Almost all derivative quivers of artinian biserial rings contain chains

Tetjana Avdeeva and Olexandr Ganyushkin

Communicated by V. V. Kirichenko

Abstract. A lower estimate for the number M_{n} of all labelled quivers with n-vertex parts of Artinian biserial rings is given and the asymptotic of the relation M_{n} / B_{n}, where B_{n} denotes the number of those quivers all connected components of which are cycles, is studied.

In the beginning of 70-s P.Gabriel [1] introduced a notion of a quiver of a finite dimensional algebra over an algebraically closed field - an directed graph of special type/which in concise form preserves some very important information about the algebra. Using these graphs in [1] (see also Krugliak [2]) all finite dimensional algebras of finite type over an algebraically closed field with square zero radical are described. Later V.Kirichenko has expanded the construction of such an directed graph to right Noetherian semiperfect rings [3], and then to several other classes of rings (see, for example, [4], [5] and bibliography there). For some classes of rings it is convenient to consider a so called derivative quiver $R Q(A)$ (see [6]), which for the rings under consideration always turns out to be a simple bipartite graph with equicardinal part, instead of a quiver $Q(A)$ of a ring A.

In this connection there arises a natural problem of investigation of graphs which can be quivers of rings of some class. We will deal with Artinian biserial rings, first introduced by .Fuller [7]. A starting point for this paper is the following statement([4], Corollary 5.15): An Artinian ring A, with square zero Jacobson radical is biserial if and only if its derivative quiver $R Q(A)$ is a disconnected union of chains and cycles.

Therefore, a derivative quiver of an Artinian biserial ring is a simple bipartite graph with parts of the same cardinality, in which the degree of each vertex does not exceed 2. In [8] such graphs have been called Artinian-biserial, or just $A B$-graphs. An $A B$-graph with n-vertex parts is called labelled, if the vertices of each part are numbered from 1 to n and it is indicated, which of the parts is lower, and which is upper. In what follows we consider only labelled $A B$-graphs.

In [8] the number B_{n} of those $A B$-graphs with n-vertex parts, all connected components of which are cycles, is counted:

$$
\begin{equation*}
B_{n}=\sum_{\substack{\left(l_{1}, l_{2}, \ldots, l_{n}\right) \\ 1 l_{1}+2 l_{2}+\cdots+n l_{n}=n}} \frac{(n!)^{2}}{\left(l_{1}!\right)^{2} \prod_{k=2}^{n}\left(2^{l_{k}} \cdot k^{l_{k}} \cdot l_{k}!\right)} \tag{1}
\end{equation*}
$$

and an upper bound for the number M_{n} of all labelled $A B$-graphs with n-vertex parts is obtained:

$$
M_{n}<\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} \frac{n!}{(n-k)!}\left|I S_{n-k}\right|^{2}
$$

where $\left|I S_{n}\right|$ - is the order of the inverse symmetric semigroup $I S_{n}$ of degree n. This estimate, however, is rather rough. Beside this, to give an estimate for the order in the right-hand side of the latter inequality for large values of n is itself a difficult problem.

A more effective lower estimate for M_{n} is given in the following
Lemma. The number M_{n} of all labelled $A B$-graphs with n-vertex parts satisfies the inequality $M_{n}>(n!)^{2} \cdot \frac{n}{2}$.
Proof. Since $M_{1}=2$ and $M_{2}=16$ then the statement is obvious for $n=1$ and for $n=2$. Let now $n \geq 3$ and suppose that for all $k<$ n the statement of Lemma is true. Consider those $A B$-graphs, which contain a sufficiently long chain of an odd length. Then exactly one of the endpoints of such a chain will belong to the lower part. To determine a chain of length $2 n-2 k-1$, one has to choose its endpoint in the lower part, then a vertex in the upper part incident to this endpoint, then the next vertex of a chain in the lower part, and so on, each time switching the part of the next vertex choice, till one reaches the $2 n-2 k-s$ vertex of the chain which is its endpoint from the upper part. Since in this way one will get every chain of length $2 n-2 k-1$ exactly one time then the number of different chains of length $2 n-2 k-1$ equals

$$
n \cdot n \cdot(n-1) \cdot(n-1) \cdot(n-2) \cdot(n-2) \cdots(k+1) \cdot(k+1)=\frac{(n!)^{2}}{(k!)^{2}}
$$

Since for $k \leq \frac{n-1}{2}$ an $A B$-graph with n-vertex parts can not contain more than one chain of length $2 n-2 k-1$ then for such values of k the number of $A B$-graphs, containing a chain of length $2 n-2 k-1$, equals $\frac{(n!)^{2}}{(k!)^{2}} \cdot M_{k}$. By the inductive assumption $M_{k}>(k!)^{2} \cdot \frac{k}{2}$. Using the equality $M_{1}=2$, we can assume $M_{k}>(k!)^{2}$. It is easily seen, that an $A B$-graph with n-vertex parts can contain only one chain of length $\geq n$. Therefore,

$$
M_{n}>\sum_{k=0}^{[(n-1) / 2]}\left(\frac{n!}{k!}\right)^{2}(k!)^{2}=(n!)^{2} \cdot \sum_{k=0}^{[(n-1) / 2]} 1=(n!)^{2} \cdot\left[\frac{n-1}{2}\right]>(n!)^{2} \cdot \frac{n}{2}
$$

Theorem. Let M_{n} be the number of all labelled $A B$-graphs with $n-$ vertex parts, and B_{n} - the number of those of such graphs, all connected components of which are cycles. Then $\lim _{n \rightarrow \infty} \frac{B_{n}}{M_{n}}=0$.
Proof. Let us calculate an upper bound for B_{n}. It is known, that the number of permutations of a cycle type $\left(l_{1}, l_{2}, \ldots, l_{n}\right)$ equals $n!\cdot\left(\prod_{k=1}^{n}\left(k^{l_{k}} \cdot l_{k}!\right)\right)^{-1}$. Since the number of all permutations is $n!$, then

$$
\sum_{\substack{\left(l_{1}, l_{2}, \ldots, l_{n}\right) \\ 1 l_{1}+2 l_{2}+\cdots+n l_{n}=n}} \frac{n!}{\prod_{k=1}^{n}\left(k^{\left.l_{k} \cdot l_{k}!\right)}\right.}=n!
$$

After cancellation of both sides by n ! we obtain:

$$
\sum_{\substack{\left(l_{1}, l_{2}, \ldots, l_{n}\right) \\ 1 l_{1}+2 l_{2}+\cdots+n l_{n}=n}} \frac{1}{\prod_{k=1}^{n}\left(k^{l_{k}} \cdot l_{k}!\right)}=1
$$

This equality and an obvious inequality $l_{1}!\cdot \prod_{k=2}^{n} 2^{l_{k}} \geq 1$, imply:

$$
\sum_{\substack{\left(l_{1}, l_{2}, \ldots, l_{n}\right) \\ 1 l_{1}+2 l_{2}+\cdots+n l_{n}=n}} \frac{1}{\left(l_{1}!\right)^{2} \prod_{k=2}^{n}\left(2^{l_{k} \cdot k^{\left.l_{k} \cdot l_{k}!\right)}}=\sum_{\substack{\left(l_{1}, l_{2}, \ldots, l_{n}\right) \\ 1 l_{1}+2 l_{2}+\cdots+n l_{n}=n}}^{\prod_{k=1}^{n}\left(k^{l_{k}} \cdot l_{k}!\right)} \cdot \frac{1}{l_{1}!\prod_{k=2}^{n} 2^{l_{k}}}<\right.}<\sum_{\substack{\left(l_{1}, l_{2}, \ldots, l_{n}\right) \\ 1 l_{1}+2 l_{2}+\cdots+n l_{n}=n}} \frac{1}{\prod_{k=1}^{n}\left(k^{\left.l_{k} \cdot l_{k}!\right)}\right.}=1 .
$$

This inequality and inequality 1 now imply, that $B_{n}<(n!)^{2}$. Therefore, using Lemma, we obtain:

$$
0 \leq \frac{B_{n}}{M_{n}} \leq \frac{(n!)^{2}}{(n!)^{2} \cdot \frac{n}{2}}=\frac{2}{n}
$$

Thus, $\lim _{n \rightarrow \infty} \frac{B_{n}}{M_{n}}=0$.
Following the tradition for usage of the expression 'almost all' (see, for example, [9]), we obtain the following

Corollary. Almost all $A B$-graphs with n-vertex parts contain chains.
We conclude by stating the values of B_{n} and M_{n} and of the relation B_{n} / M_{n} for small values of n :

n	2	3	4	5
B_{n}	2	16	151	4991
M_{n}	16	265	7343	304186
B_{n} / M_{n}	0.125	0.0603773	0.0205638	0.0164077

References

[1] Gabriel P. Unzerlegbare Darstellungen 1. Manuscript Math. 6 (1972), 71-103. [5]
[2] Krugliak.S.A. Representations of algebras with zero sguare radical. Zapiski nauchn. seminarov LOMI Ac.Sci. USSR 28 (1972), 80-89. (in Russian)
[3] Kirichenko, V.V. Generalized uniserial rings, Math. Sb. (N.S.), 99 (141), N 4, (1976), pp. 559-581. English translation, Math USSR Sb., v. 28, N 4, 1976, pp. 501-520.
[4] Danlyev Kh.M., Kirichenko V.V., Haletskaja Z.P., Jaremenko Ju.V. Weakly prime semiperfect 2 -rings and modules over them. Algebraicheskie issledovania (collection of papers), Institut mathematiki NAN Ukrainy, Kiev, 1995, 5-32.
[5] Gubareni N.M., Kirichenko V.V. Rings and Modules. - Czestochowa, 2001.
[6] Kirichenko V.V., Bernik O.Ja. Semiperfect rings of distributive module type. Dopovidi Ac.Sci. URSR. 1988, no. 3, 15-17.
[7] Fuller K.R. Weakly symmetric rings of distributive module type. Comm. in Algebra. 5 (1977), 997-1008.
[8] Avdeeva T.V., Ganyushkin O.G. The number of quivers of Artinian biserial rings. Visnyk Kyivs'kogo Univ., ser. phiz.-math. sci., 1999, no. 3, 18-27. (in Ukrainian)
[9] Korshunov A.D. Main properties of random graphs with large number of vertices and edges. Uspehi mathem.nauk 40 (1985), 1(241), 107-173.(in Russian)

Contact information

T. Avdeeva

Department of Physics and Mathematics, National of Technical University of Ukraine "Kyiv of Polytechnical Institute",37, Peremohy pr., Kyiv,UKRAINE
O. Ganyushkin Department of Mechanics and Mathematics, Kyiv Taras Shevchenko University, 64, Volodymyrska st., 01033, Kyiv, UKRAINE E-Mail: ganiyshk@mechmat.univ.kiev.ua

Received by the editors: 06.12.2002.

