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Abstract. We introduce the notion of connection thickness
of spheres in a Cayley graph, related to dead-ends and their retreat
depth. It was well-known that connection thickness is bounded for
finitely presented one-ended groups. We compute that for natural
generating sets of lamplighter groups on a line or on a tree, connec-
tion thickness is linear or logarithmic respectively. We show that it
depends strongly on the generating set. We give an example where
the metric induced at the (finite) thickness of connection gives diam-
eter of order n2 to the sphere of radius n. We also discuss the rarity
of dead-ends and the relationships of connection thickness with cut
sets in percolation theory and with almost-convexity. Finally, we
present a list of open questions about spheres in Cayley graphs.

1. Introduction

Spheres are simply beautiful. Long ago Plato considered the world
was given the shape of a (euclidean) sphere for it is the most perfect
(symmetric) of all, Timaeus 34b [Pla]. Nowadays the most popular game
in the world consists in two teams playing with a sphere and not allowed
to touch it by the hands. As mathematicians we also love to play with
spheres, and as geometric group theorists we shall focus on spheres in
Cayley graphs of infinite groups.
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Spheres have not received much attention for themselves in geometric
group theory, at the notable exception of a study by Duchin, Lelièvre
and Mooney [DLM1], [DLM2], [DLM3], somewhat focused on the Abelian
case. The reason is probably that spheres are often either too easy or too
complicated to describe. For instance the Cayley graph structure restricted
to a sphere gives a graph with no edges for such elementary examples
as free Abelian groups. To bypass this, we rather consider thickenings of
spheres, and denote S(n, r) the subgraph obtained by keeping vertices
at distance from identity between n and n+ r as well as edges between
them.

The first natural question is that of connectedness: does there exist
a thickness r such that the graphs S(n, r) are connected for all n? A
first obstruction is given by the topological notion of ends. Recall that a
graph has at most k ends if the complement of any finite set has at most
k connected components. By a result of Stallings [Sta], the number of
ends (the least such k) of a Cayley graph of an infinite group is either 2,
for virtually cyclic groups, or ∞, for free products with amalgamation
and HNN-extensions over finite groups, or 1 for any other group. For
instance in a free group with free generating set the number of connected
components of S(n, r) is always the number of elements in the sphere of
radius n. But, as groups in the two first cases of Stallings’ classification are
well-understood, we may focus on the generic case of one-ended groups.

The geometric notion of dead-ends gives a second natural obstruction
to spheres, or rather their finite thickenings, being connected. As defined
by Bogopol’skii [Bog], a vertex of a Cayley graph is called a dead-end if it
is not adjacent to a vertex further away from the identity. A dead-end g in
the sphere of radius n can be measured by two different means : its width
(often called depth in the literature) is the distance between g and the
infinite component of the complement of the ball B(n− 1) and its retreat
depth (also sometimes called depth) is the least d > 0 such that g belongs
to the infinite component of the complement of B(n− d− 1). There are
examples of finitely generated groups with dead-ends of arbitrarily large
width and retreat-depth (see [CT], [CR], [Wa2] and § 2.1). If the Cayley
graph contains a dead-end on the sphere of radius n+ r of retreat-depth
d > r, then the complement of the ball B(n− 1) is not connected. So the
thickened sphere S(n, r) is not connected either.

One naturally wonders if dead-ends give the only obstruction to con-
nectedness of (thickened) spheres for one-ended groups. Let S(n, r)∞ be
the sphere of radius n and thickness r where the dead-end components
have been removed. Namely, this is the intersection of S(n, r) with the
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only infinite connected component of the complement of B(n− 1). It is
easily checked (see § 2.1) that for each n there exists an integer r such
that S(n, r)∞ is connected. This justifies the following

Definition 1.1. Let G be a group together with a finite generating set S.
We define the connection thickness thG,S(n) of the nth sphere of (G,S) to
be the minimal r such that S(n, r)∞ is connected.

We will be interested in the connection thickness function thG,S :
Z>0 → Z>0 ∪ {∞}. When G has more than one end, thG,S(n) is infinite
for large enough n. When G is one-ended, thG,S(n) is necessarily finite
for each n. When the connection thickness is bounded, we say that the
Cayley graph of (G,S) has connected spheres.

For finitely presented groups, it is known that spheres are connected.

Theorem 1.2. Let G be a finitely presented group, R a set of words
generating all relations, and ℓ = 1

2 maxw∈R |w|. Then S(n, r)∞ is connected
for any r > ⌊ℓ⌋, i.e. the connection thickness is bounded above by ⌊ℓ⌋.

This is the content of the small note [Gou]. However, R. Lyons pointed
out to the second author that the above theorem also follows from results
of Babson and Benjamini [BB]. See also Timár [Tim, Theorem 5.1] and the
book by Lyons and Peres [LP, Lemma 7.28] for slightly different arguments
(on more general graphs).

For some one-ended but not finitely presented groups, spheres are not
connected. More precisely, we prove

Theorem 1.3. Let L be a finite group.
1) For the lamplighter group Z ≀L on a line with respect to the “switch-

walk-switch” generating set L{±1}L,the connection thickness is

thZ≀L,L{±1}L(n) = n+ 2.

Moreover, the set S(n, r)∞ has at least 2|L|n−r connected compo-
nents while 1 6 r + 1 6 n.

2) Let Td be a group with Cayley graph the d-regular tree. For the
lamplighter group Td ≀ L on a tree with “switch-walk-switch” gener-
ating set LSTL, there are constants c > 0 and K > 1 such that the
connection thickness satisfies

|thTd≀L,LSTd
L(n)− logd−1(n)| 6 c,

and for any r 6 logd−1(n)− c the number of connected components
in S(n, r)∞ is at least Kn.



“adm-n4” — 2019/1/24 — 10:02 — page 193 — #43

J. Brieussel, A. Gournay 193

For the lamplighter on a line, the non-connectedness is maximal in the
following quantitative sense: the entropy of the partition into connected
components with respect to the counting measure is asymptotically (in n)
maximal while the thickness r is less than n

8 , see Proposition 3.10 for a
precise statement. This implies in particular that there are no “gigantic”
connected components in the spheres of Z ≀ L.

It is not surprising that lamplighter groups provide interesting examples
of connection thickness, as they already provided natural examples of
Cayley graphs with dead-ends of unbounded retreat depth [CT]. More
generally, they provide very interesting examples of groups, see among
many others [KV], [LPP] [GZ], [Ers].

Note that by [FGO, Proposition 5] (see also § 7.2 below), the retreat
depth of an element x is at most |x|S/2. This implies that dead-ends can
prevent connectedness on a thickness at most n (for the sphere of radius
n). So it would be tempting to believe there is a uniform linear upper
bound thG,S(n) 6 n. However, Theorem 1.3.(1) shows this is not the case.
We do not know examples of one-ended Cayley graphs with connection
thickness bigger than n+ 2, see Question 9.6.

Connection thickness is bounded above by divergence – see Section
8.3, thus it follows from [DMS] that if all asymptotic cones of a one-ended
finitely generated group have no cut points, then its connection thickness
is at most linear.

Both examples in Theorem 1.3 are groups with dead-ends of arbitrarily
large retreat depth. This raises questions on how connected spheres and
retreat depth are related.

It is particularly easy to estimate connection thickness and the retreat
depth for direct products G1 ×G2, where G1 and G2 are infinite groups
with respective generating sets S1 and S2. For the “product” generating
set S∨ = (S1 ∪ {e1})× (S2 ∪ {e2}), one has |(g1, g2)|S∨

= max (|g1|, |g2|)
and both the connection thickness and the retreat depth vanish. For
the “summed” generating set S⊥ = (S1 × {e2}) ∪ ({e1} × S2), one has
|(g1, g2)|S⊥

= |g1| + |g2|, the connection thickness is 1 and the retreat
depth is the minimum of the retreat depth of G1 and G2 (see § 7.1).
Applied to the direct product of two copies of the lamplighter group on a
line, this gives:

Proposition 1.4. Let L be a finite group and G = (Z ≀L)× (Z ≀L). Then
G admits a generating set with unbounded retreat depth and connected
spheres of thickness 1 and G admits another generating set with both
retreat depth zero and connected spheres of thickness zero.
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In particular, this gives a simple example of a group where the retreat
depth of dead-ends varies greatly with the generating set (according to
[Wa3], this is already the case for Z ≀ Z2, but the proof is much simpler
for our example). Moreover, Proposition 1.4 gives an example of a group
with dead-ends of arbitrarily large retreat depth and connected spheres.
We know of no example of a group with bounded retreat depth and not-
connected spheres, i.e. unbounded connection thickness (Question 9.1).

It is also natural to wonder how much connection thickness may depend
on the generating set for a given group. We show this dependence can be
quite strong, answering Question (iii) in [Gou].

Theorem 1.5. Let L be a finite group and G = (Z× Z2) ≀ L. Then

1) the group G admits a generating set with connection thickness 6 24
(spheres are connected) and retreat depth of dead-ends at most 5.

2) the group G admits a generating set with connection thickness
thG,S(n) = n + 2 (spheres are not connected) and dead-ends of
unbounded retreat depth.

With its natural generating set, the Cayley graph of Z×Z2 is a ladder.
The first generating set of G in Theorem 1.5 is the associated “switch-walk-
switch” generating set. The second generating set of G may be described
as “switch the two lamps at the current Z-coordinate-walk-switch the two
lamps”, which makes the associated Cayley graph perfectly similar to that
of a lamplighter group on a line as in Theorem 1.3(1).

The property of connected boundaries of a Cayley graph (see [BB],
[Tim] and § 8.1) is stronger than that of connected spheres. It is an open
question whether connected boundaries are invariant under change of
generating set or quasi-isometry. Theorem 1.5 makes the lamplighter
group on a ladder a natural candidate for a negative answer. However we
check in § 8.1 that it does not have connected boundaries for the mentioned
generating sets.

When the spheres are connected, it is natural to study the distortion
between the metric induced on S(n)∞ by the ambient Cayley graph with
the metric induced on it by restriction to S(n, r)∞ and we may consider
the distortion is infinite when the spheres are not connected. In this
direction, we simply observe the following.

Theorem 1.6. In the Cayley graph of the group Z ≀Z with generating set
“walk or switch”, the graph S(n, 2) is connected and has diameter ≍ n2.
Precisely, there exists c1, c2 > 0 such that c1n

2 6 diamS(n, 2) 6 c2n
2.
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The choice of Z is not important to show that 2-thickened spheres are
connected. This holds for Γ ≀ L whenever Γ and L are infinite and L has
no dead-end, see Theorem 6.2.

In contrast, the diameter of the sphere S(n) with respect to the ambient
group metric is necessarily 2n in an infinite group. This is related to the
notion of sprawl of a sphere introduced in [DLM2]. The sprawl of a set is
the average distance between two points chosen (uniformly) randomly and
independently. The arguments that prove Theorem 1.6 can be extended
to show that the sprawl of the graph S(n, 2) is also ≍ n2.

On the other hand, the sprawl of spheres with respect to the induced
metric is ≍ n for Abelian groups by [DLM2], and at least exponential for
hyperbolic groups by [Ger2] as explained in Remark 6.5. This seems to
indicate that for groups of exponential growth the notion of sprawl with
respect to the induced metric is finer than with respect to the ambient
metric.

Organisation of the paper. Precise definitions and notations, as well
as elementary observations, are given in § 2, split between § 2.1 about ends,
dead-ends, spheres and connection thickness and § 2.2 about lamplighter
groups. The first part of Theorem 1.3 is established in § 3, by concatenation
of Proposition 3.4 and Theorem 3.5. We also establish estimates on the
number of dead-ends in Z ≀L in Proposition 3.8, and on the entropy of the
partition into connected components of S(n, r)∞ in Proposition 3.10. The
second part of Theorem 1.3 is the object of § 4. It follows from Corollary
4.4 and Proposition 4.5. Theorem 1.5 is derived in § 5. The main step takes
the form of Theorem 5.1. § 6 is devoted to Theorem 1.6. A lot of elementary
observations about dead-ends and connected spheres are gathered in § 7,
about direct products of groups in § 7.1, where we derive Proposition
1.4, and about rarity of dead-ends in groups in § 7.2. The relationship
of connectedness of spheres with well-known topics in geometric group
theory is discussed in § 8. The property of connected boundaries is recalled
in § 8.1, and the relationship with almost-convexity is explained in § 8.2.
Finally, many open questions are presented in § 9.

Formally, all sections from § 3 to § 8 can be read independently. However
we recommend to read § 3.1 and § 3.2 before § 4 and § 5.

Acknowledgments. We are grateful to an anonymous referee for useful
comments. We wish to thank Ariel Yadin who pointed out to us the
relationship with divergence.
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2. Definitions and notations

2.1. Ends, spheres and dead-ends

We are mostly interested in a group G with a generating set S by
studying its Cayley graph Cay(G,S). This enables us to endow the group
with the word metric d, or equivalently, the combinatorial graph distance.

Ends. Finite graphs have no end. Let Pfin(X) (resp. Pinf(X)) denote
the finite (resp. infinite) subsets of X.

Definition 2.1. An end of an infinite connected graph with vertex set
X is a function ξ : Pfin(X) → Pinf(X) so that, for any F and F ′, ξ(F ) is
an infinite connected component and ξ(F ) ∩ ξ(F ′) 6= ∅. Equivalently, an
end is a coset of the space of infinite simple rays in the graph where two
rays are equivalent whenever there is another ray that contains infinitely
many points of both of them.

It follows that a graph G has at most k ends if for any finite subset
F ⊂ X, the subgraph G \ F has at most k infinite connected components.
Therefore, the number of ends is defined as follows. Take an increasing and
exhausting sequence of finite sets Fn, and let kn to be the number of infinite
connected component of F c

n. Then the number of ends is limn kn ∈ [1,∞].
A result of Stallings asserts that the number of ends of a Cayley graph

of a group is either 0, for finite groups, or 2, for virtually cyclic groups, or
∞, for free products with amalgamation or HNN-extensions over finite
groups, or 1 for any other group [Sta].

Spheres. In the Cayley graph of a group G with respect to a generating
set S, we denote by e the neutral element of G and by d the graph distance.

Notation 2.2. Let n, r ∈ Z>0. Denote

B(n) = {g ∈ G|d(g, e) 6 n} the ball of radius n,

S(n) = {g ∈ G|d(g, e) = n} the sphere of radiusn,

S(n, r) = B(n+ r) \B(n− 1) the annulus of radius n and thickness r,

When G is one-ended, let B(n)c,∞ denote the infinite component of the
complement of the ball of radius n, then

S(n, r)∞ = B(n+ r) ∩B(n− 1)c,∞

are the elements of the annulus connected to infinity. We will also often
use the shorthand S(n)∞ := S(n, 0)∞.
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For a group with infinitely many ends, the number of connected com-
ponents of S(n, r) obviously tends to infinity with n for any r > 0 (for
instance S(n, r) has at least d(d − 1)n−1 connected components in a d-
regular tree). This justifies that we focus our study on groups with one
end.

As mentioned in the introduction, there is another obstruction to the
connectedness of S(n, r): dead-ends.

Dead-ends. Recall that as defined by Bogopol’skii [Bog], a vertex of a
Cayley graph is called a dead-end if it is not adjacent to a vertex further
away from the identity. Two notions of “depth” of these dead-ends have
been introduced. The most commonly seen in the literature will be here
called the width (although it usually bears the name “depth”) and the
other is the retreat depth.

Definition 2.3. The width of a dead-end element g, denoted wd(g), is
the distance between g and B(|g|)c,∞.

The retreat depth of an element g, denoted rd(g) is the least d > 0
such that g belongs to an infinite component of B(|g| − d− 1)c.

Occasionally, we will write rd(G,S) for supg∈G rd(g) (the generating
set being S). Likewise for wd(G).

Bogopol’skii [Bog] showed that the width is always bounded by a
constant in a hyperbolic group. Warshall [Wa2] has shown that the Heisen-
berg groups has “large” dead-ends which are “shallow”, i.e. the width may
be arbitrarily big but the retreat depth is at most 2. Earlier examples
go back to Cleary and Taback: they have shown that lamplighter groups
on Z with finite lamps have (many) dead-ends of arbitrary large width
[CT], a result also known to hold for some finitely-presented groups by
Cleary and Riley [CR]. Lastly, [RW] have shown that having dead-ends of
bounded width is not an invariant of the generating set.

According to Definition 1.1, we say the group has connected spheres if
there is an integer r > 0 so that for all n ∈ Z>0, S(n, r)

∞ is connected.

The connection thickness of G with respect to S is the function thG,S :
Z>0 → Z>0 ∪ {∞} defined by

thG,S(n) := min{r ∈ Z>0 | S(n, r)
∞ is connected}.

When G has more than one end, thG,S(n) is infinite for large enough
n. On the other hand, when G is one-ended, thG,S(n) is necessarily finite
for each n: this is a consequence of the following lemma.
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Lemma 2.4. Assume 0 6 ℓ 6 k and n ∈ Z>0. Then S(n, k)∞ is connected
if and only if any two elements of S(n+ ℓ) ∩B(n− 1)c,∞ are connected
by paths staying inside S(n, k)∞.

Proof. The proof consists in noticing that any element of S(n, k)∞ is
connected to an element of S(n+ ℓ) by a path staying inside S(n, k)∞.
Assume x ∈ S(n, k)∞. If |x| = n+ ℓ there is nothing to prove.

If n+ k > |x| > n+ ℓ, consider a geodesic path from x to the identity.
This path crosses S(n+ ℓ) at an element y and, between x and y, stays
inside S(n, k)∞. This implies y ∈ S(n+ ℓ) ∩B(n− 1)c,∞.

If n 6 |x| < n+ ℓ, consider a path from x to infinity. This path crosses
S(n+ℓ) at an element y. Taking y minimal, the path stays inside S(n, k)∞

between x and y.

2.2. Lamplighter groups

A group G is called a lamplighter group, or a wreath product, if it
has the form of a semi-direct product G = Γ ≀ L = Γ⋉ (ΣΓL), between
a base group Γ and the finitely supported functions from Γ to a lamp
group L. Its elements have the form g = (γ, f), where f : Γ → L is the
lamp function with finite support. Let SΓ, SL be generating sets of the
groups Γ, L. By abuse of notation, we still denote SΓ = {(γ, Id)|γ ∈ SΓ}
and SL = {(eΓ, δs)|s ∈ SL} the subsets of G = Γ ≀ L, where eΓ, eL denote
the neutral elements of the groups Γ and L respectively, Id(x) = eL for
all x ∈ Γ, δs(x) = eL for all x 6= eΓ and δs(eΓ) = s. The set SΓ ∪SL is the
canonical generating set of G, also called the “switch or walk” generating
set.

The name “lamplighter group” comes from the following interpretation.
An element g = (γ, f) of the group is described by a configuration of
lamps taking values in L on the base group Γ (this configuration is given
by the function f), together with a position γ of a “lamplighter” in the
base group Γ.

The action of a generator γ′ in SΓ has the form (γ, f) (γ′, Id) = (γγ′, f)
so can be interpreted as a walk of the lamplighter from position γ to γγ′.
The action of a generator s = (eΓ, δs) in SL has the form (γ, f) (eΓ, δs) =
(γ, f ′) where f ′(x) = f(x) for all x 6= γ and f ′(γ) = f(γ)s so can be
interpreted as a switch of the lamp in position γ, the position of the
lamplighter, from intensity f(γ) to f(γ)s.

As both SΓ and SL contain the identity e, the set SLSΓSL is also
generating, called the “switch-walk-switch” generating set. When SL = L,
this generating set is especially interesting as the word metric is computed
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by a travelling salesman problem in the Cayley graph of Γ with respect
to SΓ.

Definition 2.5. Let x, y be elements of a graph and A a subset of vertices.
The travelling salesman distance from x to y through A noted dTS(x,A, y)
is the length of the shortest path starting at x and ending at y which
passes at least once through all the vertices of A.

The distance in the lamplighter groups (or graphs) is given by this
length.

Proposition 2.6. Assume SL = L and endow the group Γ ≀ L with the
distance associated to the “switch-walk-switch” generating set LSΓL. Let
g = (γ, f) ∈ Γ ≀ L. Assume g is not of the form (eΓ, δs) for some s ∈ L
and denote A = {y ∈ Γ | f(y) 6= eL} (the set of lamps which are on), then

|g| = dTS(eΓ, A, γ).

In other words, if Γ ≀ L ։ Γ is the natural projection, then the word
length of g = (γ, f) ∈ Γ ≀L is the length of the shortest path in the Cayley
graph of Γ for SΓ which starts at eΓ, covers all elements in the support of
f and ends at γ.

Observe that this generating set is finite if and only if L is finite, and
that the length of an element of the form (eΓ, δs) is obviously 1.

Proof. Let w be a representative word of g. Denote wΓ the word obtain
by forgetting all generators of SL in w. The length of wΓ is at least
dTS(eΓ, A, γ) because only lamps at the sites in Γ visited by the path
described by wΓ can be switched on. This gives the lower bound.

To get the upper bound, consider wΓ a word in SΓ describing a solution
to the associated travelling salesman problem. Then we can extend wΓ to
a word of the same length in SLSΓSL representing g. Indeed, at each step,
as SL = L we can set the lamps at departure and arrival of the lighter to
any chosen value in L.

3. The lamplighter on a line with finite lamps

The aim of this section is to establish Theorem 1.3.(1). Further, we
establish in Proposition 3.8 an upper bound on the number of dead-end
elements in the group Z ≀ L, and show that the entropy of the partition
into connected components of S(n, r)∞ is asymptotically maximal in
Proposition 3.10.
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3.1. Description of elements and their length

Let L be a finite group and consider the group G = Z ≀ L together
with its “switch-walk-switch” generating set L{±1}L. An element of G is
described by a lamp function f : Z → L and the position z in Z of the
lamplighter. We write g = (z, f).

To an element g are associated a(g) = min({t ∈ Z|f(t) 6= e}∪{0, z}) 6
0 and b(g) = max({t ∈ Z|f(t) 6= e} ∪ {0, z}) > 0, where a(g) (resp. b(g))
is the minimal (resp. maximal) lamp turned on or the position of the
lamplighter or 0. We have a(g) = 0 (resp. b(g) = 0) only if all negative
(resp. positive) lamps are turned off. For simplicity, we write a instead of
a(g), ak for a(gk) and so on.

Lemma 3.1. Let L be a finite group. Consider the group Z ≀ L endowed
with “switch-walk-switch” generating set L{±1}L. Let g = (z, f) be an
element of Z ≀ L. If g /∈ SL then the word length is |g| = 2b+ 2|a| − |z|.

Proof. Let u denote the generator +1 of Z with multiplicative nota-
tion. We have g = uaf(a)uf(a+ 1)u . . . uf(b)ub−z, word of (switch-walk-
switch) length 2b + 2|a| − z, interpreted as “go to a without switch-
ing the lamps, then go to b switching the lamps appropriately, then
go back to z without switching the lamps”. Similarly, we have g =
ubf(b)u−1f(b − 1)u−1 . . . u−1f(a)u−a+z, of length 2b + 2|a| + z. One of
them has to give a solution to the travelling salesman problem of Proposi-
tion 2.6, since the lamplighter must start from 0 and end his walk at z
going meanwhile through a and b.

3.2. Non-connectedness of spheres

Lemma 3.2. Let n, r ∈ Z>0 and consider two elements g, g′ in S(n) with
z > 0.

1) If z − r > 0, then g and g′ are in the same connected component
of S(n, r) if and only if a′ = a, b′ = b, z′ = z and ∀t /∈ [z − r, z],
f(t) = f ′(t).

2) If z − r 6 0 and z < min(b, |a|), then g and g′ are in the same
connected component of S(n, r) if and only if a′ = a, b′ = b, |z′| = z
and ∀t /∈ [−z, z], f(t) = f ′(t).

Of course a similar statement holds for z 6 0. We could probably also
give a complete description of the connected component of g when −z < a,
but it would be more complicated.
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Proof. We present a detailed proof of case (1) when z − r > 0. First
assume z = z′ and ∀t /∈ [z − r, z], f(t) = f ′(t). Observe that:

g′ = gu−rf(z−r)−1f ′(z−r)uf(z−r+1)−1f ′(z−r+1) . . . uf(z)−1f ′(z).

This equality provides a path gk = gu−k of norm n+ k for 0 6 k 6 r and
gk = gu−rf(z − r)−1f ′(z − r) . . . uf(z − 2r + k)−1f ′(z − 2r + k) of norm
n+r−k for r 6 k 6 2r, with g0 = g and g2r = g′. This path is interpreted
as “the lamplighter moves left to position z − r without switching lamps,
then he moves back to position z switching on lamps appropriately”.

For the converse implication, we first treat the case z < b. Assume
by contradiction that there exists t /∈ [z − r, z] with f(t) 6= f ′(t), and a
path g = g0, g1, . . . , gK = g′. Let k be minimal such that zk = z + 1 or
zk = z − r − 1. By minimality and since 0 < z − r 6 z < b, we must have
ak = a and bk = b, so |gk| = n−1 or |gk| = n+r+1, raising a contradiction.
This shows that ∀t /∈ [z − r, z], f(t) = f ′(t), hence a′ = a and b′ = b. By
equality of norms of g and g′, this forces z = z′. We interpret this by
saying that “the lamplighter cannot move right of position z or left of
position z − r without exiting the annulus S(n, r)”.

Now treat the case z = b. We first prove that ∀t 6 z − r, f(t) = f ′(t).
Otherwise, there would be a path g = g0, g1, . . . , gK = g′ in S(n, r), and a
k minimal such that zk = z − r − 1. By minimality, ak = a, which forces
bk 6 b− 1. In particular, there exists a k′ minimal with bk′ 6 b− 1. This
forces ak′ = a and bk′ = zk′ = b− 1, so |gk′ | = n− 1, contradiction. There
remains to see that z′ = b′ = b. By norm, we must have γ′ 6 b′ 6 b.
If we had b′ < b, then as above there would exist a k minimal with
bk 6 b−1, raising a contradiction. Thus b′ = b and by norm z′ = b′. As an
interpretation, “staying in S(n, r) forces the lamplighter to have a position
in [z − r, z + r], with the rightmost non-trivial lamp at position b if the
lamplighter is in [z − r, z − 1]”.

In case (2) we have a < −z and z < b, the lamplighter starts in position
z. He cannot move right unless entering S(n− 1). Each step left increases
the norm by one until zk1 = 0, with gk1 ∈ S(n+ z). Afterwards, each step
left decreases the norm by one until zk2 = −z, with gk2 ∈ S(n). At this
position, the lamplighter cannot move left unless entering S(n− 1). So
staying in S(n, r), the lamplighter can move freely in the interval [−z, z],
switching lamps on appropriately. If we require the norm to equal n, then
the position is z or −z. Note that in this case, when zk = 0, the element
gk of norm n+ z is a dead-end of Z ≀ L of depth min(b,−a).
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The following lemma describes which elements of the sphere S(n)
belong to the infinite component of B(n− 1)c.

Lemma 3.3. Let g belong to S(n), with z > 0. Then:
1) If a = 0, then g belongs to S(n)∞.
2) If a < 0 and z = b, then g belongs to S(n)∞.
3) If a < 0 6 z < b, then g belongs to S(n)∞ if and only if z > |a|.

Proof. If a = 0, the path gk = gu−k, interpreted as “go straight to −∞”,
has length n+k, so g belongs to the infinite component S(n)∞ of B(n−1)c.
If a < 0 and z = b, then the path gk = guk, “go straight to +∞”, has
length n+ k so g belongs to S(n)∞. If a < 0 6 z < b, then gk = gu−k has
length:

|gk| =











n+ k if 0 6 k 6 z,

n+ 2z − k if z 6 k 6 z + |a|,

n+ k − 2|a| if k > z + |a|.

If z > |a|, we have |gk| > n for all k > 0, so g belongs to S(n)∞. If not,
the proof of Lemma 3.2 shows that g /∈ S(n)∞.

These two Lemmas enable us to prove the following.

Proposition 3.4. Let L be a finite group. For the lamplighter group
Z ≀ L on a line with respect to the “switch-walk-switch” generating set
L{±1}L, the set S(n, r)∞ has at least 2|L|n−r connected components
while 1 6 r + 1 6 n.

This is the second statement in Theorem 1.3.(1).

Proof. An element g such that a = 0 and b = z = n belongs to S(n)∞

by Lemma 3.3. Moreover, by Lemma 3.2, all elements g′ in S(n)∞ in the
connected component of g in S(n, r)∞ have a lamp function f ′ such that
f ′(t) = f(t) for all t in [0, n− r− 1]. Since we have |L|n−r possibilities for
the choice of the values of f on this interval, there are at least this many
connected components. In fact, at least twice more by symmetry.

3.3. Connection thickness

Theorem 3.5. Let L be a finite group. Assume n > 2. In Z ≀ L endowed
with the “switch-walk-switch” generating set L{±1}L, the annulus S(n, n+
2)∞ is connected, whereas the annulus S(n, n + 1)∞ has 3 connected
components. Therefore the connection thickness is

thZ≀L,L{±1}L(n) = n+ 2.
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This is the first statement of Theorem 1.3.(1).

Proof. First consider S(n, n + 1)∞, and choose g such that a = 0 and
b = z = n. The lamplighter cannot move left of position n without letting
a lamp turned on in b1 > b (otherwise, the path would enter B(n− 1)).
Then, while its position z is between 0 and b1, the norm is 2b1−z > 2n−z.
The lamplighter can reach position −1 (if b1 = b), but then the norm
equals 2n+1, and the lamplighter cannot come back to 0 without switching
off the lamp at −1 (otherwise, the path would enter B(2n + 2)). This
shows that g′ of norm n belongs to the same connected component of
S(n, n+1)∞ as g, if and only if a′ = 0 and b′ = z′ = n. By symmetry, there
is another connected component containing elements with a = z = −n
and b = 0. The annulus S(n, n + 1)∞ has at least a third connected
component since these two do not exhaust all S(n)∞. That there is no
more than 3 connected components will be a consequence of the proof of
the next statement.

Now we prove that S(n, n + 2)∞ is connected. The first and main
step is to prove that if g belongs to S(n)∞ with z > 0, then there is a
path in S(n, n+ 2)∞ from g to g′ with a′ = 0 and b′ = z′ = n. If b = n,
this is obvious, so we assume b < n. Moreover by Lemma 3.3, one of the
following two possibilities occurs: either z > |a|, or z = b.

This gives the two following cases:
(i) z > |a| and b < n.
(ii) 0 6 z < |a|, z = b and b < n.

Start with case (i). Then 0 6 |a| 6 z 6 b 6 n− 1. We prove that there
is a path from g to g′ satisfying the same relations, with b′ > b, which
implies the main step by induction. See Figure 1 for a picture which will
hopefully make the argument easier to follow.

From g, the lamplighter keeps b fixed and moves left to position 0,
where

|gk| = n+ z 6 2n. (A)

Then it continues left to position a, where

|gk| = n+ z + a > n, (B)

and continues left again until position:

a1 =

{

a− b−z
2 if b− z even, where |gk| = n+ b+z

2 + a ∈ [n, 2n],

a− b−z+1
2 if b− z odd, where |gk| = n+ b+z+1

2 + a ∈ [n, 2n].

(C)
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Z

|gk|

0 z b b1aa1 a2

g
n

A

B

C

D

E

F

G

H

I

J

K

Figure 1. Illustration of case (i) (with b− z even) in the proof of Proposition
3.5.

Then the lamplighter keeps the lamp at a1 on, and moves back right. At
position 0, we have

|gk| =

{

n+ b if b− z even

n+ b+ 1 if b− z odd
(D)

and at position b,

|gk| =

{

n if b− z even

n+ 1 if b− z odd
(E)

Step right once more to b1 = b+ 1, where

|gk| =

{

n+ 1 if b− z even

n+ 2 if b− z odd
(F)

Then keep the lamp at b1 turned on and move left. At position 0, we have

|gk| =

{

n+ b+ 2 if b− z even

n+ b+ 3 if b− z odd
(G)
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At position a1, we have:

|gk| =

{

n+ b+ 2 + a1 = n+ 2 + a+ b+z
2 if b− z even,

n+ b+ 3 + a1 = n+ 3 + a+ b+z+1
2 if b− z odd.

(H)

Observe that a1 < 0. Indeed, a1 = 0 implies, in the even case, a = 0 and
b = z (which was already treated) or, in the odd case, a = 0 and b = z− 1
(which is not possible). Move right switching off the lamp at a1 to set
a2 = a1 + 1 (so a2 6 0), where

|gk| =

{

n+ b+ 1 + a1 if b− z even

n+ b+ 2 + a1 if b− z odd
(I)

Keep a2 fixed and move right to position 0, where

|gk| =

{

n+ b if b− z even

n+ b+ 1 if b− z odd
(J)

then right to final position b1 = b+ 1, where

|g′| = n. (K)

The end g′ of the path satisfies a′ = a2 = a1 + 1, b′ = b1 = b + 1 > b
and z′ = b (even case) or b+ 1 (odd case). One can check that g′ satisfies
case (i).

One can check that the two steps where the norm is close to the
admitted bounds is B (minimal norm) and G (maximal norm). In B,
the norm is n + |z| − |a| > n. In G, the norm is (in the even case)
6 n+ b+ 2 < 2n+ 2 or (in the odd case) 6 n+ b+ 3 6 2n+ 2.

There remains to treat case (ii): 0 6 z = b < |a|. See Figure 2 for a
simplified picture of the path.

The lamplighter moves right to b1 = |a| (A), where |gk| = n− a− z ∈
[n, 2n]. Keeping the lamp at b1 = |a| on, he moves left to position 0 (B),
where |gk| = n− 2a− z ∈ [n+ |a|, 2n], and then to position a (C), where
|gk| = n−a−z ∈ [n, 2n]. Switching off lamps, the lamplighter moves right
to a1 = −z (D), where |gk| = n. Keeping the lamp at a1 = −z on, he
moves right to position 0 (E), where |gk| = n+ z, and finally to position
z (F), where |g′| = n, with a′ = a1 = −γ, b′ = b1 = |a| and z′ = z. We
have z′ = |a′|, so g′ qualifies for case (i).

We have proved the first main step, that all elements of S(n)∞ with
z > 0 belong to the same connected component of S(n, n + 2)∞. By
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Z

|gk|

0 b = z b1 = |a|a a1 = −b

g

A

B

C

D

E

F
n

Figure 2. Illustration of case (ii) in the proof of Proposition 3.5.

symmetry, the same is true for elements with z 6 0. There remains to
show a path from one to the other. If n is a multiple of 3, take g with
a = −n

3 and b = z = n
3 . When the lamplighter moves left to position

a′ = a = z′ = −z, keeping b′ = b, the norm is bounded |gk| ∈ [n, 4n3 ]. This
is the required path (which can easily be adapted when n is not a multiple
of 3).

To finish the proof of the proposition, we observe that the paths we
constructed connecting elements were always in S(n, n+ 1)∞, except in
the odd case of case (i) where it could happen that n+ b+ 3 = 2n+ 2.
However, this happens exactly when b = n − 1 and implies a = 0 and
z = n− 2. Iterating “case (i)” leads necessarily to this situation since b
increases by 1 at every step (and b = n− 1 =⇒ a = 0 and z = n− 2). It
is straightforward to check that the lamp configuration on [0, n− 2] can
be arbitrarily modified staying in S(n, n+ 1)∞. This shows that there are
at most 4 (by symmetry) connected components of S(n, n+ 1)∞.

To show that there are 3 components, it is only left to check that
the element g with a = −n + 1, z = −n + 2, b = 0 is connected to g′

with a′ = 0, z′ = n − 2 and b′ = n − 1. To do so, consider again an
element g′′ with −a′′ = b′′ = z′′ = n

3 . Applying the “case (i)” strategy to
g′′, one will show it is connected to g′. On the other hand, g′′ is easily
connected (as above) to its symmetric element (with a negative lamplighter
position). Applying the strategy symmetric to “case (i)” will give a path
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to g. This shows that there is a path between g and g′. Together with the
first paragraph of this proof, this shows that S(n, n+ 1)∞ has exactly 3
connected components.

In case the reader wonders what happens for n = 1, we mention that
S(1, 2) is connected.

3.4. Most of the sphere is in S(n)∞ .

Lemma 3.6. For λ ∈ [0, 1], there exists c > 0 such that:

|{g ∈ S(n)|0 6 z 6 b 6 λn}| 6 cn2|L|
1+λ
2

n.

Proof. We have 2|a|+ b 6 n since z > 0 and b 6 λn, so |a|+ b 6 1+λ
2 n.

An element g as required is described by a ∈ [−n, 0], z ∈ [a, b] and at
most 1+λ

2 n lamps in L in the interval [a, b].

Lemma 3.7. In Z ≀ L with L finite of size ℓ = |L| endowed with the
switch-walk-switch generating set, one has:

|S(n)| = 2 (ℓ+ 1)2 ℓn−1 + o (ℓn) .

Recall the Landau notation that o(ℓn) means a sequence tending to
zero times ℓn.

Proof. We first estimate the number of elements in S(n) satisfying z > 0.
We count first the elements that satisfy a = 0 and discuss on b, which
enforces the value of z. When b = z = n, there are ℓn+1 possibilities for
the lamp configuration. When b = n − i with 0 < i small, which forces
z = n− 2i, there are (ℓ− 1)ℓn−i possibilities for the lamp configuration.
Note that the lamp in b cannot be trivial. So the number of elements in
S(n) with z > 0 and a = 0 is

ℓn+1 +
εn
∑

i=1

(ℓ− 1)ℓn−i + E1 = (ℓ+ 1)ℓn + E2

where Ei are error terms satisfying |Ei| 6 cn2ℓ(1−
ε
2)n by Lemma 3.6.

Now for a fixed a < 0, again discuss on b. If b = z = n− 2|a|, there are
(ℓ− 1)ℓn−|a| possibilities for the lamp configuration, the lamp in a being
non-trivial. For b = n− 2|a| − i with i > 0, which forces z = n− 2|a| − 2i,
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there are (ℓ− 1)2ℓn−|a|−i−1 possibilities for the lamp configuration. So the
number of elements in S(n) with z > 0 and a given a < 0 is

(ℓ− 1)ℓn−|a| +
εn
∑

i=1

(ℓ− 1)2ℓn−|a|−i−1 + E3 = (ℓ− 1)(ℓ+ 1)ℓn−|a|−1 + E4.

In total, we sum for 0 6 |a| 6 εn and get

|S(n) ∩ {z > 0}| = (ℓ+ 1)ℓn +

εn
∑

|a|=1

(ℓ− 1)(ℓ+ 1)ℓn−|a|−1 ± cn3ℓ(1−
ε
2)n

= ℓn−1(ℓ+ 1)2 + o(ℓn).

Finally, the result has to be doubled to take into account elements
with z < 0, whereas those with z = 0 are negligible.

We are now able to prove that almost all the sphere S(n) is in the
infinite component of B(n− 1)c. Namely:

Proposition 3.8. There exists α < 1 such that:

|S(n) \ S(n)∞|

|S(n)|
6 αn.

Proof. Let g belong to S(n) \ S(n)∞ with z > 0. We claim that b 6 5
8n.

Indeed, if b > n
2 , then |a| 6 n

4 , so by Lemma 3.3 (3), z 6 |a| 6 n
4 ,

which implies 2b − n
4 6 2|a| + 2b − z = n and b 6 5

8n. By Lemma 3.6,

|S(n)\S(n)∞| 6 cn2|L|
13
16

n, and the conclusion follows by Lemma 3.7.

Remark 3.9. Let us say that g ∈ S(n) is straightly connected to infinity
if there exists a geodesic gk such that g0 = g and |gk| = n+ k for all k.
Denote S(n)s∞ the set of such g’s. The proof of Lemma 3.3 essentially
shows that g ∈ S(n)s∞ exactly in cases (1) or (2). Similarly to Lemma 3.7,
we can compute precisely the number of elements of length n straightly
connected to infinity.

Let us count the number of elements in S(n)s∞ with z > 0. Under the
conditions a = 0 and b = n− i, which enforce the value z = n− 2i, there
are ℓn+1 possible lamp configurations when i = 0 and only ℓn−i(ℓ − 1)
when i > 0 for the lamp at b cannot be trivial. Under the condition
a < 0, straight connection to infinity forces z = b = n − 2|a| and there
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are (ℓ− 1)ℓn−2|a| possible lamp configuration. All in all

|S(n)s∞| = 2

(

ℓn+1 +
∞
∑

i=1

(ℓ− 1)ℓn−i +
∞
∑

|a|=1

(ℓ− 1)ℓn−2|a|

)

+ o(ℓn)

= 2

(

ℓ+ 1 +
1

ℓ+ 1

)

ℓn + o(ℓn).

Comparing with Lemma 3.7, it follows that the sequence |S(n)s∞|
|S(n)|

converges to a constant in (0, 1) and this constant is 20
27 for L = Z2 and

tends to 1 when ℓ → ∞. This means that a positive fraction of the sphere
is not straightly connected to infinity (and a larger positive fraction is).

We wonder if there are examples of finitely generated groups (or of
vertex transitive graphs) where this sequence or a subsequence of it could
take arbitrary small values ? See Question 9.8.

3.5. Normalised entropy of partitions

Let Π̃(n, r) denote the partition of S(n, r) into connected components,
and Π(n, r) (resp. Π(n, r)∞) the inherited partition of S(n) (resp. S(n)∞).
Denote π(g) ∈ Π(n, r) the component of g in the partition. We have
π(g) = π(g′) if and only if there is a path from g to g′ in S(n, r).

The Shannon entropy of a partition Π of a space endowed with a
probability µ is

H(Π) = −
∑

π∈Π

µ(π) logµ(π).

We consider H(Π(n, r)) where S(n) is equipped with the normalised
counting measure.

It is well-known that 0 6 H(Π) 6 log |Π| where |Π| is the number of
components in the partition Π. Moreover H(Π) = 0 if and only if one
component weights the full mass, whereas H(Π) = log |Π| if and only if
all set in the partition have the same cardinality, see [Sha]. This motivates
the definition of normalised entropy by h(Π) = H(Π)/ log |Π|.

The normalised entropy of spheres of a fixed thickness r in Z ≀ L is
essentially maximal. More precisely:

Proposition 3.10. The normalised entropy of spheres of Z ≀ L with
switch-walk-switch generating set satisfies

h(Π(n, r)) ∼ h(Π(n, r)∞) −→
n→∞

1,

while r 6 εn for some ε < 1
8 .
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Note that in a free group with free generating set, one has precisely
h(Π(n, r)) = 1 for all n, r > 0.

Lemma 3.11. The numbers of components of the partitions satisfy:

|Π(n, r)| ≍ |Π(n, r)∞| ≍ |L|n−r,

while r 6 εn for some ε < 1
8 .

Proof of Lemma 3.11. Set S1 = {g ∈ S(n)|z− r > 0} and S2 = S(n) \S1.
By Lemma 3.2, we have |π(g)| = |L|r+1 for g in S1. On the other hand, for

g in S2, we have z 6 εn so b 6 1+ε
2 n. This implies |S2| 6 cn2|L|

3+ε
4

n by
Lemma 3.6 and that |S1| is of order |L|n by Lemma 3.7. We conclude by

Lemma 3.7 and the inequalities |S1|
|L|r+1 6 |Π(n, r)| 6 |S1|

|L|r+1 + |S2|, where

the left-hand-side term is leading by the condition on ε . The same is true
for Π(n, r)∞ by Proposition 3.8.

Proof of Proposition 3.10. It is well-known that the partition Π′ obtained
from Π by taking π ∈ Π and replacing it by individual classes {g}g∈π has
bigger entropy. Likewise merging classes of a partition reduces entropy.
Hence, with the same notations, we have:

−
1

|S(n)|





∑

g∈S1

log
|L|r+1

|S(n)|
+ |S2| log

|S2|

|S(n)|





∧
H(Π(n, r))

∧

−
1

|S(n)|





∑

g∈S1

log
|L|r+1

|S(n)|
+

∑

g∈S2

log
1

|S(n)|



 .

Again, the sum indexed by S1 is the leading term, so H(Π(n, r)) ∼

log |S(n)|
|L|r+1 . We conclude by Lemmas 3.7 and 3.11. The same is true for

Π(n, r)∞ by Proposition 3.8.

4. The lamplighter on a tree with finite lamps

In this section, we consider lamplighter groups with finite lamp group
L, and where the base group has a tree for Cayley graph. Our aim is to
prove Theorem 1.3.(2). It will result of the concatenation of Corollary
4.4 which gives an estimate on the number of connected components in
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S(n, r)∞ and Proposition 4.5 which bounds from above the connection
thickness.

We write T = Td for a group with generating set S = Sd such that
the Cayley graph Cay(Td, Sd) is a d-regular tree, e.g. the free product
of d involutions, or the free group of rank d/2 for even d. We consider
the lamplighter group T ≀ L, with the “switch-walk-switch” generating set
LSL. The case of a line d = 2 was studied in the previous section, and we
assume here that d > 3.

For an element g = (γ, f), denote C(g) the minimal subtree of T
containing e, γ and the support of the lamp function f : T → L.

Lemma 4.1. The word length of an element g = (γ, f) of T ≀ L is
|g| = 2|C(g)| − d(e, γ), where |C(g)| is the number of edges in C(g).

Proof. By Proposition 2.6, the norm of g is the solution of the travelling
salesman problem from e to γ and visiting all vertices of supp(f). In a
tree, the solution is such that all edges of C(g) have to be crossed twice,
except those on the geodesic from e to γ.

For a subset A of a graph, denote ∂A the set of boundary vertices of
A (those with a neighbour outside A), and Int(A) = A \ ∂A the set of
interior vertices. Also denote B(c, r) the ball of centre c and radius r.

Lemma 4.2. Let g belong to S(n), then g is in a dead-end component
(i.e. g /∈ S(n)∞) if and only if BT (e, d(e, γ)) ⊂ Int(C(g)). In particular, if
γ belongs to ∂C(g), then g belongs to S(n)∞.

Proof. If γ belongs to ∂C(g) and the lamplighter moves outside of C(g),
then |g| increases. So g belongs to S(n)∞. If γ belongs to Int(C(g)), then
|g| increases by one when the lamplighter steps in the direction of e, and
decreases by one when he steps away. If the ball BT (e, d(e, γ)) is in the
interior of C(g), then the lamplighter cannot leave it without g entering
S(n− 1). Otherwise, he can reach a boundary position.

This argument shows that an element g is a dead-end of depth > r if
and only if γ = e and BT (e, r) ⊂ Int(C(g)).

Let v be a vertex of the tree T . The subtree at v, denoted Tv, has for
vertex set all w such that v belongs to the geodesic between e and w.

Proposition 4.3. Let T ′ denote a subtree at a neighbour of e. Let r < R.
Take g such that γ = e,C(g) does not intersect T ′ and BT (e,R)\T ′ ⊂ C(g).
Then all elements g′ in the connected component of g in S(n, r)∞ satisfy
f ′(v) = f(v) for all v in C(g) with d(e, v) > r + 1.
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Proof. The element g belongs to S(n)∞ by Lemma 4.2. By Lemma 4.1,
the lamplighter must first step into T ′, otherwise entering S(n−1). He can
visit s sites in T ′ and come back to e. There |gk| = n+2s 6 n+ r, staying
in S(n, r). He can then move into C(g), with |gk| = n + 2s − d(e, γk).
Since 2s 6 r < R, the lamplighter cannot reach a vertex v not in T ′ with
d(e, v) > r + 1.

Corollary 4.4. There exists positive constants c1, c2 depending only on
d such that S(n, r) has at least |L|c1n connected components for r 6

logd−1(n)− c2.

Proof. Assume there exists an integer r > 0 such that

n = |BT (e, r) \ T
′| =

(d− 1)r − 1

d− 2
.

Let g be such that C(g) = BT (e, r) \ T
′ and γ = e. By Proposition 4.3,

there are at least |L|(d−1)r+1
connected components in S(n, r) containing

elements of this form. A generic n is treated similarly.

Proposition 4.5. There exists a constant c such that the annuli
S(n, logd−1(n) + c)∞ are connected, so thT ≀L,LSL(n) 6 logd−1(n) + c.

To ease notations, we set h(γ) = dT (e, γ) and call height the distance
to the origin in the tree. A vertex γ 6= e has exactly one neighbour of
smaller height, which we call its parent, and d − 1 of bigger height, its
children. Two vertices are said to be siblings if they have the same parent.
The origin e has d children and, by convention, is its own parent. The k
ancestor is the parent of the (k − 1) ancestor (and the 0 ancestor is the
current vertex). In our representations of trees, the parents are above the
children.

Proof of Proposition 4.5. We will prove this proposition when n =
2|BT (e,R)| −R for some R, where absolute value denotes the number of
edges. We prove that S(n,R)∞ is connected, and clearly R 6 logd−1(n)+c.

(When n is not of the chosen form, we should replace BT (e,R) by an
appropriate subset containing BT (e,R − 1) in the definition of ḡ. The
proof goes the same way, with more tedious details.)

The reader should keep in mind that for such an n, if g belongs to
S(n), then h(γ), R and n have the same parity.

For ℓ0 ∈ L not trivial, set ḡ = (e, f̄) with f̄(v) = ℓ0 for v in BT (e,R)
and f̄(v) = e otherwise. Then ḡ belongs to S(n+R). We take an arbitrary
g in S(n)∞, and construct a path from g to ḡ in S(n,R+ 4).
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An elementary situation is when C(g) = BT (e,R). The choice of
n forces h(γ) = R. Now as long as the lamplighter stays in the ball
BT (e,R) and does not turn off lamps in its boundary ST (e,R), we have
|gk| = n+R− h(γk) belongs to [n, n+R], and so there is a path to ḡ.

We will often use the following lemma. Say there is a lamp off (resp.
on) at vertex v if f(v) = e (resp. 6= e).

Lemma 4.6. Let g = (γ, f) belong to S(n), and let δ denote the (R+ 2)
ancestor of γ.

1) If h(γ) = R+ 2, then δ = e and there is a lamp off in BT (e,R).
2) If h(γ) > R+ 2, then there is a lamp off in Tδ ∩BT (δ,R+ 1).
3) If h(γ) = R and there is a lamp on outside BT (e,R), then there is

a lamp off in BT (e,R).
4) If h(γ) 6 R− 2, then there is a lamp on outside BT (e,R− 1).

Proof. In the first case, if all the lamps are on, then C(g) ⊃ BT (e,R) and
so |g| > 2|BT (e,R)| − R = n, contradiction. The second case is similar,
(mind radius R+ 1 because the vertex δ has one less children than e) as
well as the third and fourth.

Given g = g0 ∈ S(n)∞, our aim is to construct a sequence (gk) in S(n)
reaching an elementary situation such that gk and gk+1 are connected by
a path in S(n,R+ 4) for each k. Our strategy is to construct gk+1 from
gk by an algorithm given below.

Claim. We may assume that h(γ0) > R.

Proof of Claim. Otherwise, h(γ0) 6 R − 2. As g ∈ S(n)∞, by Lemma
4.2, the ball BT (e, h(γ)) is not included in Int(C(g0)). Consequently, the
set ∂C(g0) ∩ BT (e,R − 2) is non-empty, hence contains a vertex v. By
Lemma 4.6.(4), there is v′ in C(g0) with h(v′) > R. Then the lamplighter
goes to v, lights up a lamp just outside C(g0), and then moves towards
v′, stopping at height h(γ0) + 2. This configuration is in S(n). On the
way, g remained in S(n,R), because moving closer to e by at most R− 2
and adding only one extra edge to C(g0). Repeating this argument until
reaching height R justifies the claim.

From now on, we construct a sequence (gk) satisfying h(γk) > R by
the following algorithm.

In order to measure the progress made by successive iterations of the
algorithm, we define the following quantities for any vertex δ of the tree.
The maximal height of the lamp configuration (associated to g = (γ, f)) in
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Tδ is denoted hmax
g (δ). The number of highest vertices is denoted Nmax

g (δ).
Finally, set

εg(δ) :=

{

(hmax
g (δ)−R− 1)+ when δ 6= e,

(hmax
g (δ)−R)+ when δ = e.

where (x)+ is x if x > 0 and 0 otherwise. This measures the excess of
height of the configuration in the tree Tδ. We also denote by δk the (R+2)
ancestor of γk.

Observe that if h(γk) = hmax
gk

(e) = R, or equivalently if ε(δ) = 0 for
all δ and h(γk) = R, then gk is an elementary configuration and we are
done. We now describe the construction of gk+1 from gk.

The rough idea is to consider the intersection of C(gk) with the tree
attached to the (R+2) ancestor of the position γk. If γk is maximal in this
tree, we aim to reduce the height of this tree, if not, we aim to move the
position higher. At times, the (R+ 2) ancestor may change and the tree
we consider may be enlarged, we will then reduce the height of a larger
portion of C(gk). Eventually, getting a global minimal height enables us
to reach an elementary configuration. Precisely, we distinguish two cases:
1) R 6 h(γk) = hmax

gk
(δk) and 2) R 6 h(γk) < hmax

gk
(δk).

Case 1: if h(γk) = hmax
gk

(δk) > R. If there is equality, this is an
elementary configuration by the previous observation. So assume h(γk) =
hmax
gk

(δk) > R + 2. By Lemma 4.6.(1)-(2), there is a lamp off at v in
Tδk ∩ BT (δk, R+ 1) (in fact in BT (e,R) if h(γk) = R+ 2). Keeping the
lamp at γk on, the lamplighter moves to light the lamp at v and comes
back to position γk (he stays in S(n,R + 2) on the forward way and
S(n,R + 4) on the way back, and at the end the norm is n + 2). Then
he steps up to his parent, turning off the lamp at γk. The norm is n+ 1.
There are two possibilities.

Case 1a: if some sibling of γk is in C(gk), the lamplighter moves down
to this sibling. This is gk+1 in S(n). Note that ε(δ) has not changed for
any δ in the tree and δk+1 = δk, but Nmax

gk+1
(δk) < Nmax

gk
(δk).

Case 1b: if no sibling belongs to C(γk), the lamplighter steps up to the
grandparent of γk, turning off the lamp. This is gk+1 in S(n). Note that
Nmax

gk+1
(δk) < Nmax

gk
(δk), except if γk was unique among maximal vertices,

in which case εgk+1
(δk) < εgk(δk). Mind that h(γk+1) = h(γk) − 2, and

that δk+1 is different form δk (except if both are e).

In case 1a and 1b: note that the excess at all other vertices has not
increased: ∀δ, εgk+1

(δ) 6 εgk(δ).
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e

δk=δk+1•

γk+1
• •
γk

Case 1a.

e = δk+1

. . .

•

δk•

γk+1•

γk
•

Case 1b.

e

. . .

δk•

δk+1•

γk•

γk+1•
Case 2a.

. . .

e

•δk=δk+1

γk••γk+1

Case 2b.

Figure 3. Illustration of the proof of Proposition 4.5. The black part is
common to steps k and k + 1, the blue part concerns step k, the red part step
k + 1.

Case 2: if R 6 h(γk) < hmax
gk

(δk). Again, by Lemma 4.6.(1)-(3) and
excluding an elementary configuration, there is a lamp off above in Tδk .
Keeping the lamp on at γk, the lamplighter moves to this lamp, turns
it on, and goes down again, this time in the direction of a vertex of
the configuration of maximal height in Tδk (he can do this staying in
S(n,R+4)). At height h(γk), the norm is n+2. There are two possibilities.

Case 2a: if hmax
gk

(δk) > h(γk) + 2, the lamplighter stops on the way
down at height h(γk)+2. This is gk+1 in S(n). Note that none of hmax

gk
(δ) =

hmax
gk1

(δ) and εgk(δ) = εgk+1
(δ). However, we have hmax

gk+1
(δk+1)−h(γk+1) <

hmax
gk

(δk)−h(γk) (observe that δk+1 6= δk but both have the same maximal
height). If the left-side is zero, the next step of the algorithm is case 1. It
is case 2 otherwise.

Case 2b: if hmax
gk

(δk) = h(γk) + 1, the lamplighter goes to a maximum
vertex v in Tδk (i.e. h(v) = hmax

gk
(δk)), where the norm is n+1. He steps up

turning off the lamp behind him. This is gk+1 in S(n). Note that Nmax(δk)
decreased, except if the maximum vertex was unique, in which case ε(δk)
decreased (because h(γk) + 1 > R+ 1 and in the equality case, δk = e).

In each of the four cases of the algorithm, at least one quantity decreases
among all Nmax(δ) and ε(δ) (which is decreased each time some Nmax(δ)
“reaches zero”), except in case 2a. However, the difference of heights de-
creases at each step 2a, so the algorithm cannot get stuck there (it will
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end up in a “case 1”). Eventually, the algorithm will reach a configuration
with ε(δ) = 0 for all δ, which is elementary.

We use ε(δ) in the above proof rather than hmax(δ) alone, because
the configuration in the R or (R+ 1) levels of Tδk is modified at each run
of the algorithm. Therefore, the maximal height is not decreasing along
time, contrary to the excess.

5. The lamplighter on the ladder with finite lamps

This section describes the case of the lamplighter on the ladder, namely
the “base” group is Γ = Z× Z2, where Z2 = Z/2Z. The aim is to prove
Theorem 1.5, namely to show that there is a generating set with connected
spheres and bounded retreat depth while there is another one with neither
properties.

As before, L denotes the “lamp” group. Elements of G = Γ ≀ L will
be denoted by (z, ε, f) where z ∈ Z, ε ∈ Z2 and f ∈ ⊕ΓL. The trivial
elements in these groups are denoted by 0 and the non-trivial element of
Z2 is denoted by 1.

A generating set for G = Γ ≀ L which has neither connected spheres
nor admits a bound on retreat depth is given by

S1 = {(0, 0, lδ(0,0) + l′δ(0,1)) · (±1, ε, 0) · (0, 0, lδ(0,0) + l′δ(0,1)),

where l, l′ ∈ L and ε ∈ Z2}.

In other words, one allows to do a “switch-walk-switch” but (and this is
crucial) one may switch the two lamps that share the same Z-coordinate
simultaneously. The walk movement can be done simultaneously in Z2

and Z.

Note that Z ≀ (L2) sits as an index 2 subgroup of G. With the exception
of the lone element (0, 1, 0), the length of an element in G can be computed
by forgetting the Z2 coordinate on the “base” component. The value of the
lamp is remembered because the “lamp” group is now L2 and looking at the
length of the corresponding element in Z ≀ (L2). From there, the arguments
and statements of § 3, in particular Proposition 3.4 and Theorem 3.5, apply
straightforwardly to the Cayley graph of G with respect to S1 and show
it has neither connected spheres nor bounded retreat depth.

A generating set for G = Γ ≀L which has connected spheres and admits
a bound on retreat depth is the “switch-walk-switch” where the walk
movement is for the summed generating set of Z×Z2 (i.e. {(±1, 0), (0, 1)}).
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Theorem 5.1. The group G = (Z× Z2) ≀ L for L finite with the “switch-
walk-switch” generating set L{(±1, 0), (0, 1)}L has connected spheres (the
connection thickness is 6 24) and bounded retreat depth (by 5).

The remainder of this section is devoted to the proof of this theorem.
Take g an element of G = (Z× Z2) ≀ L. In the course of the travelling

salesman path c given in Proposition 2.6, we may only remember the
displacements which are made on the Z component. More precisely, let
π : Z× Z2 ։ Z be the projection. Call πc the projected path.

Let s 7→ c̄(s) = πc(ts) be the path obtained by removing all the pauses
(i.e. {ts}s∈N are the integers so that πc(ts + 1) = πc(ts) ± 1). We will
describe completely the possible paths c̄ obtained. A path c̄ is said to
backtrack whenever the direction of movement changes.

We call lower line the subset of Γ the elements of which have coordinates
of the form (z, 0), and upper line, the subset of those with coordinates of
the form (z, 1).

Lemma 5.2. For any g = (z, ε, f) ∈ (Z × Z2) ≀ L, there is a reduced
representative word of g so that the projected path c̄ never uses an edge
3 times or more.

More precisely, the path c solution of the travelling salesman problem
on Z× Z2 associated to g can be chosen so that the path c̄ is a solution
to the projected travelling salesman problem on Z.

Following § 3, we set

a = min (π(suppf) ∪ {0, z}) and b = max (π(suppf) ∪ {0, z}) .

When z > 0, which we can always assume by symmetry, the path c̄
obtained in this lemma covers exactly once the edges in [0, z] and exactly
twice the edges in [a, 0] ∪ [z, b].

Proof. Let c̄0 denote the projected path associated to a geodesic repre-
sentative of g.

By contradiction, we assume that there is at least one edge used at
least three times. We consider x1, x2 ∈ Z such that [x1, x2] is a maximal
interval on which all edges are used at least three times. We show that we
can replace the path c̄0 by a path of smaller or equal length using edges
in [x1, x2] at most twice. This suffices to show the first part of the lemma.

The path c̄0 is necessarily contained in [a, b] and visits both a and b.
Recall that our path c̄0 starts in 0 and ends in some coordinate z. By

symmetry, we may assume 0 6 z. There are 3 cases:
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1) both the end and the start lie in ]x1, x2[,
2) either the start or the end lies in ]x1, x2[ but not both,
3) the start and end points are not in ]x1, x2[.

We illustrate in Figure 4 the path c̄ constructed in each case.

Case 1: then a 6 x1 < 0 6 z < x2 6 b. Set ℓ1 = x2 − x1 > 2,
ℓ2 = b − x2 and ℓ3 = x1 − a. The length of c̄0 is > 3ℓ1 + 2ℓ2 + 2ℓ3 + 1.
The last +1 comes from the fact that there is at least one change of line.

We replace c̄0 by the following path c̄. From the initial position one
goes to the left until the Z-coordinate is a, changes line, and moves to
the right until the Z-coordinate is 0. Then one moves further to the right
along zig-zag movement (i.e. moves one step to the right then change line,
and repeat these two moves over and over again) until the Z-coordinate
is z. Then move to the right until b, change line and move back to z. If
required, change once more the line to be at the endpoint.

Case 1

0x1a z x2 b

Case 2

0a x1 bz x2

Case 3

0a x1 x2 bz

Figure 4. Illustrations of the proof of Lemma 5.2.

This path c̄ visits all the vertices whose Z-coordinate belong to [a, b]
so the lamp state can be set just like they are using the path c0. Its length
is 2(b − a) + 2 plus possibly 1 for the change of line. As ℓ1 > 2, this is
strictly shorter than c̄0.

Case 2: By time reversal symmetry we may assume that the endpoint
z ∈]x1, x2[ but the start-point 0 6 x1. Thus we are lead to consider
a 6 0 6 x1 < z < x2 6 b.

By maximality of the interval [x1, x2]the edge between x1−1 and x1 is
crossed only once in the increasing direction, say at time t1. We call c1 the
restriction of the path c0 to the time interval [0, t1]. Necessarily, the length
of c0 is > ℓ(c1) + 3(x2 − x1) + 2(b− x2) + 1, the final +1 corresponding
to a change of line.
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Path c
• •

x1
•

• •

x2

• •

Path c0
• •

x1
• •

•

x2

• • •

Figure 5. Illustration of the proof of Lemma 5.2 : equality in Case 3. Note
that the edge crossed twice over x2 in the path c can be replaced by an extra
zag whenever x2 < b.

We replace the path c0 by a path c that coincides with c0 until time t1,
then goes in zig-zag from x1 to z and finally makes a U-shape move from z
to b and back as in Figure 4. The length of c is equal to ℓ(c1)+2(b−x1)+1
plus possibly 1 for an final change of line. As x2 − x1 > 2, this is strictly
shorter than c0.

Case 3: In the last case, we have a 6 0 6 x1 < x2 6 z 6 b.

By maximality the edge between x1 − 1 and x1 is crossed only once in
the increasing direction at a time t1 and we call c1 the restriction of c0 to
[0, t1] (if a = x1, this edge is never crossed and c1 is empty), and the edge
between x2 and x2 +1 is crossed only once at a time t2 and we call c2 the
restriction of c0 to times > t2 (if b = x2, this edge is never crossed and c2
is empty). The length of c0 is > ℓ(c1) + ℓ(c2) + 3(x2 − x1) + 1, where the
last +1 is due to a change of line.

We replace c0 between times t1 and t2 by a zig-zag path as in Figure
4 to get a new path c of length 6 ℓ(c1) + ℓ(c2) + 2(x2 − x1) + 2. As
x2 − x1 > 1, this new path is at most as long as c0. There is equality if
and only if x1 + 1 = x2 (see Figure 5).

In any case, we can replace c0 by a no-longer path c with no edge of Z
used three times. Moreover, after applying this procedures to all maximal
intervals [x1, x2] with edges covered at least three times, we obtain a path
c such that c̄ covers exactly twice the edges in [a, 0]∪ [z, b] and once those
in [0, z]. Thus c̄ is a solution to the projected travelling salesmen problem
on Z.

Next, we formalise the observation that when the end position (z) is
not the maximal lit position (b), then the state of the lamps in the interval
]z, b[ do not affect significantly the word length.
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Lemma 5.3. Let g, g′ ∈ (Z×Z2) ≀L. We assume that the elements g and
g′ have the same projected paths c̄ = c̄′. With the notations above, this
implies in particular that a = a′, b = b′ and z = z′. We assume moreover
that their lamp configurations are identical on vertices projecting to ]0, z[,
i.e. f(x, ε) = f ′(x, ε) for any x ∈]0, z[ and ε ∈ Z2.

Then the word length of g and g′ differ by at most 4.

Proof. By symmetry assume z > 0 Let c be a path obtained by Lemma
5.2 for g. When z > 0, the path c visits exactly one edge ((0, ε1), (1, ε1))
with ε1 ∈ Z2 and exacty one edge ((z − 1, ε2), (z, ε2)) with ε2 ∈ Z2 (and
they coïncide when z = 1).

Consider the path c′′ defined by piecewise straight (possibly empty)
lines from (0, 0) to (a, 0) to (a, 1) to (0, 1) to (0, ε1) then coincides with c
until (z, ε2) then piecewise straight to (b, ε2) to (b, ε2 +1) to (z, ε2 +1) to
(z, ε). This path goes from 0 to (z, ε) and allows to turn on appropriately
the lamp configuration f ′. Its length is the length of c increased by at
most 4 (the vertical edges over a, 0, b, z).

Thus |g′| 6 |g|+4. The same argument shows that |g′| 6 |g|+2 when
z = 0. The lemma follows by symmetry.

The following lemma shows that inside a block of lit lamps, the position
of the lamplighter also do not affect significantly the word length.

Lemma 5.4. Let a1 6 a2 be two integers. Let F ⊂ Z × Z2 denote the
set of vertices with Z-coordinates in [a1, a2]. The length of a travelling
salesman path which visits all vertices of F , ends in F and begins in F is
between |F | − 1 and |F |+ 1.

Proof. A path which visits k vertices has length at least k−1, which gives
the lower bound. The upper bound is a simple (and slightly tedious) case
by case argument. The solutions are paths of the form U-shape-zig-zag
moves-U-shape as in Case 1 of Figure 4.

Lemma 5.5. Assume g = (z, ε, f) ∈ (Z× Z2) ≀ L is such that z > 0. For
ℓ0 ∈ L, define the function f ′ by

∀ε′ ∈ Z2, f ′(x, ε′) =

{

ℓ0 ∀x ∈ [z, b],

f(x, ε′) ∀x /∈ [z, b].

Then for any (x, ε′) ∈ [z, b] × Z2 there is a path {gk}
n
k=0 such that

g0 = g and gn = (x, ε′, f ′) and

∀0 6 k 6 n, |g| − 5 6 |gk| 6 |g|+ 3.
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In particular, this is true for (x, ε′) = (z, ε) and for (x, ε′) = (b, 0).

This lemma essentially asserts that starting from g, the lamp configu-
ration on [z, b]× Z2 can be turned to any chosen value (provided we keep
a lamp on in {b} × Z2) staying in an annulus of thickness 6 8.

Proof. By Lemma 5.2 there is a unique time t1 where the path c = c0
crosses the edge (z − 1, z) in the increasing direction, and we have

2(b− z) 6 ℓ(c{t>t1}) 6 2(b− z) + 2.

We construct a sequence of paths ck such that ∀k > 1, ck|[0,t1] = c0|[0,t1]
and ck{t>t1} is a travelling salesmen problem visiting all vertices in F =
π−1([z, b]), starting in c0(t1) and ending in F . By Lemma 5.4, we have
2(b− z)− 1 6 ℓ(ck{t>t1}) 6 2(b− z) + 1, so that

ℓ(c0)− 3 6 ℓ(ck) 6 ℓ(c0) + 1.

Moreover, we can choose our sequence of paths ck to have as successive
endpoints Ek all the vertices in F = π−1([z, b]) in some given order
(following neighbours in the Cayley graph of Z× Z2). This enables us to
construct successively an associated sequence of elements {gk}

n
k=0 obtained

by following the paths ck and switching lamps on appropriately according
to gk−1 on all points of Z× Z2 except at Ek where the lamp is switched
on to ℓ0. This yields eventually an element gm with lamp configuration
fm = f ′. There remains to follow a similar path not changing the lamp
configuration but bringing the endpoint to (x, ε′).

The argument in the proof of Lemma 5.3 ensures

∀k > 1, ||gk| − ℓ(ck)| 6 2.

Combining the two last inequalities gives the lemma.

The previous lemma is already sufficient for the proof of bounded
retreat depth. In short, we now know that up to minor changes in word
length, it may be assumed that all lamps on ]z, b[ are lit (Lemma 5.3) and
then that the lamplighter may move inside blocks of lit lamps. Hence he
may move to b and then escape to infinity.

But, before we get into the details, let us first move on to the other
main ingredient in the proof of Theorem 5.1. We like to think of the proof
of next lemma as the motion of caterpillar tracks (of a tank or a bulldozer).
Once the lamplighter is in a block of lit lamps, he may move inside this
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block without leaving an annulus. So he may light lamps which are nearer
to a and (if necessary to reduce word length) turn off those which are by
b. This allows to move this block until the whole element g is a block of
lit lamps, all the while staying in an annulus.

Lemma 5.6. Assume g = (z, ε, f) ∈ (Z×Z2) ≀L is such that z > 0. Then,
there exists an integer B > 0 and a path {gk}

n
k=0 such that g0 = g and

gn = (0, 0, f ′), where the function f ′ is defined for some ℓ0 ∈ L \ {e} by

∀ε′ ∈ Z2, f ′(x, ε′) =











ℓ0 ∀x ∈ [0, B],

e ∀x > B,

f(x, ε′) ∀x < 0.

satisfying that

∀0 6 k 6 n, |g| − 5 6 |gk| 6 |g|+ 5.

This lemma asserts that starting from some g, we can replace the
positive lamp configuration and the position z by a configuration with
fixed value ℓ0 and position 0, staying in an annulus of thickness 6 10.
Of course a similar statement holds for the negative configuration by
symmetry.

Proof. We construct by induction a sequence {hj}
z
j=0 such that hj =

(z − j, 0, fj) where

∀ε′ ∈ Z2, fj(x, ε
′) =











ℓ0 ∀x ∈ [z − j, Bj ],

e ∀x > Bj ,

f(x, ε′) ∀x < z − j.

satisfies |g| − 5 6 |hj | 6 |g|+ 3. The first term h0 exists by Lemma 5.5.
To do the induction, assume hj is given. We construct hj+1 as follows.

Case 1: If |hj | < |g|+ 3, then move the lamplighter to (z − j − 1, 0)
turn the lamp on to ℓ0, move to (z − j − 1, 1), turn on to ℓ0 move back to
(z − j − 1, 0). This is hj+1 with Bj+1 = Bj . The length may have been
increased by 1.

Case 2: If |hj | = |g|+3. According to Lemma 5.5, move the lamplighter
to (Bj , 1), turn off the lamp there, move to (Bj , 0) turn off, move back
to (z − j, 0). At this stage we reached an element h′j with |h′j | = |hj | − 2.
This new element qualifies for Case 1 with Bj − 1 = Bj+1. In the path
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connecting hj to h′j , the length may be increased by at most 2 according
to Lemma 5.4.

For j = z, the element hz is our desired gn. Observe that when we
connect hj to hj+1 the length may be increased by at most 1 in Case 1
and by at most 2 in Case 2.

We are now ready to tackle the main result of this section.

Proof of Theorem 5.1. Let us start with bounded retreat depth. Let g =
(z, ε, f) ∈ (Z × Z2) ≀ L be an element of word length n. By symmetry,
we may assume that z > 0. By Lemma 5.5, there is a path from g to
g′ = (b, ε, f ′) where f ′(x, ε′) = e for all x > b avoiding the ball of radius
n − 6. From g′, there is a path {g′k}κ>0 straightly connected to infinity
given by g′k = (b+k, ε, f ′) of norm |g′k| = |g′|+k. In particular, dead-ends
may have at most retreat depth 5.

Let g ∈ S(n)∞ be an element in the intersection of the sphere of
radius n and the infinite component of the complement of the ball of
radius n− 1. This implies that there is a path to some element g0 of norm
|g0| = m = n + 12. We claim that there exists two integers A 6 0 6 B
and a path from g0 to G = (0, 0, F ) where

∀ε′ ∈ Z2, F (x, ε′) =

{

ℓ0 ∀x ∈ [A,B],

e ∀x /∈ [A,B].

Indead, we may assume z > 0, apply Lemma 5.6 to reach (0, 0, f ′) and
Lemma 5.6 again this time symmetrically in the case z 6 0. This gives a
path from g to G in the annulus S(m− 10,m+ 10).

There remains to show that any two elements of the form G for some
A and B in S(m− 10,m+ 10) can be connected in S(m− 12,m+ 12) =
S(n, n+ 24). This is done similarly to the proof of Lemma 5.6 using the
key observation Lemma 5.4.

In the proof of the boundedness of dead-ends, a thorough case checking
indicates that the distance to identity does not decrease by more than 2.
The sharp bound on dead-end depth seems to be 1. Examples of such
dead-ends are given by (0, 1, fk) where

∀ε′ ∈ Z2, fk(x, ε
′) =

{

ℓ0 ∀x ∈ [−k, k],

e ∀x /∈ [−k, k].

By looking at Lemma 5.4, one may check that one has to go through a
element of length |F | while the length of this element is |F |+ 1.
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As for the connection thickness, the value is certainly much smaller
than 24. A careful look at the proof gives that 10 is enough. The actual
value is probably even lower.

6. Lamplighter groups with infinite lamps

In this section we consider a wreath product Γ ≀ L with both Γ and L
infinite, and we assume that the group L has no dead-end elements. We
endow this group with the “switch or walk” generating set SΓ ∪ SL. The
word distance is also related to a travelling salesman problem, by the

Proposition 6.1. Let g = (γ, f) ∈ Γ≀L. The word norm for the generating
set SΓ ∪ SL is

|g| =
∑

x∈Γ

|f(x)|SL
+ length(c),

where c is a solution to the travelling salesman problem in the Cayley
graph of (Γ, SΓ) that starts in eΓ, visits all vertices in the support of f
and ends in γ.

Proof. Such a length is necessary because only the lamp at the position
of the lighter is modified when we multiply by an element of SL and
multiplying by an element of SΓ moves the lighter by distance one only.
Moreover given such a path, we can describe it by a word in SΓ and we
can insert the representative words of f(x) in SL at the corresponding
locations.

Theorem 6.2. Assume Γ and L are infinite groups generated by finite
sets SΓ and SL respectively. Assume moreover that (L, SL) has no dead-
end elements. Then in the group Γ ≀ L with generating set SΓ ∪ SL, the
connection thickness of spheres is 6 2.

The idea of the proof is quite simple. We imagine the word norms
of elements f(x) are heights of piles of bricks, and we consider the path
solution to the associated travelling salesman problem. Then we move
one by one the bricks at the endpoint of the path to the penultimate
point. When this is done, we add an extra brick to allow us to shorten
the path. By induction, we reduce the path to nothing and obtain a big
pile of bricks at the origin. More precisely, here is a detailed proof.

Proof. Let g = (γ, f) belong to S(n, 2), i.e. n 6 |g| 6 n + 2. We can
assume that |g| = n + 1. Indeed, an element of length n + 2 is always
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connected to one of length n+ 1, and if |g| = n, as L has no dead end, we
can multiply by an element in SL to increase the word norm of f(γ) by
one.

Now let c = {c(t)}Tt=0 be a path solution to the travelling salesmen
problem of Proposition 6.1. In particular, c(T ) = γ and c(0) = eΓ.

We construct by induction a sequence {gt}
0
t=T such that gT = g and

∀0 6 t 6 T , gt−1 = (c(t− 1), ft−1) where

ft−1(x) =











ft(x) if x /∈ {c(t− 1), c(t)}

eΓ if x = c(t),

ℓt−1 if x = c(t− 1),

and |ℓt−1| = |ft(c(t))| + |ft(c(t − 1))| + 1. We deduce from Proposition
6.1 that ∀0 6 t 6 T , |gt−1| = |gt| = n + 1 as at each step the length of
the path decreases by one whereas the sum of word norms increases by
one. Eventually g0 = (eΓ, f0) where the support of f0 is reduced to the
identity, and the value there ℓ0 has norm n+ 1.

We show that there is a path from gt to gt−1 in the annulus S(n, 2).
For this, we construct a sequence {hts}

S
s=0 as follows.

Let w be a reduced representative word for ft(c(t)). We denote ws its
prefix of length |w| − s. Moreover, as L has no dead-ends, there exists a
sequence {λs}s>0 in L such that λ0 = f(c(t− 1)) and |λs| = |λ0|+ s. We
consider hts = (c(t), ϕs) where

ϕs(x) =











ft(x) if x /∈ {c(t− 1), c(t)}

ws if x = c(t),

λs if x = c(t− 1),

Clearly |hts| = n+ 1 for all t, s. For S = |w|, we have wS = eΓ. From htS ,
move to c(t− 1) (the length decreases by one, as we delete the endpoint in
a travelling salesman problem) and switch to λS+1 (the length increases
by one). We reached gt−1.

There remains to show that we can move from hts to hts+1 in S(n, 2).
While s < S = |w|, this is done as follows, depending on the relationship
between the solutions of the travelling salesman problem for gt = (c(t), ft)
(the same as for hts for all s) and the modified problem starting in eΓ,
visiting all points in supp(ft) ∪ {c(t)} and ending in c(t− 1). As c(t− 1)
and c(t) are neighbours, the length of the solutions differ by at most one.
We discuss the three possibilities.
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Case 1: If the path modified is longer by one, switch the lamp at c(t)
to ws+1 (length decreases by one), move to c(t− 1) (length increases by
one), switch the lamp at c(t− 1) to λs+1 (length increases by one), move
back to c(t) (length decreases by one).

Case 2: If the path modified has the same length, switch the lamp at
c(t) to ws+1 (length decreases by one), move to c(t− 1) (length remains
equal), switch the lamp at c(t−1) to λs+1 (length increases by one), move
back to c(t) (length remains equal).

Case 3: If the path modified is shorter by one, move to c(t− 1) (length
decreases by one), switch the lamp at c(t− 1) to λs+1 (length increases
by one), move back to c(t) (length increases by one), switch the lamp at
c(t) to ws+1 (length decreases by one).

This finishes the main part of the proof, connecting an arbitrary element
of S(n, 2) to an element of the form g0 = (eΓ, f0) with f0 supported on
the identity taking value there ℓ0 of norm n+ 1.

There remains to show that any two such elements are connected in
S(n, 2). To do so, we fix an element ℓ1 ∈ L of norm n and an element
γ1 ∈ Γ of norm 1 and show that g0 is connected to (γ1, f1) where f1 is
supported on γ1 taking value ℓ1 there. This is done as above, moving back
and forth between eΓ and γ1 and switching to decreasing length prefixes
of ℓ0 and increasing length prefixes of ℓ1.

Note that the annulus S(n, 1) in the group Z ≀ Z with usual “switch or
walk” generated set is not connected.

Proposition 6.3 (Theorem 1.6). For the group Z ≀ Z, endowed with the
usual “switch or walk” generating set, there exists two constants c1, c2 > 0
such that the diameter of the graph S(n, 2) satisfies:

∀n > 0, c1n
2 6 diamS(n, 2) 6 c2n

2.

As follows from the proof below, the upper bound applies to any group
Γ ≀ L with Γ, L infinite and L without dead-ends. We believe the lower
bound is also valid in this more general context. The n2 term comes from
the fact that moving the “pile of bricks” takes on average roughly n/4
steps and these must be made roughly n times.

Proof. The upper bound is given by the proof of Theorem 6.2. Indeed,
the path {hts}

S
s=0 has length less than 4(|ℓt|+ 1), where

|ℓt| =

T
∑

t′=t

|f(c(t′))|+ T − t.
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As T 6 n and
∑T

t=0 |f(c(t))| 6 n, we immediately deduce that the distance
between g and an element of type g0 is less than 6n2+ n

2 . A similar distance
connects g0 to (γ1, f1).

In order to prove the lower bound, we introduce the following notion.
The mass distribution associated to an element g = (z, f) of Z ≀ Z is the
sequence µ(g) = (µx(g))x>0 given by

For x > 1, µx(g) = 1[0,a](x) + 1[z,a)(x) + |f(x)| ,

For x = 0, µx(g) = 2b− z− +
∑

x60 |f(x)| ,

where as in § 3 we write

a = max (supp(f) ∪ {0, z}) ,

b = min (supp(f) ∪ {0, z}) and z− = min{z, 0}.

In other words, µx(g) which we call the mass of g at x is the length of f(x)
plus the number of times the path solution to the associated travelling
salesman problem visits x. By construction |g| =

∑

x>0 µx(g).

Denote gend = (0, δn+1
0 ) where δn+1

0 (x) = 0 for n 6= 0 and δn+1
0 (0) =

n + 1 and gstart = (n + 1, Id), where Id(x) = 0 for all x ∈ Z. Both
elements belong to S(n+ 1) and we have µx(gstart) = (0, 1, . . . , 1, 0, 0 . . . )
and µx(gend) = (n+ 1, 0, . . . ).

The graph S(n, 2) is bipartite between S(n+ 1) and S(n) ∪ S(n+ 2)
(this is inherited from Z and would not hold in arbitrary groups Γ and L).
Therefore we may assume that at even times, a path between gstart and
gend takes values in S(n+1). Let gt = (zt, ft) denote the tth even position
of such a path. We observe that either µ(gt) and µ(gt+1) coïncide or the
second is obtained from the first by lowering by one the mass at x and
increasing by one the mass at x− 1 or at x+ 1. It follows that the length
of a path in S(n, 2) between gstart and gend has length at least n2

2 .

Remark 6.4. One can check that for the group (Z× Z2) ≀ L considered in
§ 5, the diameter of S(n, 24)∞ is also comparable with n2.

Remark 6.5. It is a fairly standard fact that, given two geodesic rays
γi : N → Γ in a hyperbolic group, then the length of the path (if it exists!)
between γ1(t) and γ2(t) which avoids Bt−2 grows exponentially in t (see,
for example, [Ger2]). If the group is one-ended and finitely presented, this
implies that most elements of S(n, r)∞ will be at distance > KeLn for
some K,L > 0. On the other hand, since these spheres contain at most
exponentially many elements, one has that the diameter is 6 K ′eL

′n (for
some K ′, L′ > 0). By considering Cayley graphs which are triangulations



“adm-n4” — 2019/1/24 — 10:02 — page 228 — #78

228 Connectedness of spheres

of the hyperbolic plan, this is as sharp as possible: the sphere will be a
cycle so the diameter is half the number of vertices.

7. General observations about spheres and dead-ends

7.1. Direct products, spheres and retreat depth

If G1 and G2 are two finitely generated groups, then there are two
“natural” generating sets for their direct product: S1 ⊥ S2 := (S1×{e2})∪
({e1} × S2) and S1 ∨ S2 := (S1 ∪ {e1})× (S2 ∪ {e2}). The former will be
referred to as the “summed” set and the latter as the “product”.

With the summed generating set, one has |(g1, g2)|S⊥
= |g1|S1 + |g|S2 .

With the product generating set, one has |(g1,g2)|S∨
=max(|g1|S1, |g|S2).

For example, if G1 = G2 = Z and S1 = S2 = {±1} then the summed
generating set is the usual generating set of Z

2 whereas the product
generating set gives the “king’s move” generating set.

Lemma 7.1. Assume G1 and G2 are infinite finitely generated groups.
Then, for the summed generating set, SG1×G2(n, 1)

∞ is connected.

Proof. First, note that elements of the form (eG1 , h2) or (h1, eG2) (where
|hi|Si

∈ [n, n+1]) are all connected together. Let (g1, g2) be an element of
SG1×G2(n, 1)

∞. We will show it is connected to an element of the former
type (call these “canonical elements”).

To do so, fix for each element gi ∈ Gi a geodesic pgi from eGi
to gi.

By assumption there is a path from (g1, g2) to infinity, say (g
(k)
1 , g

(k)
2 )∞k=0.

We will use this path to define another path (h
(k)
1 , h

(k)
2 )Nk=1 which ends in

a “canonical” element. For convenience, we will only produce a sequence

(h
(k)
1 , h

(k)
2 )Nk=1 of elements so that there is a path in SG1×G2(n, 1)

∞ between
two successive elements of the sequence.

The algorithm is as follows. Start at (g1, g2) = (h
(0)
1 , h

(0)
2 ). Each h

(k)
i

will belong to the geodesic p
g
(k)
i

. Given (h
(k)
1 , h

(k)
2 ), go to (h

(k+1)
1 , h

(k+1)
2 )

as follows:

1) find the i such that g
(k)
i 6= g

(k+1)
i ) (there is only one coordinate

which changes). Without loss of generality, assume i = 1.

2) If h
(k)
1 = g

(k)
1 , go directly to (3). If h

(k)
1 6= g

(k)
1 , slide the first coor-

dinate “up” the geodesic p
g
(k)
1

while sliding the second coordinate

“down” the geodesic p
g
(k)
2

(in order to keep the sum of the length of

coordinates in [n, n+1]). Depending on whether |g
(k)
1 | > |g

(k+1)
1 )| or
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|g
(k)
1 | < |g

(k+1)
1 |, the total sum of the coordinates at the end of this

step should be n+ 1 or n. If at any moment, it is no longer possible
to slide the second coordinate down, then we are at a canonical
element.

3) Move the first coordinate to g
(k+1)
1 . This is the element

(h
(k+1)
1 , h

(k+1)
2 ).

Note that it is impossible to continue this algorithm forever: the impossibil-

ity to “slide down” will occur at the latest when min(|g
(k)
1 |, |g

(k)
2 |) > n+ 2

(which is bound to happen since this is a path to infinity). In fact, by
sliding up a coordinate and down the other, one can reach a canonical

element as soon as max(|g
(k)
1 |, |g

(k)
2 |) > n+ 1.

Lemma 7.2. For the product generating set, SG1×G2(n, 0) = SG1(n)×
BG2(n)∪BG1(n)×SG2(n). Furthermore, this is connected as soon as both
G1 and G2 are infinite.

Proof. Recall that (g1, g2) ∈ SG1×G2(n, 0) if and only if max
(

|gi|Si

)

= n.
First, note, as in Lemma 7.1, that elements of the form (eG1 , h2) or (h1, eG2)
(where |hi|Si

= n) are all connected together. If (g1, g2) ∈ SG1×G2(n, 0),
then one of the gi is of length n. Thus, it is connected (inside SG1×G2(n, 0))
to one of the elements of the previous form by deleting the other factor.

Recall that rd(G,S) is the retreat depth of G for S.

Lemma 7.3. Let G1 and G2 be infinite groups generated by the finite
generating sets S1 and S2 respectively. Then

rd(G1 ×G2, S1 ⊥ S2)

= min
(

rd(G1, S1), rd(G2, S2)
)

and rd(G1 ×G2, S1 ∨ S2) = 0.

Proof. The proof for the generating set S1 ∨ S2 is actually contained in
the proof of Lemma 7.2: the spheres of thickness 0 are connected, since
there is a geodesic going to infinity, any element g can be moved inside
S|g| until it intersects this geodesic and then go to infinity.

For S1 ⊥ S2, suppose, without loss of generality, that rd(G1, S1) 6

rd(G2, S2). Let g = (g1, g2) be a dead-end. By ignoring the second co-
ordinate, one sees that the retreat depth of g is at most that of its first
coordinate. On the other hand, let g1 be a dead-end of depth rd(G1, S1)
and g2 be a dead-end of depth rd(G2, S2). Let g = (g1, g2). By looking at
a path from g to infinity, at least one of the projected path on a coordinate
also goes to infinity. The depth achieved by the projected path is less than
that of the original path. This shows the depth of g is rd(G1, S1).
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This gives a very easy proof of

Corollary 7.4. Bounded retreat depth is not invariant under change of
generating set.

Proof. Take G1 ×G2 where G1 = G2 = Z ≀Z2 so that rd(G1) = rd(G2) =
+∞. By Lemma 7.3, for S1 ⊥ S2 the retreat depth is infinite, whereas for
S1 ∨ S2 it is 0.

This corollary is also implied by [Wa3, Theorem 2.5], although we
believe the above example to be much simpler. Also, if there is a finitely
presented group with unbounded retreat depth, then one could answer
Question (ii) [is bounded retreat depth independent of the generating set
for finitely presented groups?] of [Gou] in the negative.

The same example gives:

Corollary 7.5. There is a group with connected spheres but unbounded
retreat depth.

Proof. Take G1 × G2 where G1 = G2 = Z ≀ Z2 with the generating set
S1 ⊥ S2. By Lemma 7.3, The retreat depth is infinite (since rd(G1) =
rd(G2) = +∞), but the spheres are connected by Lemma 7.1.

Note that rd(L) 6= 0 if L is finite. If Γ is infinite and rd(L) = 0, then
rd(Γ ≀ L) = 0 as one can always go to infinity in the lamps. Actually, if L
is infinite, then rd(Γ ≀ L) 6 min(rd(L), rd(Γ)) by trying to go to infinity
either in the lamps or in the base space. It seems likely that this inequality
is sometimes strict.

Let us mention a remark about spheres in products of trees. They can
be easily described and depend greatly on the chosen generating set. This
is not surprising since we proved in § 5 that spheres in a group can even
be connected for a generating set and not-connected for another. However
products of trees are much more elementary.

Remark 7.6. For k > 2, let Tk be the free product of k copies of Z2 endowed
with the standard generating set (one letter for each factor). Its Cayley
graph is then the infinite k-regular tree. Let Γ = Tk × Tℓ. Let S⊥(n, 1) be
the spheres of radius n and thickness 1 for the summed generating set and
S∨(n) be the spheres of radius n for the product generating set. These
spheres are connected according to Lemmas 7.1 and 7.2. However, they
tend to very different objects.

The spheres S⊥(n, 1) resemble greatly Diestel-Leader graphs, or more
precisely their tetraedra in the sense of [BW]. On the other hand, the



“adm-n4” — 2019/1/24 — 10:02 — page 231 — #81

J. Brieussel, A. Gournay 231

spheres S∨(n) can be described by the following picture. Consider kn × ℓn

points on a horizontal plane in a rectangular grid shape (but with no
edge in this planar picture) each of the kn rows of length ℓn are the
leafs of an independent ℓ-regular rooted tree drawn above the plane,
and symmetrically, each of the ℓn columns of length kn are the leafs of
an independent k-regular rooted tree drawn below the plane.The graph
obtained by this collection of trees (connected by the points on the grid)
is the sphere S∨(n).

These two objects are very different. For instance one can prove that
there is no uniform family of quasi-isometries φn : S⊥(n, 1) → S∨(n).

Remark 7.7. Bounded retreat depth and connected sphere are not preserved
under taking quotients. Indeed, let G = Z ≀ Z. With the usual generators
this group has no dead-ends and the spheres are connected. Now Z ≀Z can
be seen as Z[t, t−1] ⋊ Z where the automorphism is multiplication by t.
The group Z ≀ Z2 ≃ Z2[t, t

−1]⋊ Z (same automorphism) is a quotient of
G, mapping usual generating set to usual generating set, and has neither
connected spheres nor bounded retreat depth.

7.2. Rarity of dead-ends

The aim here is to show that the dead-ends do not make an important
part of the group.

There are some variations in the degree of not being a dead-end. We
recall two subsets of the sphere of radius n which are of interest:

S(n)∞ = {g ∈ S(n) | there is a path to ∞ avoiding B(n− 1)}
S(n)s∞ = {g ∈ S(n) | there is a strictly increasing path to ∞}

By a strictly increasing path from g to ∞, we mean a 1-Lipschitz map
π : N → G with |π(k)| = |g|+ k for all k, see also Remark 3.9. Note that
S(n)∞ ⊃ S(n)s∞.

Lemma 7.8. Assume (G,S) has retreat depth bounded by k. Then,

|
n
⋃

i=1

S(n)∞| >
1

|S(k)|
|B(n)| −

|B(k − 1)|

|S(k)|
.

In other words, in any ball of radius > k, there is a positive fraction of
elements whose retreat depth is 0.

In particular, there is a positive fraction of elements which are not
dead-end elements.
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Proof. If there is a bound on the depth of dead-ends, then for any x ∈ S(n)
(with n > k) there is a y ∈ S(n− k)∞ so that y lies on a geodesic between
eG and x. This implies:

|S(n)| 6 |S(n− k)∞| · |S(k)|

Summing one gets

|B(n)| 6 |B(k − 1)|+
(

n
∑

i=k

|S(i− k)∞|
)

|S(k)|.

Dividing by |B(n)| · |S(k)| and noting that |B(n− k)| 6 |B(n)| gives

|B(n− k)|

|S(k)|
6

|B(k − 1)|

|S(k)|
+

(

n−k
∑

i=0

|S(i)∞|
)

.

Let us write down the following useful proposition from Funar, Gian-
noudovardi and Otera [FGO, Proposition 5]:

Proposition 7.9. Let Γ be a group and fix its Cayley graph for some
finite S. Let x ∈ G and let C ⊂ G be a set of vertices so that x is in a
finite component of Γ \ C. Then d(x,C) 6 1

2DiamC.

Proof. Take any bi-infinite geodesic p : Z → G going through x with
p(0) = x. Since p is infinite and the component of x finite, there are
n,m ∈ N such that p(−n), p(m) ∈ C. Hence n + m 6 DiamC. The
conclusion follows by seeing that d(x,C) 6 min(m,n).

Here is the corollary on retreat depth.

Corollary 7.10. The retreat depth of x is 6
|x|
2 (i.e. 6 ⌊ |x|2 ⌋).

In particular,

|S(2n)| 6 |S(n)∞| · |S(n)| and |S(2n+ 1)| 6 |S(n+ 1)∞| · |S(n)|.

Proof. Let n = |x| (i.e. x ∈ S(n)) and assume x has retreat depth k.
Apply [FGO, Proposition 5] (rewritten as Proposition 7.9 above) with
C = B(n− k): x is in a finite component of Γ \C. But DiamC 6 2n− 2k
and so d(x,C) 6 n− k. However k = d(x,C) so 2k 6 n.

For the inequality on spheres, note that, for any x ∈ S(n), there is a
y ∈ S(⌈n/2⌉)∞ so that y lies on a geodesic between eG and x.
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This seems to indicate that the dead-end elements do not make most
of the group. The following lemma makes this a bit more precise for groups
with exponential growth.

Lemma 7.11. Assume G has exponential growth, i.e. |S(n)| > Kexp(Ln)
for some K,L > 0. To any n we associate a sequence {ni}

s
i=0 with

s = ⌊log2 n⌋ + 1, ns = ⌈n2 ⌉ and ni−1 = ⌈ni

2 ⌉ (so that n0 = 1). Then,
∏n

i=0 |S(ni)
∞|/exp(Lni) > K.

In particular, along any infinite sequence {ni}i>0 satisfying ni−1 =
⌈ni/2⌉ and n0 = 1, there are infinitely many i so that |S(ni)

∞| > exp(Lni).

Proof. Note that
∑s

i=0 ni = n. Using Corollary 7.10, for any n,

|S(n)| 6
s
∏

i=0

|S(ni)
∞|.

Since
∏s

i=0 exp(Lni) = exp(Ln),

|S(n)| 6 exp(Ln)
s
∏

i=0

|S(ni)
∞|/exp(Lni)

or

1 6
|S(n)|

Kexp(Ln)
6 K−1

s
∏

i=0

|S(ni)
∞|/exp(Lni).

This implies lim sup |S(ni)
∞|/exp(Lni) > 1 and finishes the proof.

Say that a group has pinched exponential growth if there are constants
K,K ′ and L such that for all n,Kexp(Ln) 6 |S(n)| 6 K ′exp(Ln). Groups
with pinched growth include solvable Baumslag-Solitar groups (see Collins,
Edjvet and Gill [CEG]) and wreath products with base group Z, see
Johnson [Joh] or Lemma 3.7.

It is easy to see that this is not an invariant of generating set. Indeed,
if (G1, S1) has pinched exponential growth and (G2, S2) = (Z, {±1}), then
(G1×G2, S⊥) has pinched exponential growth but (G1×G2, S∨) does not.
If instead we chose (G2, S2) = (G1, S1), then (G1 ×G2, S∨) has pinched
exponential growth but (G1 ×G2, S⊥) does not.

Note that Lemma 7.11 implies that if (G,S) has pinched exponential
growth, then the sub-indices i such that |S(ni)

∞| > 1
K′ |S(ni)| have a

positive density. However this still leaves a startling gap between the
result of Lemma 7.11 and Proposition 3.8.
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Here are some further amusing general results. Let us start with another
simple corollary of [FGO, Proposition 5] on the width of dead-ends. Recall
that wd(x) := d

(

x,Bc

|x|

)

is the width of the dead-end element x. Note

that a priori a trivial bound on wd(x) is 2|x|+ 1 (i.e. go to the identity
and from there, go to some element of S(|x|+ 1)).

Corollary 7.12. wd(x) 6 |x|+ 1.

Proof. Let n = |x| (i.e. x ∈ S(n)) and assume x is a dead-end element.
Apply [FGO, Proposition 5] (rewritten as Proposition 7.9 above) with
C = B(n + 1) \ B(n). Then x is in the finite component B(n) and
DiamC 6 2n+ 2 so d(x,C) 6 n+ 1.

These sets have some sub-multiplicative properties:

Lemma 7.13.

|S(n+m)s∞|6 |S(n)s∞| · |S(m)s∞|

Proof. Indeed, assume S(n+m)s∞, then for any y on a geodesic from e to
x, y ∈ S(|y|)s∞. Indeed concatenate the strictly increasing path from y to
x (taken from that geodesic from e to x) with the strictly increasing path
from x to infinity. Note that for any z ∈ B(|y|)c, d(e, z) = |y|+d(S(|y|), z).
Let π : N → G be a strictly increasing path from x to infinity (with
π(0) = x). We need to prove that this path is still strictly increasing from
y. Since d

(

y, π(n)
)

> d
(

S(|y|), π(n)
)

and the right-hand side increases
as n does, n 7→ d

(

y, π(n)
)

is also strictly increasing (because the only
allowed variations are ±1 and 0). [This argument essentially only uses
that strictly increasing paths are always geodesic.]

This shows that the number of x ∈ S(n +m) which have a strictly
increasing path to infinity are at most the number of y ∈ S(n)s∞ times
|S(m)s∞|.

Remark 7.14. 1) Another funny inequality is that, since any element
x ∈ S(n − k)s∞ has an element y ∈ S(n)s∞ so that x lies on a
geodesic from eG to y, for any k,

|S(n− k)s∞| 6 |S(n)s∞| · |S(k)|.

This is a priori not true if one replaces S(k)s∞ by S(k).
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2) Recall (see Kellerhals, Monod and Rørdam [KMR]) that a group is
not supramenable when it contains a bi-Lipschitz embedding of a
binary tree. This implies, that if a group is not supramenable then
S(n)s∞ has exponential growth. In general, |S(n)s∞| > 2 because
there is always a bi-infinite geodesic line in a Cayley graph.
Using Wilkie and van der Dries [WvdD, (1.10) Corollary], if |S(n)s∞|
is not bounded then it is > n.

3) If |Ss∞(n)| is bounded, note that there are only finitely many weakly
geodesic rays (in the sense of Webster and Winchester [WW, Defini-
tion 1.1]). However, a result of Rieffel (see [WW, Theorem 1.1] and
references therein) would then imply that the “metric boundary” of
the Cayley graph is finite. Though there are no results known to the
authors, this seems to be a property which only holds for virtually
cyclic groups.

Lastly, in order to mimic Corollary 7.10 (and thus hope to obtain the
corresponding inequality for S(n)s∞), it seems convenient to introduce
the depth of the dead-end’s “shadow”, i.e.

sd(x) =min {k ∈ N | ∃y ∈ S(|x| − k)s∞ such that y is on a geodesic

from eG to x} .

In other words, it tells us how far one has to go back before one can take a
strictly increasing path to infinity. The depth of the shadow can be much
larger than the retreat depth: indeed,

wd(x) 6 2sd(x) + 1.

[Compare with 2rd(x) + 1 6 wd(x).] Since there are groups with bounded
retreat depth but unbounded width, the depth of the shadow can be
unbounded even if the retreat depth of dead-ends is bounded. Note that
groups with finite cone type have a bound on sd.

Question 7.15. Take xn to be some enumeration of the elements in a group.

How large can lim sup
sd(xn)

|xn|
be?

Intuitively there should be a universal upper bound like 1
2 or 1

4 . A
stronger question would be: does sd(x) 6 ⌈|x|/2⌉? If that would be true
(even asymptotically), one could prove an analogue of Lemma 7.11 for
S(n)s∞.
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8. Remarks on related works

8.1. Connected boundaries

Throughout this section, one may consider a graph G instead of only
a group. Let d denote the graph distance. For a subset K of vertices of
the Cayley graph, let the r-neighbourhood be

Nr(K) = {x ∈ G | d(x,K) 6 r}.

Let us define two notions of “connected boundaries” which is the natural
extension of “connected spheres”.

Definition 8.1. A set F is said c-connected if F is connected, its com-
plement F c is connected and, for any end ξ, one cannot reach ξ both from
F and F c.

As an example, note that in a one-ended graph, if F is c-connected
then only one of F and F c is infinite. A contrario, on a tree with strictly
more than one end, if F is c-connected then both F and F c must be
infinite.

Definition 8.2. Assume r ∈ N, a graph has CBr if for any c-connected
set F one has that Nr+1(F ) \ F is connected. A graph has CB′

r if for any
c-connected set F , one has that Nr(F ) ∩Nr(F

c) is connected.

Theorem 1.2 can easily be extended (as is the aim and underlying result
of [Tim]) to show that this is true in all groups with finite presentation.
In fact, if words have length at most R then the group has CB⌊R/2⌋ and
CB′

⌈R/4⌉.

Lastly let us recall the constant CG from [BB]. Denote by Ĝ the end
compactification of G. Call a cutset a set of edges1 C such that Ĝ\C is not
connected. It is said minimal, if no strict subset of C is also a cutset. Sets
c-connected sets and minimal cutsets are in 2 to 1 correspondence: the
boundary of a c-connected set is a minimal cutset; if C is a minimal cutset,
then Ĝ \ C has two connected components each of which is a c-connected
set.

Say a cutset is l-close if for any partition A1 ⊔A2 = C, d(A1, A2) 6 l.
Then

CG = sup{l | there exists C a cutset which is l − close}.

1Normally, one allows edges and vertices. Allowing edges and vertices does not
decrease the value of CG but may increase it by at most 2.
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Let us show that all these notions are equivalent.

Lemma 8.3. Let G be any graph.
(a) G has CBr =⇒ CG 6 2r + 1.
(b) CG 6 r =⇒ G has CB′

⌈r/2⌉.

(c) G has CB′
r =⇒ G has CB2r.

If these conditions hold for some r in a graph G, we say that G has
connected boundaries. It obviously implies that G also has connected
spheres.

Proof. (a) Assume C is a cutset and A1 ⊔ A2 a partition. Let F be a
c-connected set associated to C. By hypothesis ∂rF := Nr+1(F ) \ F is
connected. For i = 1 and 2, pick ai a vertex which is incident with an edge
of Ai. Let γ : N∩ [0, k] → ∂rF be a path so that γ(0) = a1 and γ(k) = a2.
Note that for any t one has either d(A1, γ(t)) 6 r or d(A2, γ(t)) 6 r.
The first condition holds for t = 0. If the second also does then CG 6

r. Otherwise, let t0 be the first t where the first condition fails. Then
d(A1, γ(t0)) = r + 1 and d(A2, γ(t)) 6 r. This implies d(A1, A2) 6 2r + 1.

(b) Assume F is a c-connected set and let C be the edges at its
boundary. Note that ∂′

rF = Nr(F )∩Nr(F
c) = Nr−1(C). Let c = ⌈CG/2⌉.

Assume that ∂′
cF is not connected. Then there is partition X1⊔X2 = ∂′

cF
so that X1 and X2 are not connected (each Xi may have many connected
components). Let Ai = C ∩Xi. By hypothesis, d(A1, A2) 6 CG. Hence
there is a path of length 6 CG from some vertex incident with A1 to
some vertex incident with A2. This path is however contained in ∂′

cF , a
contradiction.

(c) Take a c-connected set F . We want to show that ∂2rF := N2r+1(F )\
F is connected. To do so notice that Nr(F ) is a connected set. Let Yi be
the connected components of Nr(F )c. Each Yi is a c-connected set, hence
∂′
rYi = Nr(Yi) ∩ Nr(Y

c

i ) is connected. Also ∂′
rYi ⊂ ∂2rF . Because F is

c-connected, for any x, x′ ∈ ∂2rF there is a path from x to x′ which stays
in F c (because F is c-connected).

Assume this path γ leaves N2r+1(F ). Then there is a i so that it leaves
through ∂′

rYi. If it enters through ∂′
rYj , note that Yj and Yi are in the

same connected component. Hence, i = j, or in words: the path enters
through ∂′

rYi again. Let t0 be the smallest t so that γ(t+ 1) 6= N2r+1(F )
and t1 be the smallest t so that γ(t1− 1) 6= N2r+1(F ) but γ(t1) ∈ N2r(F ).
Then, since the ∂′

rYi are connected, there is a path, lying inside ∂′
rYi (a

subset of ∂2r(F )) between γ(t0) and γ(t1). Hence one can modify γ so
that it lies in ∂2rF .
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Note that by concatenation the previous lemma gives CBr =⇒
CB′

r+1. This is a direct consequence that ∂rF ⊂ ∂′
rF and any vertex in

Nr(F
c) ∩ F is connected to some element of N1(F ).

Also note that the hypothesis on ends in the definition of c-connected
and of CG does not play any role in the proof of Lemma 8.3.

Remark 8.4. There is an unfortunate gap in the proof of [Tim, Theorem
3.2]; hence, it is not clear whether the property of connected boundaries
is invariant under change of generating sets, bi-Lipschitz equivalences or
quasi-isometries.

We do however note that the lamplighter on the ladder does not
produce a counter-example to the invariance under change of generating
set:

Lemma 8.5. The property of connected boundaries does not hold for
the same group and generating set as in Theorem 5.1.

Proof. The idea is essentially as in [Tim]. Consider the Fn whose ele-
ments correspond to any lamp state on the vertices with Z coordinates in
[−n, n] ⊂ Z and the walker having the Z coordinate also in [−n, n]. The
edges in ∂Fn have an incident where the lamplighter has Z coordinate in
absolute value equal to n+ 1. Consider the obvious partition of this set
into left (the Z coordinate is −n− 1) and right (where it is n+ 1). Any
path between those two sets has length at least 2n.

8.2. Almost-convexity

Definition 8.6. Let r ∈ Z>1. A group is said to be r-almost-convex if
there is an integer Nr so that for any g1, g2 ∈ G such that d(g1, g2) 6 r
there is a path of length 6 Nr between g1 and g2 which, except for the
last and first edge, lies inside B(m− 1) for m = min(|g1|, |g2|).

A group is almost convex if it is r-almost-convex for every r ∈ Z>1.

Cannon [Can, Theorem 1.3] shows 2-almost-convex implies r-almost-

convex with Nr 6 rN
1+r/2
2 . Obviously {Ni}

∞
i=1 form an increasing se-

quence (if one admits ∞ as a value). Hence Cannon shows that 2-almost-
convex is equivalent to almost convex. This property depends on the
generating set.

Thiel [Thi] showed that this property may depend on the generating set
even for nilpotent groups. By [Can, Theorem 1.4] almost-convex groups are
finitely presented, hence have connected spheres and connected boundaries
for all generating sets.
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Almost-convexity, connected spheres and bounded retreat depth of
dead-ends seem to address different aspects of the word metric. Connected
spheres cannot imply almost convexity because, although it gives the
existence of a path, there is no bound on its length. As is implicit in
Lemma 8.3 and Lemma 2.4, connected spheres is only concerned about
the possibility that there is a partition A1 ⊔A2 of the nth

i sphere so that
d(A1, A2) > i.

The lamplighter on the ladder or Z ≀ Z show that there are groups
which are not almost-convex but have connected spheres and bounded
retreat depth of dead-ends. The solvable Baumslag-Solitar groups (see
[MS]) are also not almost-convex and have connected spheres, being finitely
presented. More examples can be constructed by using Lemmas 7.1, 7.2 and
7.3 as well as noting that (G1, S1) and (G2, S2) are almost convex if and
only if (G1×G2, S1∨S2) is almost-convex if and only if (G1×G2, S1 ⊥ S2)
is almost-convex.

It is easy to deduce from [Bog, Lemma 3] that hyperbolic groups have
a bound on the width (hence retreat depth) of dead-ends. More generally,
a group with regular language of geodesics has dead-ends of bounded
width [Wa1, Theorem 1.1]. Further, if the group is Abelian, there are only
finitely many dead-ends [Leh, Theorem 1]. Any group with more than one
end has a bound on the width of dead-ends by [Leh, Theorem 2].

L. Ciobanu pointed to the second author that putting together [Wa1]
and [Wa2], one sees the Heisenberg group does not have a regular language
of geodesics for any generating set.

8.3. Divergence

Let us recall from [DMS] the definition and a few properties of diver-
gence.

Definition 8.7. Let X be a geodesic metric space. Given δ ∈ (0, 1),
γ > 0 and a, b, c ∈ X, we denote by divγ(a,b, c; δ) the infimum of the
lengths of paths connecting a to b and avoiding the ball B(c, δr − γ),
where r := d(c, {a, b}) and by convention inf ∅ = ∞ and a ball of negative
radius is empty.

The divergence function Divγ(n, δ) of X is defined as

Divγ(n, δ) := sup {divγ(a, b, c; δ)|a, b, c ∈ X, d(a, b) 6 n} .

This function takes finite values whenever X is a Cayley graph of a
finitely generated one-ended group. It obviously satisfies Divγ(n, δ) > n.
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Given two function f, g we write f - g if there exists C > 0 such that
f(n) 6 Cg(Cn) + Cn+ C and f ≃ g if f - g and g - f . Then up to ≃,
the divergence function is independent of γ and δ, and it is invariant under
quasi-isometries among Cayley graphs of finitely-generated one-ended
groups. It is also equivalent to the notion of divergence used by Gersten
[Ger1], [Ger2]. We refer to [DMS, Section 3] for details.

The divergence function provides an upper bound on connection thick-
ness.

Lemma 8.8. Let G be a one-ended finitely generated group, then

th(n) 6
1

2
Div2(4n,

1

2
) + n.

Proof. Given a, b ∈ S(n), take a′, b′ ∈ S(2n) such that d(a, a′) = n and
d(b, b′) = n. Then d(a′, b′) 6 4n and thus div2(a

′,b′, 1; 12) 6 Div2(4n,
1
2)

so there is a path of length at most Div2(4n,
1
2) from a′ to b′ avoiding

B(e, n− 1). A fortiori there is a path of length 6 Div2(4n,
1
2) + 2n from

a to b avoiding this ball.

Corollary 8.9. If all asymptotic cones of G have no cut points, then
there exists C = C(G,S) > 0 such that thG,s(n) 6 Cn.

Proof. By [DMS, Proposition 1.1], the function Div2(n,
1
2) is linear if and

only if all asymptotic points of G have no cut points.

We point out however that there are elementary amenable groups
admitting an asymptotic cone which is an R-tree (thus having cut points)
by [OOS].

9. Questions

We finally list some open questions. Some of them are folklore and
some arose in the course of this paper. Their difficulty is probably diverse.
In general, it would be interesting to understand spheres in more Cayley
graphs.

Question 9.1. Is there a finitely generated one-ended group G which, for
some generating set S, does not have connected spheres and admits a
bound on the retreat depth of dead-ends ?

This should be compared with the first statement of Proposition 1.4.
Note that dead-end elements are actually quite frequent in groups so
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that an answer to Question 9.1 with no dead-end elements at all seems
daunting to construct.

According to [Wa3] and Theorem 1.5, bounded retreat depth and
connected spheres are dependent on the generating set. It seems natural to
ask whether one can always choose a generating set with bounded retreat
depth and connected spheres.

Question 9.2. Is there a group which never has connected spheres ? never
has bounded retreat depth ?

A likely candidate to answer both questions is Tk ≀ L with k > 3 and
L finite studied in § 4.

The “universal” bound on retreat depth from [FGO] (see Corollary
7.10) is still far from known examples. Indeed, in the lamplighter on the
line (or in Houghton’s group H2, see [Leh]), the bound on retreat depth
is rd(x) 6 |x|/4. This raises the

Question 9.3. Can the ratio rd(x)
|x| be arbitrarily close to 1

2 ?

As pointed out in Remark 7.7, bounded retreat depth and connected
spheres are not preserved under taking quotient, as for instance Z ≀ Z has
both properties but its quotient Z ≀ Z2 has none.

It would be interesting to know what happens to the following other
quotients. Let p, q ∈ N be coprime and consider Gp,q := Z[pq ,

q
p ] ⋊ Z

where Z acts on Z[pq ,
q
p ] by multiplication by p/q. The group Gp,q is the

metabelianisation of the Baumslag-Solitar group BS(p, q) and in particular,
BS(1, q) ∼= G1,q. However, if p and q are coprime and p 6= 1 6= q then Gp,q

is not finitely presented, see [BS, Theorem.(iii) in § 1.4 on p.48].

Question 9.4. Is it true that spheres are connected and the retreat depth is
bounded in Gp,q for the “switch-walk-switch” or “walk or switch” generating
sets inherited from Z ≀ Z ?

Note that the group BS(1,m) has connected sphere (being finitely
presented) but it is not known whether it has bounded retreat depth or
not. For the generating set induced from “walk or switch”, [Wa3, Theorem
2.3] shows that the width of dead-ends is arbitrarily large.

This leads us to wonder what happens for extensions. First, note that
if 1 → K → G → Q → 1 the extension G may still be nice even though
Q or K have unbounded retreat-depth and non-connected spheres. For
instance a direct product G = Q×K always admits a generating set with
connected spheres and bounded retreat depth - see Lemmas 7.1, 7.2 and
7.3. However the following more precise question is still open.
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Question 9.5. Is there a group G with finite generating set S such that
there is an exact sequence 1 → K → G

π
→ Q → 1 where Q has bounded

retreat-depth and connected spheres with respect to the induced generating
set π(S) and G has unbounded retreat-depth ? G does not have connected
spheres ? both ?

It could be that the above is not possible under the additional constraint
that K is finitely presented. An interesting candidate is the third Houghton
group H3 as there is an exact sequence 1 → Symfin → H3 → Z

2 → 1
where Symfin is the set of permutations with finite support on some
countable set. The arguments of [Leh] for H2 do not directly pass to H3.

Theorem 1.3 provides some computations of connection thickness
functions. It would be interesting to have more examples of such functions.

Question 9.6. What are the possible behaviours of connection thickness
functions ? Are there one-ended groups with thΓ,S(n) growing faster than
n+ 2 ?

The successive partitions Π(n, r) and Π(n, r)∞ defined in § 3.5 as-
sociated to the annuli S(n, r) for 0 6 r 6 thΓ,S(n) are refinement of
one another when restricted to S(n) or S(n)∞. The sphere is most dis-
connected by the partition Π(n, 0) and is connected in Π(n, thΓ,S(n)). It
would be interesting to understand how this connection phenomena occurs.
This can be thought of as some kind of geometric percolation.

We introduced the normalised entropy of a partition in order to quantify
this phenomena. Proposition 3.10 essentially asserts that the disconnection
of the partition Π(n, r) in (Z ≀ L,L{±1}L) with L finite is in a sense
maximal while 0 6 r

thΓ,S(n)
< 1

8 . It would be interesting to understand

what happens in the interval [18 , 1].

Question 9.7. How does the connection of spheres occur ? Is there emer-
gence of a gigantic component ? If yes, around which value of r ? How does
the normalised entropy behave in terms of the limit of the ratio r

thΓ,S(n)

in the interval [0, 1] ?

An answer to these questions for the lamplighters on trees with finite
lamps of § 4 would already be interesting.

We pointed out in Remark 3.9 the surprising fact that the proportion of
points x in the sphere of Z≀Z2 not straightly connected to infinity (meaning
there exists a geodesic ray g(t) defined for all t > 0 with |g(t)| = |x|+ t)
is asymptotically positive.
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Question 9.8. Are there examples of finitely generated groups where the
proportion of points straightly connected to infinity is arbitrarily close
to 0?

We were lead to consider the lamplighter group on a ladder in our
study of connection of spheres in the lamplighter group Z

2 ≀ Z2 on the
plane. We formulate the

Conjecture 9.9. In Z
2 ≀ Z2 for the usual “switch-walk-switch” generating

set, the spheres are connected.

We also believe the retreat depth of dead-ends is bounded. However,
we point out that it is not even obvious to adapt § 5 to show that any
group (Z× F ) ≀ Z2 for F finite with “switch-walk-switch” generating set
has connected spheres.

Observe that by analogy with the case of the line § 3 or the tree § 4 it
is tempting to expect that dead-end elements with large retreat depths
in the lamplighter over the plane Z

2 could be “all lamps state in a ball
around the identity in a dead-end position and the lamplighter back at
the identity”. But this does not always work: for example, take Z

2 with
“king’s move” generators (i.e. {(a, b) | a, b = 0, 1 or −1}. It is not difficult
to see that for any two distinct vertices in the ball of radius n (which
look like squares of side 2n+ 1), there is a Hamiltonian path covering the
whole ball which joins these vertices. This shows that the retreat depth of
such elements is 1.

When a group has connected spheres, one can compare the metric on
S(n)∞ given by the graph metric in the ambient Cayley graph with the
graph metric induced by the graph S(n, r)∞. A natural generalisation of
the study of connectedness is that of distortion between these two metrics.
We ask the

Question 9.10. Is there a Cayley graph for which S(n, r)∞ (or a subse-
quence) is a family of expander graphs ? Is there a Cayley graph for which
the diameter of S(n, r)∞ is comparable to a linear function of log |S(n)| ?

A positive answer to the first question would also give a positive
answer to the second. In Theorem 1.6, we obtain that the diameter of
S(n, 2) for Z ≀ Z with “switch or walk” generating set is comparable to
n2 ≍ (log |S(n, 2)|)2 - see also Remark 6.5. Of course, the diameter of
S(n) for an infinite group is always 2n with respect to the ambient metric.
It would also be interesting to compare with the random metrics on the
sphere introduced by Georgakopoulos [Geo].

Finally, we recall here a classical question about amenability and
spheres. It is an easy exercise to show that G has subexponential growth
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if and only if a density one subsequence of the sequence of balls is Følner,
i.e.

|S(nk+1)|
|B(nk)|

→ 0 with 1
N |{nk 6 N}| → 1. However the following remains

open:

Question 9.11. Let G have subexponential growth, is it true that
|S(n+1)|
|B(n)| → 0?

This is known to be true for G virtually nilpotent by Pansu [Pan],
using the fact that the asymptotic cone is a nilpotent Lie group with the
Carnot-Caratheodory metric.

Conversely, it is easily checked that if G has exponential growth, a
subsequence of the sequence of balls cannot be Følner unless it has density
0, i.e. |S(nk+1)|

|B(nk)|
→ 0 implies |{nk6N}|

N → 0. This is the content of the proof

of Lemma 2.2 in [Pit]. The statement of Pittet’s Lemma 2.2 is not proved
and is still open :

Question 9.12. Let G have exponential growth, does there exist ε > 0
such that |S(n+1)|

|B(n)| > ε for all n ?

Note that the answer is positive for groups of pinched exponential
growth.
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