On application of linear algebra in classification cubic s-regular graphs of order $28 p$

A. Imani, N. Mehdipoor and A. A. Talebi

Communicated by V. V. Kirichenko

Abstract

A graph is s-regular if its automorphism group acts regularly on the set of s-arcs. In this paper, by applying concept linear algebra, we classify the connected cubic s-regular graphs of order $28 p$ for each $s \geqslant 1$, and prime p.

1. Introduction

In this study, all graphs considered are assumed to be finite, simple, and connected, unless stated otherwise. For a graph $X, V(X), E(X)$, and Aut (X) denote its vertex set, edge set, and full automorphism group, respectively. Let G be a subgroup of $\operatorname{Aut}(X)$. For $u, v \in V(X),\{u, v\}$ denotes the edge incident to u and v in X, and $N_{X}(u)$ denotes the neighborhood of u in X, that is, the set of vertices adjacent to u in X.

A graph \widetilde{X} is called a covering of a graph X with projection p : $\widetilde{X} \rightarrow X$ if there is a surjection $p: V(\widetilde{X}) \rightarrow V(X)$ such that $\left.p\right|_{N_{\tilde{X}}(\widetilde{v})}:$ $N_{\tilde{X}}(\widetilde{v}) \rightarrow N_{X}(v)$ is a bijection for any vertex $v \in V(X)$ and $\widetilde{v} \in p^{-1}(v)$. A permutation group G on a set Ω is said to be semiregular if the stabilizer G_{v} of v in G is trivial for each $v \in \Omega$, and is regular if G is transitive, and semiregular. Let K be a subgroup of $\operatorname{Aut}(X)$ such that K is intransitive on $V(X)$. The quotient graph X / K induced by K is defined as the graph such that the set Ω of K-orbits in $V(X)$ is the vertex set of X / K and B,

[^0]$C \in \Omega$ are adjacent if and only if there exists a $u \in B$ and $v \in C$ such that $\{u, v\} \in E(X)$. A covering \widetilde{X} of X with a projection p is said to be regular (or N-covering) if there is a semiregular subgroup N of the automorphism group $\operatorname{Aut}(\widetilde{X})$ such that graph X is isomorphic to the quotient graph \widetilde{X} / N, say by h, and the quotient $\operatorname{map} \widetilde{X} \rightarrow \widetilde{X} / N$ is the composition $p h$ of p and h. If N is a cyclic or an elementary Abelian, then, \widetilde{X} is called a cyclic or an elementary Abelian covering of X, and if \widetilde{X} is connected, N becomes the covering transformation group.

An s-arc in a graph X is an ordered $(s+1)$-tuple $\left(v_{0}, v_{1}, \ldots, v_{s}\right)$ of vertices of X such that v_{i-1} is adjacent to v_{i} for $1 \leqslant i \leqslant s$, and $v_{i-1} \neq v_{i+1}$ for $1 \leqslant i<s$; in other words, a directed walk of length s that never includes a backtracking. For a graph X and a subgroup G of $\operatorname{Aut}(X), X$ is said to be G-vertex-transitive, G-edge-transitive, or G-s-arc-transitive if G is transitive on the sets of vertices, edges, or s-arcs of X, respectively, and G-s-regular if G acts regularly on the set of s-arcs of X. A graph X is called vertex-transitive, edge-transitive, s-arc-transitive, or s-regular if X is $\operatorname{Aut}(X)$-vertex-transitive, $\operatorname{Aut}(X)$-edge-transitive, $\operatorname{Aut}(X)$-s-arctransitive, or $\operatorname{Aut}(X)$-s-regular, respectively. In particular, 1-arc-transitive means arc-transitive, or symmetric.

Covering techniques have long been known as a powerful tool in topology, and graph theory. Regular covering of a graph is currently an active topic in algebraic graph theory. Tutte [23, 24] showed that every finite cubic symmetric graph is s-regular for some $s \geqslant 1$, and this s is at most five. It follows that every cubic symmetric graph has an order of the form $2 m p$ for a positive integer m and a prime number p. In order to know all cubic symmetric graphs, we need to classify the cubic s-regular graphs of order $2 m p$ for a fixed positive integer m and each prime p. Conder and Dobcsányi [5, 6] classified the cubic s-regular graphs up to order 2048 with the help of the "Low index normal subgroups" routine in MAGMA system [3]. Cheng and Oxley [4] classified the cubic s-regular graphs of order $2 p$. By using the covering technique, cubic s-regular graphs with order

$$
\begin{aligned}
& 2 p^{2}, \quad 2 p^{3}, \quad 4 p, 4 p^{2}, 6 p, 6 p^{2}, \quad 8 p, \quad 8 p^{2}, 10 p, 10 p^{2}, \\
& 12 p, \quad 12 p^{2}, \quad 14 p, \quad 36 p, \quad 44 p, \quad 52 p, \quad 66 p, 68 p, \quad 76 p, \quad 22 p, \\
& 22 p^{2}, \quad 10 p^{3}, \text { and } 8 p^{3}
\end{aligned}
$$

were classified in $[1,8-13,19,20,22]$.
In this paper, by employing the covering technique, group-theoretical construction, and concept linear algebra, is investigated the connected cubic s-regular graphs of order $28 p$ for each $s \geqslant 1$, and each prime p.

2. Preliminaries related to covering, Voltage graphs, lifting problems and the first homology group

Let X be a graph and K be a finite group. By a^{-1} we mean the reverse arc to an arc a. A voltage assignment (or K-voltage assignment) of X is a function $\xi: A(X) \rightarrow K$ with the property that $\xi\left(a^{-1}\right)=\xi(a)^{-1}$ for each $\operatorname{arc} a \in A(X)$. The values of ξ are called voltages, and K is the voltage group. The graph $X \times_{\xi} K(\operatorname{Cov}(X, \xi))$ derived from a voltage assignment $\xi: A(X) \rightarrow K$ has vertex set $V(X) \times K$ and edge set $E(X) \times K$, so that an edge (e, g) of $X \times_{\xi} K$ joins a vertex (u, g) to $(v, \xi(a) g)$ for $a=(u, v) \in A(X)$ and $g \in K$, where $e=\{u, v\}$. [21] The voltage assignment ξ on arcs extends to a voltage assignment on walks in a natural way, that is, the voltage on a walk W , say with consecutive incident $\operatorname{arcs} a_{1}, a_{2}, \ldots, a_{n}$, is $\xi\left(a_{1}\right) \xi\left(a_{2}\right) \ldots \xi\left(a_{n}\right)$.

Clearly, the derived graph $X \times_{\xi} K$ is a covering of X with the first coordinate projection $p: X \times_{\xi} K \rightarrow X$, which is called the natural projection. By defining $\left(u, g^{\prime}\right)^{g}=\left(u, g^{\prime} g\right)$ for any $g \in K$ and $\left(u, g^{\prime}\right) \in V\left(X \times_{\xi} K\right)$, K becomes a subgroup of $\operatorname{Aut}\left(X \times_{\xi} K\right)$ which acts semiregularly on $V\left(X \times_{\xi} K\right)$. Therefore, $X \times_{\xi} K$ can be viewed as a K-covering. For each $u \in V(X)$ and $u v \in E(X)$, the vertex set $\{(u, g) \mid g \in K\}$ is the fibre of u and the edge set $\{(u, g)(v, \xi(a) g) \mid \in K\}$ is the fibre of $\{u, v\}$, where $a=(u, v)$. Conversely, each regular covering \widetilde{X} of X with a covering transformation group K can be derived from a K-voltage assignment. Given a spanning tree T of the graph X, a voltage assignment ξ is said to be T-reduced if the voltages on the tree arcs are the identity. Gross and Tucker [15] showed that every regular covering \widetilde{X} of a graph X can be derived from a T-reduced voltage assignment \widetilde{X} with respect to an arbitrary fixed spanning tree T of X.

Let \widetilde{X} be a K-covering of X with a projection p . If $\alpha \in \operatorname{Aut}(X)$ and $\widetilde{\alpha} \in \operatorname{Aut}(\widetilde{X})$ satisfy $\widetilde{\alpha} p=p \alpha$, we call $\widetilde{\alpha}$ a lift of α, and α the projection of $\widetilde{\alpha}$. Concepts such as a lift of a subgroup of $\operatorname{Aut}(X)$ and the projection of a subgroup of \widetilde{X} are self-explanatory [17]. The lifts and projections of such subgroups are of course subgroups in $\operatorname{Aut}(\widetilde{X})$ and $\operatorname{Aut}(X)$, respectively. In particular, if the covering graph \widetilde{X} is connected, then the covering transformation group K is the lift of the trivial group, that is,

$$
K=\{\widetilde{\alpha} \in \operatorname{Aut}(\widetilde{X}): p=\widetilde{\alpha} p\}
$$

Let T be a spanning tree of a graph X. A closed walk W that contains only one cotree arc is called a fundamental closed walk. Similarly, a cycle W that contains only one cotree arc is called a fundamental cycle. Observe
that a voltage assignment on arcs extends to a voltage assignment on walks in a natural way. Given $\alpha \in \operatorname{Aut}(X)$, we define a function $\bar{\alpha}$ from the set of voltages on fundamental closed walks based at a fixed vertex $v \in V(X)$ to the voltage group K by

$$
(\xi(C))^{\bar{\alpha}}=\xi\left(C^{\alpha}\right)
$$

where C ranges over all fundamental closed walks at v, and $\xi(C)$ and $\xi\left(C^{\alpha}\right)$ are the voltages on C and C^{α}, respectively. Note that if K is abelian, $\bar{\alpha}$ does not depend on the choice of the base vertex, and the fundamental closed walks at v can be substituted by the fundamental cycles generated by the cotree arcs of X.

Two coverings \widetilde{X}_{1} and \widetilde{X}_{2} of X with projection p_{1} and p_{2}, respectively, are said to be isomorphic if there exist an automorphism $\alpha \in \operatorname{Aut}(X)$ and an isomorphism $\tilde{\alpha}: \widetilde{X}_{1} \rightarrow \widetilde{X}_{2}$ such that $\tilde{\alpha} \mathrm{p}_{2}=\mathrm{p}_{1} \alpha$. In particular, if α is the identity automorphism of X, then we say \widetilde{X}_{1} and \widetilde{X}_{2} are equivalent.

For a graph $X, D(X)$ is a set of darts, which is required to be disjoint from $V(X), I$ is a mapping of $D(X)$ onto $V(X)$, called the incidence function, and λ is an involutory permutation of $D(X)$, called the dartreversing involution. For convenience or if λ is not explicitly specified we sometimes write x^{-1} instead of λx. Intuitively, the mapping I assigns to each dart its initial vertex, and the permutation λ interchanges a dart and its reverse. The terminal vertex of a dart x is the initial vertex of λx. The set of all darts initiated at a given vertex u is denoted by D_{u}, called the neighborhood of u. The cardinality $\left|D_{u}\right|$ of D_{u} is the valency of the vertex u. The orbits of λ are called edges; thus each dart determines uniquely its underlying edge. An edge is called a semiedge if $\lambda x=x$, a loop if $\lambda x \neq x$ and $I \lambda x=I x$, and it is called a link otherwise. A walk of length $n \geqslant 1$ is a sequence of n darts $W=x_{1} x_{2} \ldots x_{n}$ such that, for each index $1 \leqslant k \leqslant n-1$, the terminal vertex of x_{k} coincides with the initial vertex of x_{k+1}. Moreover, we define each vertex to be a trivial walk of length 0 . The initial vertex of W is the initial vertex of x_{1}, and the terminal vertex of W is the terminal vertex of x_{n}. The walk is closed if the initial and the terminal vertex coincide. In this case we say that the walk is based at that vertex. If W has initial vertex u and terminal vertex v, then we usually write $W: u \rightarrow v$. Let W_{1} and W_{2} be two walks such that the terminal vertex of W_{1} coincides with the initial vertex of W_{2}. We define the product $W_{1} W_{2}$ as the juxtaposition of the two sequences. A walk W is reduced if it contains no subsequence of the form $x x^{-1}$.

By $\pi(X)$ we denote the fundamental groupoid of a graph X, that is, the set of all reduced walks equipped with the product $W_{1} W_{2}$. The group
$\pi(X, u)$ is called the fundamental group of X at u. The fundamental group is not a free group in general. Consequently, the first homology group $H_{1}(X)$, obtained by abelianizing $\pi(X, u)$, is not necessarily a free Z-module. Namely, let $r_{e}+r_{s}$ be the minimal number of generators of $\pi(X, u)$, where r_{s} is the number of semiedges and r_{e} is the number of cotree loops and links relative to some spanning tree. Then $H_{1}(X) \cong Z^{r_{e}} \times Z_{2}^{r_{s}}$. [18] The first homology group $H_{1}\left(X, Z_{p}\right) \cong H_{1}(X) / p H_{1}(X)$ with Z_{p} as the coefficient ring can be considered as a vector space over the field Z_{p}. Observe that

$$
H_{1}\left(X, Z_{p}\right) \cong \begin{cases}Z_{p}^{r_{e}+r_{s}} & p=2 \\ Z_{p}^{r_{e}} & p \geqslant 3\end{cases}
$$

We start by introducing five propositions for later applications in this paper. The following proposition is necessary to classify s-regular graph.

Proposition 2.1. [16] Let X be a connected symmetric graph of prime valency and G a s-regular subgroup of $\operatorname{Aut}(X)$ for some $s \geqslant 1$. If a normal subgroup N of G has more than two orbits, then it is semiregular and G / N is an s-regular subgroup of $\operatorname{Aut}\left(X_{N}\right)$, where X_{N} is the quotient graph of X corresponding to the orbits of N. Furthermore, X is a N-regular covering of X_{N}.

Proposition 2.2. [24] If X is an s-arc regular cubic graph, then $s \leqslant 5$.
Proposition 2.3. [9] Let X be a connected cubic symmetric graph of order $4 p$ or $4 p^{2}$ for a prime p. Then X is isomorphic to the 2-regular hypercube Q_{3} of order 8, the 2-regular generalized Petersen graphs $P(8,3)$ or $P(10,7)$ of order 16 or 20 respectively, the 3 -regular Dodecahedron of order 20 or the 3 -regular Coxeter graph C_{28} of order 28 .

Proposition 2.4. [19] Let p be a prime and let X be a cubic symmetric graph of order $14 p$. Then, X is 1 -, 2 - or 3 -regular. Furthermore,
(1) X is 1 -regular if and only if X is isomorphic to one of the graphs $F 42, F 98 A, C F 14 p$ and $D F 14 p$ where $p>7$ and $p \equiv 1 \bmod 6$.
(2) X is 2 -regular if and only if X is isomorphic to one of the graphs $F 98 B$ and $F 182 C$.
(3) X is 3-regular if and only if X is isomorphic to one of the graphs $F 28$ and $F 182 D$.

The next proposition [9, Theorem 6.1] is shown the cyclic or elementary abelian coverings of the complete graph K_{4}.

Proposition 2.5. Let K be a cyclic or an elementary abelian group and let \widetilde{X} be a connected K-covering of the complete graph K_{4} whose fibre-preserving group is arc-transitive. Then, X is 2 -regular. Moreover,
(1) if K is cyclic then \widetilde{X} is isomorphic to the complete graph K_{4}, the 3-dimensional hypercube Q_{3}, or the generalized Petersen graph $P(8,3)$.
(2) If K is elementary abelian but not cyclic, then \widetilde{X} is isomorphic to one of $E C_{p^{3}}$ for a prime p (defined in Example 3.2 in [9]).

3. Coxeter graph

In the mathematical field of graph theory, the Coxeter graph is a 3 -regular graph with 28 vertices and 42 edges.

$$
\begin{aligned}
V(X)= & {[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,} \\
& 22,23,24,25,26,27], \\
E(X)= & {[\{0,1\},\{0,23\},\{0,24\},\{1,2\},\{1,12\},\{2,3\},\{2,25\},\{3,4\},} \\
& \{3,21\},\{4,5\},\{4,17\},\{5,6\},\{5,11\},\{6,7\},\{6,27\},\{7,8\}, \\
& \{7,24\},\{8,9\},\{8,25\},\{9,10\},\{9,20\},\{10,11\},\{10,26\}, \\
& \{11,12\},\{12,13\},\{13,14\},\{13,19\},\{14,15\},\{14,27\}, \\
& \{15,16\},\{15,25\},\{16,17\},\{16,26\},\{17,18\},\{18,19\} \\
& \{18,24\},\{19,20\},\{20,21\},\{21,22\},\{22,23\},\{22,27\},\{23,26\}] .
\end{aligned}
$$

Figure 1. Coxeter graph.

We choose

$$
\begin{aligned}
\alpha= & (2,12)(3,11)(4,5)(6,17)(7,18)(8,19)(9,20)(10,21)(13,25)(14,15) \\
& (16,27)(22,26) \\
\beta= & (2,12)(3,13)(4,14)(5,15)(6,16)(7,26)(8,10)(11,25)(17,27)(18,22) \\
& (19,21)(23,24), \\
\gamma= & (1,23)(2,26)(3,10)(4,9)(5,20)(6,19)(7,18)(8,17)(11,21)(12,22) \\
& (13,27)(16,25), \\
\sigma= & (0,1)(2,24)(3,18)(4,17)(5,16)(6,15)(7,25)(11,26)(12,23)(13,22) \\
& (14,27)(19,21)
\end{aligned}
$$

as automorphisms of Coxeter graph. Then $\operatorname{Aut}(F 28 A)=\langle\alpha, \beta, \gamma, \sigma\rangle$. The automorphism group of the Coxeter graph is a group of order 336. It acts transitively on the vertices, on the edges and on the arcs of the graph. Therefore the Coxeter graph is a symmetric graph. It has automorphisms that take any vertex to any other vertex and any edge to any other edge. According to the Foster census, the Coxeter graph, referenced as $F 28 A$, is the only cubic symmetric graph on 28 vertices. By sage[2] the automorphism group of Coxeter graph has one proper arc-transitive subgroup $G=\langle\beta, \gamma, \sigma\rangle$.

We choose a spanning tree T of Coxeter graph consisting of the edges

$$
\begin{gathered}
(0,1),(0,23),(0,24),(1,2),(1,12),(2,3),(2,25),(3,4) \\
(3,21),(4,5),(4,17),(5,6),(5,11),(6,7),(6,27),(7,8),(8,9),(9,10) \\
(9,20),(10,26),(12,13),(13,14),(13,19),(14,15),(15,16),(17,18),(21,22)
\end{gathered}
$$

By choosing T, we can define a T-reduced voltage assignment. We show the cotree arcs by setting

$$
\begin{gathered}
x_{1}=(7,24), \quad x_{2}=(8,25), \quad x_{3}=(10,11), \quad x_{4}=(11,12), \\
x_{5}=(14,27), \quad x_{6}=(15,25), \quad x_{7}=(16,17), \quad x_{8}=(16,26) \\
x_{9}=(18,19), \quad x_{10}=(18,24), \quad x_{11}=(19,20), \quad x_{12}=(20,21), \\
x_{13}=(22,23), \quad x_{14}=(22,27), \quad x_{15}=(23,26)
\end{gathered}
$$

4. Classifying cubic s-regular graphs of order $28 p$

In this section, by applying concept linear algebra, the connected cubic s-regular graphs of orders $28 p$, where p is a prime, is investigated. Assume that a connected graph X and a subgroup $G \leqslant \operatorname{Aut}(X)$ are given. Choose a spanning tree T of X and a set of $\operatorname{arcs}\left\{x_{1}, \ldots, x_{r}\right\} \subseteq A(X)$
containing exactly one arc from each edge in $E(X \backslash T)$. Let B_{T} be the corresponding basis of the first homology group $H_{1}\left(X, Z_{p}\right)$ determined by $\left\{x_{1}, \ldots, x_{r}\right\}$. Further, denote by $G^{* h}=\left\{\alpha^{* h} \mid \alpha \in G\right\} \leqslant G L\left(H_{1}\left(X, Z_{p}\right)\right)$ the induced action of G on $H_{1}\left(X, Z_{p}\right)$, and let $M_{G} \leqslant Z_{p}^{r \times r}$ be the matrix representation of $G^{* h}$ with respect to the basis B_{T}. By M_{G}^{t} we denote the dual group consisting of all transposes of matrices in M_{G}.

The following proposition is a special case of [18, Proposition 6.3, Corollary 6.5].

Proposition 4.1. Let T be a spanning tree of a connected graph X and let the set $\left\{x_{1}, x_{2}, \ldots, x_{r}\right\} \subseteq A(X)$ contain exactly one arc from each cotree edge. Let $\xi: A(X) \rightarrow Z_{p}$ be a voltage assignment on X which is trivial on T, and let $Z(\xi)=\left[\xi\left(x_{1}\right), \xi\left(x_{2}\right), \ldots, \xi\left(x_{r}\right)\right]^{t} \in Z_{p}^{r \times 1}$. Then the following hold.
(a) A group $G \leqslant \operatorname{Aut}(X)$ lifts along $p_{\xi}: \operatorname{Cov}(X, \xi) \rightarrow X$ if and only if the induced subspace $\langle Z(\xi)\rangle$ is an M_{G}^{t}-invariant 1-dimensional subspace.
(b) If $\xi^{\prime}: A(X) \rightarrow Z_{p}$ is another voltage assignment satisfying (a), then $\operatorname{Cov}\left(X, \xi^{\prime}\right)$ is equivalent to $\operatorname{Cov}(X, \xi)$ if and only if $\langle Z(\xi)\rangle=\left\langle Z\left(\xi^{\prime}\right)\right\rangle$, as subspaces. Moreover, $\operatorname{Cov}\left(X, \xi^{\prime}\right)$ is isomorphic to $\operatorname{Cov}(X, \xi)$ if and only if there exists an automorphism $\alpha \in \operatorname{Aut}(X)$ such that the matrix M_{α}^{t} maps $\left\langle Z\left(\xi^{\prime}\right)\right\rangle$ onto $\langle Z(\xi)\rangle$.

We have the following theorem, by $[5,6]$.
Theorem 4.2. Let $p<79$ be a prime. Then, there are cubic symmetric graphs of order $28 p$. We classify all cubic symmetric graphs in Table 1.

Graph	order	s-regular
F056A	$28^{*} 2$	1
F056B	$28^{*} 2$	2
F056C	$28^{*} 2$	3
F084A	$28^{*} 3$	2
F364A	$28^{*} 13$	2
F364B	$28^{*} 13$	2
F364C	$28^{*} 13$	2
F364D	$28^{*} 13$	2
F364E	$28^{*} 13$	2
F364F	$28^{*} 13$	2
F364G	$28^{*} 13$	3

Table 1. Cubic symmetric graphs of order $28 p$ with $p<79$.

Remark 4.3. To find all arc-transitive G-admissible Z_{p}-covering projections of $F 28 A$, we have to find, by proposition 4.1, all invariant 1dimensional subspaces of the transpose of the matrix M_{G}.

For this purpose, we express the following lemma.

Lemma 4.4. Let B, C and D be the transposes of the matrices which represent the linear transformations $\beta^{* h}, \gamma^{* h}$ and $\sigma^{* h}$ relative to $B_{T}=$ $\left\{C_{x_{i}} \mid 1 \leqslant i \leqslant 15\right\}$; the standard ordered basis of $H_{1}\left(F 28 A, Z_{p}\right)$ associated with the spanning tree T and the $\operatorname{arcs} x_{i}(i=1, \ldots, 15)$, respectively. Then

$$
B=\left(\begin{array}{ccccccccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & -1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

$$
D=\left(\begin{array}{ccccccccccccccc}
0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
1 & -1 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 & 0 & -1 & 0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & -1 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & -1 & 1 & 0 \\
0 & 1 & -1 & 0 & 0 & -1 & 1 & 0 & 0 & 1 & 0 & 0 & -1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & -1 & 1 & 0 & 0 & 1 & 0 & -1 & -1 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 1 & -1 & 0 & -1 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & -1 & -1 & 0 & -1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Proof. The rows of these matrices are obtained by letting the automorphisms β, γ and σ act on B_{T}. For example, the permutation β maps the cycle

$$
[0,1,2,3,4,5,6,7,24,0]
$$

corresponding to x_{1}, to the cycle

$$
[0,1,12,13,14,15,16,26,23,0] .
$$

Since the latter is the sum of the base cycles corresponding to x_{8} and x_{15}^{-1}, the first row of B is

$$
(0,0,0,0,0,0,0,1,0,0,0,0,0,0,-1)
$$

By similar computations we can get the matrices B, C and D.
By Sage [2] we have the following lemma.
Lemma 4.5. The minimal polynomials of B, C and D are
$m_{B}(x)=(x-1)(x+1), m_{C}(x)=(x-1)(x+1)$ and $m_{D}(x)=(x-1)(x+1)$, respectively.

By a straightforward calculation, lemma 4.4 and lemma 4.5, we have

$$
\begin{aligned}
& \operatorname{ker}(B-I)=\left\langle u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}, u_{7}\right\rangle \\
& \operatorname{ker}(B+I)=\left\langle u_{8}, u_{9}, u_{10}, u_{11}, u_{12}, u_{13}, u_{14}, u_{15}\right\rangle \\
& \operatorname{ker}(C-I)=\left\langle v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}\right\rangle \\
& \operatorname{ker}(C+I)=\left\langle v_{8}, v_{9}, v_{10}, v_{11}, v_{12}, v_{13}, v_{14}, v_{15}\right\rangle \\
& \operatorname{ker}(D-I)=\left\langle w_{1}, w_{2}, w_{3}, w_{4}, w_{5}, w_{6}\right\rangle \\
& \operatorname{ker}(D+I)=\left\langle w_{7}, w_{8}, w_{9}, w_{10}, w_{11}, w_{12}, w_{13}, w_{14}, w_{15}\right\rangle
\end{aligned}
$$

where

$$
v_{1}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
1 \\
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right), \quad v_{2}=\left(\begin{array}{c}
0 \\
1 \\
0 \\
0 \\
0 \\
0 \\
-1 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right), \quad v_{3}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
-1 \\
0 \\
0 \\
0
\end{array}\right), \quad v_{4}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
1 \\
1 \\
0 \\
1
\end{array}\right), \quad v_{5}=\left(\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
1 \\
-1 \\
0 \\
-1 \\
0 \\
0 \\
0 \\
0 \\
1 \\
-1 \\
1
\end{array}\right),
$$

$$
v_{6}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
1 \\
0 \\
0 \\
0 \\
1 \\
-1 \\
1
\end{array}\right), \quad v_{7}=\left(\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
1 \\
0 \\
-1 \\
1 \\
-1
\end{array}\right), \quad v_{8}=\left(\begin{array}{c}
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
-1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right), \quad v_{9}=\left(\begin{array}{c}
0 \\
1 \\
0 \\
0 \\
0 \\
0 \\
1 \\
-1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
2
\end{array}\right), \quad v_{10}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
1 \\
0 \\
0 \\
0 \\
2
\end{array}\right),
$$

$$
v_{11}=\left(\begin{array}{c}
0 \\
0 \\
0 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
-1 \\
-1 \\
0 \\
-1
\end{array}\right), \quad v_{12}=\left(\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
1 \\
-1 \\
0
\end{array}\right), \quad v_{13}=\left(\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
0 \\
1 \\
0 \\
-1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right), \quad v_{14}=\left(\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
1 \\
0 \\
0 \\
0 \\
-1 \\
1 \\
-1
\end{array}\right), \quad v_{15}=\left(\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
1 \\
0 \\
1 \\
-1 \\
-1
\end{array}\right),
$$

$w_{1}=\left(\begin{array}{c}1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ -1 \\ 1 \\ 0\end{array}\right), \quad w_{2}=\left(\begin{array}{c}0 \\ 1 \\ 0 \\ 0 \\ 0 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ -1 \\ 0 \\ -1 \\ 0\end{array}\right), \quad w_{3}=\left(\begin{array}{c}0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ -1 \\ 0 \\ 0 \\ 1 \\ -1 \\ 0 \\ -1 \\ 0\end{array}\right), \quad w_{4}=\left(\begin{array}{c}0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ -1 \\ 1 \\ -1\end{array}\right), \quad w_{5}=\left(\begin{array}{c}0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ -1 \\ 1 \\ 0\end{array}\right)$, $w_{6}=\left(\begin{array}{c}0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ -1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right), \quad w_{7}=\left(\begin{array}{c}1 \\ 0 \\ 0 \\ 0 \\ 0 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ -1 \\ 1 \\ 0\end{array}\right), \quad w_{8}=\left(\begin{array}{c}0 \\ 1 \\ 0 \\ 0 \\ 0 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ -1 \\ 1 \\ 0\end{array}\right), \quad w_{9}=\left(\begin{array}{c}0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ -1 \\ 0\end{array}\right), \quad w_{10}=\left(\begin{array}{c}0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ -1 \\ 1 \\ 1\end{array}\right)$,
$w_{11}=\left(\begin{array}{c}0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ -1 \\ 0\end{array}\right), w_{12}=\left(\begin{array}{c}0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ -1 \\ 0\end{array}\right), w_{13}=\left(\begin{array}{c}0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ -1 \\ 0 \\ 0\end{array}\right), \quad w_{14}=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right), \quad w_{15}=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0\end{array}\right)$

Now, we have $\operatorname{ker}(B \pm I) \cap \operatorname{ker}(C \pm I) \cap \operatorname{ker}(D \pm I)=0$.
Due to the above description, we have the following result.
Corollary 4.6. There is not $\langle B, C, D\rangle$-invariant 1-dimensional subspaces in Z_{p}^{15}.

Remark 4.7. If X is a regular graph with valency k on m vertices and $s \geqslant 1$, then there are exactly $m k(k-1)^{s-1} s$-arcs. It follows that if X is s-arc transitive then $|\operatorname{Aut}(X)|$ must be divisible by $m k(k-1)^{s-1}$, and if X is s-regular, then $|\operatorname{Aut}(X)|=m k(k-1)^{s-1}$. In particular, a cubic arc-transitive graph X is s-regular if and only if $|\operatorname{Aut}(X)|=(3 m) 2^{s-1}$.

Theorem 4.8. Let $p \geqslant 79$ be a prime. Then, there is no cubic symmetric graph of order $28 p$.

Proof. Suppose that X is a connected cubic symmetric graph of order $28 p$, where $p \geqslant 79$ is a prime. Set $A:=\operatorname{Aut}(X)$. let P be a Sylow p-subgroup of A. If P is normal in A then by Proposition $2.1 X$ is a regular covering of the graph $F 28 A$ with the covering transformation group Z_{p}. On the contrary, suppose that P is not normal in A. Assume that $N_{A}(P)$ is the normalizer of P in A. By Sylow's theorem, the number of Sylow p-subgroups of A is $1+n p=\left|\frac{A}{N_{A}(P)}\right|$, for a positive integer n. By Proposition $2.2 X$ is at most 5 -regular and hence $|A|$ is a divisor of $3 \cdot 7 \cdot 2^{6} p$. Then $1+n p$ is a divisor of $3 \cdot 7 \cdot 2^{6}$. Since $p \geqslant 79$, we have $(n, p)=(1,83),(1,167),(17,79),(1,223),(3,149)$. We consider the following cases.
Case I: $(n, p)=(17,79),(1,223),(3,149)$.
First, we suppose that $(n, p)=(17,79),(1,223),(3,149)$. Then $3 \cdot 7 \cdot 2^{5}$ $|A|$, implying that X is at least 4-regular. Assume that A is nonsolvable. Its composition factors would have to be a non-abelian simple $\{2,3,7, p\}$ group where $p=79,149,223$. Now, we can get a contradiction, by the classification of finite simple groups [14, pp. 12-14] and [7]. Let N be a minimal normal subgroup of A and X / N the quotient graph of X corresponding to the orbits of N. Then N is an elementary abelian. By Proposition $2.1 X / N$ is at least 4-regular with order $28,14 p, 7 p$ or $4 p$. If $|X / N|=28,14 p, 4 p$, by $[3,4]$, Proposition 2,3 and 2.4 a contradiction can be obtained. If $|X / N|=7 p$, then the quotient graph X_{N} corresponding to orbits of N has odd number $(7 p)$ of vertices and valency 3 . It is a contradiction.

Case II: $(n, p)=(1,83),(1,167)$.

Now, we assume that $(n, p)=(1,83),(1,167)$. Then $3 \cdot 7 \cdot 2^{2}| | A \mid$, implying that X is at least 1 -regular. With the same reasoning as Case I A is solvable. Let M be a minimal normal subgroup of A and X / M the quotient graph of X corresponding to the orbits of M. Then M is elementary abelian. If $|M| \neq p$ then by Proposition $2.1 X / M$ is at least 1 -regular with order $14 p, 7 p$ or $4 p$. By the same argument as above, there is no s-regular $(s \geqslant 1$) with order $14 p, 7 p$ or $4 p$. If $|M|=p$, then the quotient graph X / M has order 28 . The automorphism group of the Coxeter graph contains no 1 -regular subgroup [2]. Therefore the quotient graph X / M is at least 2-regular. Since $M \triangleleft A, A / M$ is solvable. Let T / M be a minimal normal subgroup of A / M. Hence T / M is an elementary abelian 2-, 7group. By Proposition $2.3 X / T$ is at least 2 -regular with order 4 or 14 . We arrive at a contradiction with Proposition 2.5 and [19, Proposition 2.1 and Corollary 2.2]. Therefore P is normal in A. Then X is a regular covering of the graph $F 28 A$ with the covering transformation group Z_{p}. By sage [2] the automorphisms of Coxeter graph has one proper arc-transitive subgroup $G=\langle\beta, \gamma, \sigma\rangle$. By Remark 4.3, we have to find all invariant onedimensional subspaces of the transpose of the matrix M_{G}. In other words, we need to look for $\langle B, C, D\rangle$-invariant 1-dimensional subspaces in Z_{p}^{15}. By Corollary 4.6 there is not $\langle B, C, D\rangle$-invariant one-dimensional subspaces in Z_{p}^{15}. Then by Proposition 4.1.a $G \leqslant \operatorname{Aut}(F 28 A)$ cannot lift and hence there is no cubic symmetric graph of order $28 p$ where $p \geqslant 79$.

Corollary 4.9. Let p be a prime and let X be a connected cubic symmetric graph of order $28 p$. Then
(1) X is 1-regular if and only if X is isomorphic to the graph $F 056 A$.
(2) X is 2-regular if and only if X is isomorphic to one of the eight graphs $F 056 B$, F084A, F364A, F364B, F364C, F364D, F364E and $F 364 F$.
(3) X is 3 -regular if and only if X is isomorphic to one of the two graphs $F 056 C$ and $F 364 G$.

Proof. By Theorems 4.2 and 4.8, the proof is complete.

References

[1] M. Alaeiyan and M. K. Hosseinipoor A classification of the cubic s-regular graphs of orders $12 p$ and $12 p^{2}$, Acta Universitatis Apulensis (2011), 153-158.
[2] R.A. Beezer, Sage for Linear Algebra A Supplement to a First course in Linear Algebra.,Sage web site http://www.sagemath.org. 2011.
[3] W. Bosma and J. Cannon, Handbook of Magma Function, Sydney University Press, Sydney, 1994.
[4] Y. Cheng and J. Oxley, On weakly symmetric graphs of order twice a prime, J. Combin. Theory Ser. B 42 (1987), 196-211.
[5] M. D. E. Conder, Trivalent (cubic) symmetric graphs on up to 2048 vertices, J (2006). http://www.math.auckland.ac.nz conder/symmcubic2048list.txt.
[6] M. D. E. Conder and P. Dobcsányi, Trivalent symmetric graphs on up to 768 vertices, J. Combin. Math. Combin. Comput. 40 (2002) 41-63.
[7] J. H. Conway, R. T. Curties, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985.
[8] Y. Q. Feng and J. H. Kwak, Classifying cubic symmetric graphs of order $10 p$ or $10 p^{2}$, Sci. China Ser. A 49 (2006), 300-319.
[9] Y. Q. Feng and J. H. Kwak, Cubic symmetric graphs of order a small number times a prime or a prime square J. Combin. Theory Ser. B 97 (2007), 627-646.
[10] Y. Q. Feng and J. H. Kwak, Cubic symmetric graphs of order twice an odd prime-power, J. Aust. Math. Soc. 81 (2006), 153-164.
[11] Y. Q. Feng and J. H. Kwak, One-regular cubic graphs of order a small number times a prime or a prime square, J. Aust. Math. Soc. 76 (2004), 345-356.
[12] Y. Q. Feng, J. H. Kwak and K. Wang, Classifying cubic symmetric graphs of order $8 p$ or $8 p^{2}$, European J. Combin. 26 (2005), 1033-1052.
[13] Y. Q. Feng, J. H. Kwak and M .Y. Xu, Cubic s-regular graphs of order $2 p^{3}$, J. Graph Theory 52 (2006), 341-352.
[14] D. Gorenstein, Finite Simple Groups, Plenum Press, New York, 1982.
[15] J. L. Gross and T.W. Tucker, Generating all graph coverings by permutation voltage assignments, Discrete Math. 18 (1977), 273-283.
[16] P. Lorimer, Vertex-transitive graphs: Symmetric graphs of prime valency, J. Graph Theory 8 (1984), 55-68.
[17] A. Malnic, Group actions, covering and lifts of automorphisms, Discrete Math. 182 (1998), 203-218.
[18] A. Malnič, D. Marušič and P. Potočnik, Elementary abelian covers of graphs, J. Algebraic Combin. 20 (2004) 71-97.
[19] J.M. Oh, A classification of cubic s-regular graphs of order 14p, Discrete Math. 309 (2009), 2721-2726
[20] J. M. Oh, cubic s-regular graphs of orders $12 p, 36 p, 44 p, 52 p, 66 p, 68 p$ and $76 p$, J. Appl. Math. Inform., 31(2013) 651-659.
[21] M. Skoviera, A construction to the theory of voltage groups, Discrete Math. 61 (1986), 281-292.
[22] A. A. Talebi and N. Mehdipoor, Classifying cubic s-regular graphs of orders $22 p$, $22 p^{2}$, Algebra Discrete Math. 16(2013) 293-298.
[23] W. T. Tutte, A family of cubical graphs, Proc. Cambridge Philos. Soc. 43 (1947), 459-474.
[24] W. T. Tutte, On the symmetry of cubic graphs, Canad. J. Math. 11 (1959), 621-624.

Contact information

A. Imani, N. Mehdipoor, A. A. Talebi
Faculty of Mathematics, University of Mazandaran, Iran
E-Mail(s): al.imani@stu.umz.ac.ir, nargesmehdipoor@yahoo.com, a.talebi@umz.ac.ir

Received by the editors: 16.02.2016.

[^0]: 2010 MSC: 05C25, 20B25.
 Key words and phrases: S-regular graphs, Homology group, Coxeter graph, Symmetric graphs, Regular covering.

