{f_{1} \in \mathcal{P}_{n-1}} \sum_{f_{2} \in \mathcal{P}_{n-1}} \sum_{j=1}^{2^{n-1}} \mathbf{1}_{\left\{v_{j}^{n-1} \in \operatorname{dom}\left(f_{1}\right)\right\}} \cdot \mathbf{1}_{\left\{v_{j}^{n-1} \in S_{n-1}\left(f_{2}\right)\right\}} \\
& =2 \sum_{j=1}^{2^{n-1}} \sum_{f_{1} \in \mathcal{P}_{n-1}} \mathbf{1}_{\left\{v_{j}^{n-1} \in \operatorname{dom}\left(f_{1}\right)\right\}} \cdot \sum_{f_{2} \in \mathcal{P}_{n-1}} \mathbf{1}_{\left\{v_{j}^{n-1} \in S_{n-1}\left(f_{2}\right)\right\}}
\end{aligned}
$$

Thanks to symmetry, for each j, we have

$$
\sum_{x \in \mathcal{P}_{n}} \mathbf{1}_{\left\{v_{j}^{n-1} \in \operatorname{dom}(x)\right\}}=\sum_{x \in \mathcal{P}_{n}} \mathbf{1}_{\left\{v_{1}^{n-1} \in \operatorname{dom}(x)\right\}} .
$$

Therefore,

$$
\frac{1}{2^{n}} \sum_{x \in \mathcal{P}_{n}} \sum_{k=1}^{2^{n-1}} \mathbf{1}_{\left\{v_{k}^{n-1} \in \operatorname{dom}(x)\right\}}=\frac{1}{2^{n-1}}|\operatorname{dom}(x)|
$$

Thus, we can write

$$
\begin{aligned}
S_{2} & =2 \sum_{j=1}^{2^{n-1}} \sum_{f_{1} \in \mathcal{P}_{n-1}} \frac{1}{2^{n-1}}\left|\operatorname{dom}\left(f_{1}\right)\right| \mathbf{1}_{\left\{v_{j}^{n-1} \in S_{n-1}\left(f_{2}\right)\right\}} \\
& =\frac{1}{2^{n-1}} \sum_{f_{1} \in \mathcal{P}_{n}}\left|\operatorname{dom}\left(f_{1}\right)\right| \sum_{j=1}^{2^{n}} \mathbf{1}_{\left\{v_{j}^{n-1} \in S_{n-1}\left(f_{2}\right)\right\}} \\
& =2 \cdot \frac{1}{2^{n-1}} \sum_{f_{1} \in \mathcal{P}_{n-1}}\left|\operatorname{dom}\left(f_{1}\right)\right| \cdot \sum_{f_{2} \in \mathcal{P}_{n-1}}\left|S_{n-1}\left(f_{2}\right)\right| .
\end{aligned}
$$

Using that $\left|S_{n-1}\left(f_{2}\right)\right|=\operatorname{rk}_{n-1}\left(f_{2}\right),\left|\operatorname{dom}\left(f_{1}\right)\right|=\operatorname{rank}\left(f_{1}\right)$, and applying Lemma 3, we get

$$
\begin{aligned}
\frac{2}{2^{n-1}} R_{n-1} R_{n-1}^{\prime} & =\frac{2 R_{n-1} \cdot\left(1+N_{n-1}\right) 2^{n-2}}{2^{n-1}} \\
& =\frac{2 R_{n-1}\left(1+N_{n-1}\right)}{2}=\left(1+N_{n-1}\right) R_{n-1}
\end{aligned}
$$

Therefore,

$$
R_{n} \leqslant 2 R_{n-1}+2 R_{n-1} N_{n-1}+\left(1+N_{n-1}\right) R_{n-1}=3 R_{n-1}+3 R_{n-1} N_{n-1}
$$

Lemma 5. Let $p_{n}=\frac{R_{n}}{2^{n} N_{n}}$ for $n \in \mathbb{N}$. Then

$$
p_{n} \leqslant \frac{3}{4} p_{n-1}, \quad n \geqslant 2
$$

Proof. Using Lemma 4, we get

$$
\begin{aligned}
p_{n} & =\frac{R_{n}}{2^{n} N_{n}} \leqslant \frac{3 R_{n-1}+3 R_{n-1} N_{n-1}}{2^{n} N_{n}}=\frac{3 R_{n-1}\left(1+N_{n-1}\right)}{2^{n} N_{n}} \\
& =\frac{3 R_{n-1} \cdot 2^{2^{n}-1}}{2^{n}\left(2^{2^{n+1}-1}-1\right)}=\frac{3}{2} \cdot \frac{R_{n-1}}{2^{n-1}\left(2^{2^{n}}-2^{1-2^{n}}\right)} \leqslant \frac{3}{2} \cdot \frac{R_{n-1}}{2^{n-1}\left(2^{\left.2^{n}-2\right)}\right.} \\
& =\frac{3}{2} \cdot \frac{R_{n-1}}{2^{n}\left(2^{2^{n}-1}-1\right)}=\frac{3}{4} \cdot \frac{R_{n-1}}{2^{n-1} N_{n-1}}=\frac{3}{4} \cdot p_{n-1} .
\end{aligned}
$$

Proof of Theorem 1. Note that $\int_{D} f(z) \Xi_{n}(d z)=\frac{1}{2^{n}} \sum_{k=1}^{2^{n}} f\left(\lambda_{k}\right)$, where $\lambda_{1}, \ldots, \lambda_{2^{n}}$ are the roots of the characteristic polynomial $\chi_{x}(\lambda)$.

Then, thanks to Lemma 1,

$$
\begin{array}{r}
\left|\int_{D} f(z) \Xi_{n}(d z)-f(0)\right|=\left|\int_{D}(f(z)-f(0)) \Xi(d z)\right| \\
\leqslant \frac{1}{2^{n}} \sum_{k: \lambda_{k} \neq 0}|(f(k)-f(0))| \leqslant 2 \max _{D}|f| \cdot \frac{\left|k: \lambda_{k} \neq 0\right|}{2^{n}}=2 \max _{D}|f| \frac{\mathrm{rk}_{n}(x)}{2^{n}} .
\end{array}
$$

Therefore,

$$
\mathbb{E}\left|\int_{D} f(z) \Xi(d z)-f(0)\right| \leqslant 2 \max |f| \cdot \frac{\sum_{z \in \mathcal{P}_{n}} \mathrm{rk}_{n}(x)}{2^{n} N_{n}}=2 \max |f| \cdot p_{n}
$$

where p_{n} is defined in Lemma 5. By Lemma $5, p_{n} \leqslant \frac{3}{4} \cdot p_{n-1} \leqslant \ldots \leqslant$ $\left(\frac{3}{4}\right)^{n-1} p_{0}$, whence $p_{n} \rightarrow 0, n \rightarrow \infty$.

Consequently, $\mathbb{E}\left|\int_{D} f(z) \Xi(d z)-f(0)\right| \rightarrow 0, n \rightarrow \infty$, whence the statement follows.

Remark 5. We can see from the proof that the rate of convergence in (1) is in some sense exponential.

References

[1] Bartholdi L., Grigorchuk R. On the Hecke type operators related to some fractal groups, Proc. Steklov Inst. Math. 231, 2000, pp. 1-41.
[2] Evans S.N. Eigenvaluse of random wreath products, Electron. J. Probability. Vol.7, No. 9, 2002, pp. 1-15.
[3] Ganyushkin O., Mazorchuk V. Classical Finite Transformation Semigroups. An Introduction, Springer, 2008.
[4] Kochubinska E. Combinatorics of partial wreath power of finite inverse symmetric semigroup $\mathcal{I S}_{d}$, Algebra discrete math., 2007, N.1, pp. 49-61.
[5] Kochubinska E. On cross-sections of partial wreath product of inverse semigroups, Electron. Notes Discrete Math., Vol.28, 2007, pp. 379-386.
[6] Meldrum J.D.P. Wreath product of groups and semigroups, Pitman Monographs and Surveys in Pure and Applied Mathematics, 74. Harlow: Longman Group Ltd. 1995.

Contact information

E. Kochubinska
 Taras Shevchenko National University of Kyiv, Volodymyrska, 64, 01601, Kiev, Ukraine E-Mail(s): eugenia@univ.kiev.ua

Received by the editors: 29.08.2017
and in final form 17.12.2017.

[^0]: 2010 MSC: 20M18, 20M20,05C05.
 Key words and phrases: partial automorphism, semigroup, eigenvalues, random matrix, delta measure.

