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Abstract. In this paper we introduce the notion of a ternary

Hopf algebra and prove that it can be embedded into a universal

enveloping Hopf algebra.

Introduction

The investigations of Hopf algebras are important since it is one of im-
portant classes of algebras, because these algebras are connected with
physics, noncommutative geometry, algebraic topology, the theory of al-
gebraic groups, the theory of quantum groups. Hopf algebras arise in
investigations of the cohomology of the Lie groups.

In this paper, the notation of Hopf algebra is generalized from binary
to ternary case. The ternary systems play important role in Jordan and
Lie algebras. In the paper it is proved that all obtained results do not hold
for arbitrary n, n > 3. All additional necessary notations and definitions
can be found in the paper, listed in References.

1. Preliminaries

In papers [1] and [2], notions of (n, 2)-bialgebras and (2, n)-bialgebras
are introduced. In particular, for n = 3, we obtain notions of ternary
bialgebras, of the type (3, 2) and (2, 3). Now, we introduce the notion of
a ternary (3, 3)-bialgebra.

2000 Mathematics Subject Classification: 20N15, 20C05, 20C07, 16S34,

17A40.
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Definition 1.1. Let k be a commutative associative ring with a unit, R
a module over k and

µ : R⊗R⊗R→ R η : k → R

k-module morphisms, notation µ(a ⊗ b ⊗ c) = abc, µ(1) = 1, such that
the following diagrams are commutative:

(1) associativity of the ternary multiplication µ:

R⊗R⊗R⊗R⊗R
µ⊗1⊗1

uukkkkkkkkkkkkkk

1⊗µ⊗1

��

1⊗1⊗µ

))SSSSSSSSSSSSSS

R⊗R⊗R
µ

))SSSSSSSSSSSSSSSSS
R⊗R⊗R

µ

��

R⊗R⊗R
µ

uukkkkkkkkkkkkkkkkk

R

or equivalently (abc)de = a(bcd)e = ab(cde);

(2) the property of a unit element

R⊗ k ⊗ k

1⊗η⊗η

��

≃ k ⊗R⊗ k ≃ R

η⊗1⊗η

��

≃ k ⊗ k ⊗R

η⊗η⊗1

��
R⊗R⊗R

µ

**VVVVVVVVVVVVVVVVVVVVV
R⊗R⊗R

µ

��

R⊗R⊗R
µ

tthhhhhhhhhhhhhhhhhhhhh

R

equivalently x11 = 1x1 = 11x = x.

A triple (R,µ, η) is called a ternary k-algebra. The map µ is a multipli-

cation and η a unit of the ternary k-algebra R.

Definition 1.2. Let (R1, µR1
, ηR1

) and (R2, µR2
, ηR2

) be two ternary
k-algebras. A k-module morphism σ : R1 → R2 is called a k-algebra
morphism if the the following equivalent conditions are satisfied:

(i)

σ ◦ µR1
= µR2

◦ (σ ⊗ σ ⊗ σ) and σ ◦ ηR1
= ηR2

,
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(ii) the following diagrams are commutative:

R1 ⊗R1 ⊗R1
σ⊗σ⊗σ

//

µR1
&&MMMMMMMMMMM

R2 ⊗R2 ⊗R2

µR2
xxqqqqqqqqqqq

R1
σ // R2

k
ηR2

!!B
BB

BB
BB

B
ηR1

��~~
~~

~~
~~

R1
σ // R2 .

In [Z1], [Z2] a more general situation of the n-ary algebra was consid-
ered. In [Z1] it was proved that every n-ary algebra R can be embedded
into a universal enveloping associative k-algebra R⊳. The algebra R⊳ as
a k-module has a direct decomposition

R⊳ = R⊕Rx⊕Rx⊕ · · · ⊕Rxn−2,

where the multiplication in R⊳ is defined as follows:

(rxi)(r′xj) = (rr′ 1 · · · 1
︸ ︷︷ ︸

n−2

)xm ∈ Rxm,

where m ≡ (i + j) mod (n − 1) and 1 is the identity element of R. An
embedding ϕ : R → R⊳ is defined by the rule ϕ(r) = rx ∈ Rx. It is
assume that xn = 1 [ZA]. The universal property means that if A is
any associative k-algebra and ψ : R → A a k-module map such that
ψ(r1 · · · an) = φ(r1) · · ·φ(rn) then there exists a unique k-algebra homo-
morphism ψ′ : R⊳toA such that the following diagram is commutative

R⊳

ψ′

��

R

ϕ ::uuuuuu

ψ $$I
I

I
I

A

For any k-modules R1 and R2 there is a k-module map τ : R1 ⊗ R2 →
R2 ⊗ R1 called a twist such that τ(x ⊗ y) = y ⊗ x, for x ∈ R1, y ∈ R2.
[Z1].

Definition 1.3. A triple (R,∆, ε) is a ternary k-coalgebra if there exist
k-module morphisms

∆ : R→ R⊗R⊗R and ε : R→ k,

such that the following diagrams are commutative:
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(i) the diagram of coassociativity of the ternary comultiplication ∆:

R
∆

uukkkkkkkkkkkkkkkkk

∆

))SSSSSSSSSSSSSSSSS

∆
��

R⊗R⊗R

∆⊗1⊗1
))SSSSSSSSSSSSSS
R⊗R⊗R

1⊗∆⊗1
��

R⊗R⊗R

1⊗1⊗∆
uukkkkkkkkkkkkkk

R⊗R⊗R⊗R⊗R

(ii) and the counity property

R
∆

ttiiiiiiiiiiiiiiiiiii

∆
��

∆

**UUUUUUUUUUUUUUUUUUU

R⊗R⊗R

1⊗ε⊗ε
��

R⊗R⊗R

ε⊗1⊗ε
��

R⊗R⊗R

ε⊗ε⊗1
��

R⊗ k ⊗ k ∼= k ⊗R⊗ k ∼= k ⊗ k ⊗R

Following [Ab] we shall use the Σ-notation

∆(x) =
∑

(x)

x(1) ⊗ x(2) ⊗ x(3), x(i) ∈ R.

The maps ∆ and ε are called a comultiplication and a counit, respectively,
of the ternary k-coalgebra R.

Definition 1.4. Let (R1,∆R1
, εR1

) and (R2,∆R2
, εR2

) be two ternary k-
coalgebras. A k-module morphism σ : R1 → R2 is a k-coalgebra morphism

if

∆R2
◦ σ = (σ ⊗ σ ⊗ σ) ◦ ∆R1

and εR2
◦ σ = εR1

.

It means that the following diagrams are commutative:

R1
σ //

∆R1

��

R2

∆R2

��
R1 ⊗R1 ⊗R1

σ⊗σ⊗σ
// R2 ⊗R2 ⊗R2

R1
σ //

εR1
��@

@@
@@

@@
@

R2

εR2
��~~

~~
~~

~~

k

Theorem 1.1. Let a triple (R,µ, η) be a ternary k-algebra and a triple

(R,∆, ε) a ternary k-coalgebra. Then, the following conditions are equiv-

alent:
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(i) µ, η are k-coalgebra morphisms;

(ii) ∆, ε are k-algebra morphisms;

(iii) ∆(fgh) =
∑

(f),(g),(h)

f1g1h1 ⊗ f2g2h2 ⊗ f3g3h3, ∆(1) = 1 and

ε(fgh) = ε(f)ε(g)ε(h), ε(1) = 1.

Proof. The conditions, under which ∆ is a ternary k-algebra morphism,
are as follows:

1) ∆ ◦ µ = (µ⊗ µ⊗ µ) ◦ (1 ⊗ τ ⊗ 1) ◦ (∆ ⊗ ∆ ⊗ ∆)

2) ∆ ◦ η = η ⊗ η ⊗ η, where k is identified with k ⊗ k ⊗ k.

The conditions, under which ε is a ternary k-algebra morphism, are as
follows:

a) ε ◦ µ = ε⊗ ε⊗ ε,

b) ε ◦ η = 1k, where k is identified with k ⊗ k ⊗ k.

On the other hand, µ is a ternary k-coalgebra morphism if it satisfies
conditions 1), a); and η is a ternary k-coalgebra morphism if it satisfies
conditions 2) and b).

This fact allows us to conclude that i)⇔ii). Equivalently ii)⇔iii)
follows from the definition.

Definition 1.5. The system (R,µ, η,∆, ε) or simply R is called a ternary

k-bialgebra or (3,3)-k-bialgebra, if the k-module R together with k-module
maps µ, η,∆, ε satisfies one of the equivalent conditions of Theorem 1.1

2. Basic constructions

In the binary case [A], an antipode S in a k-bialgebra (R,µ, η,∆, ε) is
defined as a morphism S : R → R, such that the following diagram is
commutative:

R⊗R

S⊗1R

��

R
∆oo ∆ //

ε

��

R⊗R

1R⊗S

��

k

η

��
R⊗R

µ
// R R⊗R

µ
oo
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In other words,

ε(x) =
∑

(x)

x(1)S(x(2)) =
∑

(x)

S(x(1))x(2), ∀x ∈ R.

Antipode S is anti-bialgebra morphism, i.e.

S(xy) = S(y)S(x), ∆S(x) =
∑

(x)

S(x(2)) ⊗ S(x(1)),

S(1) = 1, εS(x) = ε(x).

The k-bialgebra R with an antipode S is called a Hopf algebra.

We consider the following question: in what way that definition can
be generalized to n-ary case? In the papers [Z1], [Z2] the notion of a
binary k-bialgebras are generalized to n-ary case. In [Z1] it was proved
that each (2, n)-ring R can be embedded into a universal enveloping ring
R⊳ [ZA]. The algebra homomorphism

(ϕ⊗ ϕ) ◦ ∆R : R→ R⊳ ⊗R⊳,

by the university of R⊳, induces algebra-homomorphism

∆R⊳ : R⊳ → R⊳ ⊗R⊳,

under which the following diagram is commutative

R
ϕ

//

∆R

��

R⊳

∆R⊳

��
R⊗R

ϕ⊗ϕ
// R⊳ ⊗R⊳

where

∆R⊳(rxj) = ∆R(r)(xj ⊗ xj), j = 0, 1, . . . , n− 2

1 = ∆R⊳(xn−1) = xn−1 ⊗ xn−1 = 1 ⊗ 1.

It is proved that (2, n)-ring R is n-ary k-bialgebra if and only if the
universal enveloping ring R⊳ is k-bialgebra.

Recall that an element g ∈ R is a group-like element if ∆(g) = g⊗g⊗g
and ε(g) = 1.

In order to define n-ary analogy of the antipode S, we need to prove
that the following conditions are equivalent:

1) There is an antipode S : R→ R with the properties:
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a) S(a1 . . . an) = S(an) . . . S(a1)

b) ε(a) =
∑
a(1) . . . S(a(j1)) . . . S(a(jm)) . . . a(n) for some fixed m and

all possible places j1 < . . . < jm.

2) There is an antipode S̄ : R⊳ → R⊳, such that S̄(axk) = xn−1−kS̄(a)
(since S̄(axk) = S̄(x)kS̄(a) = xn−1−kS̄(a), where a, S̄(a) ∈ R, the
group-like element maps to an inverse element. In the binary case [A]
we have S(x) = x−1). In particular

S̄(ax) = xn−2S̄(a), S̄(a) = xS̄(ax) ⊆ Rx2,

since S̄ : R→ R, Rx→ Rx. Therefore,

S̄ : R→ Rx2 → Rx4 → . . .

and thus n− 2 = 1, i.e. n = 3.

Hence, R⊳ = R⊕Rx, and we have to consider ternary k-bialgebras.

On the other hand, in the conditions 1), we had to ask about occur-
rences m of S in the definition of the morphism ε:

10 if n is an even number, then m = n
2 (if m would be less there is no

n-ary factors)

20 if n is odd number, then m = n−1
2 . Hence, the left side is equal to a.

In the case n = 3 we have

∆(a) =
∑

(a)

a(1) ⊗ a(2) ⊗ a(3)

i.e.

a =
∑

(a)

S(a(1))a(2)a(3) =
∑

(a)

a(1)S(a(2))a(3)

=
∑

(a)

a(1)a(2)S(a(3)).

Therefore, if S2 = 1, then

S(a) =
∑

(a)

S(a(3))S(a(2))a(1) =
∑

(a)

S(a(3))a(2)S(a(1))

=
∑

(a)

a(3))S(a(2))S(a(1)).
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These are analogies of the inverse elements in semigroups. Further, we
consider the following schema of the embeddings:

R→ R⊳ = R⊕Rx, x2 = 1,

i.e. (3, 3)-bialgebra is embeded into a (2, 3)-bialgebra. If R is a fi-
nitely generated projective k-module then (R⊳)∗ →

(
(R⊳)∗

)⊳
, i.e. (3, 2)-

bialgebra is embeded into (2, 2)-bialgebra. Here R∗ = Homk(R, k) is the
dual module of R over k.

3. Ternary Hopf algebras

Theorem 3.1. Let R be a (3, 3)-bialgebra. Then, R can be embeded into

a universal enveloping ring R⊳, which is (2, 3)-bialgebra, and the following

conditions are equivalent:

1) there is an antipode S : R→ R with the property

S(a1a2a3) = S(a3)S(a2)S(a1), ∀a1, a2, a3 ∈ R

2) there is an antipode S̄ : R⊳ → R⊳ with the property:

S̄(uv) = S̄(v)S̄(u), ∀u, v ∈ R⊳

and (̄S)(R) = R (binary algebra-anti homomorphism).

Proof. (3, 3)-bialgebra R can be embeded into a universal enveloping ring
R⊳:

R→ R⊳ = R⊕Rx, x2 = 1,

by the rule r 7→ rx, ∀r ∈ R, and R⊳ is a (2,3)-bialgebra [Z1].

1)⇒ 2) Extend the map S to R⊳, S̄ : Rx→ Rx, R→ R, by setting

S̄(u) = xS̄(ux), S̄(x) = x, i.e. S̄(ux) = xS̄(u).

Take u, v ∈ R. Then there are the following cases

a) S̄(uv) = xS̄(uvx) = xS̄(vx)S̄(u) = S̄(v)S̄(u), by 1b);

b) by the property 1b) we have

S̄(uvx) = S̄(uxxvx) = S̄(vx)S̄(x)S̄(ux)

= S̄(vx)xS̄(ux) = S̄(vx)S̄(u);
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c) by the property 1) we have

S̄(uxv) = xS̄(uxvx) = xS̄(vx)S̄(x)S̄(u)

= S̄(v)xS̄(u) = S̄(v)S̄(ux);

d) S̄(uxvx) = xS̄(uxv) = xS̄(v)S̄(ux) = S̄(vx)S̄(ux).

2)⇒1) An antipode S : R→ R can be defined as a restriction S̄ | R of S̄
to R ⊂ R⊳.

Suppose now that k is a field and R is a finitely generated projective
k-module. Denote by T the universal enveloping ring R⊳. Then T is again
a finitely generated projective k-module. As in [Z2] it can be proved that
T ∗ is a (3,2)-bialgebra, such that

(∆f)(r1 ⊗ r2) = f(r1r2)

since
∆f ∈ T ∗ ⊗ T ∗ = (T ⊗ T )∗, ∀f ∈ T ∗

and
(f ◦ g ◦ h)(r) =

∑

(r)

f(r1)g(r2)h(r3)

because
∆(r) =

∑

(r)

r1 ⊗ r2 ⊗ r3 ∈ T ⊗ T ⊗ T, ∀r ∈ T.

Denote by V the dual module T ∗ of T .

Theorem 3.2. Let V be a (3, 2)-bialgebra. Then, V can be embedded

into a universal enveloping ring R⊳, which is a (2, 2)-bialgebra, and the

following conditions are equivalent:

(1) there is an antipode S̄∗ : V → V, with the properties:

S̄∗(a1a2a3) = S̄∗(a3)S̄
∗(a2)S̄

∗(a1), ∀a1, a2, a3 ∈ V

ε̄∗(a) =
∑

(a)

a(1)S̄
∗(a(2)) =

∑

(a)

S̄∗(a(1))a(2), ∀a ∈ V

(2) there is an antipode
⌢

S : V ⊳ → V ⊳,
⌢

S (V ) = V, with the properties:

⌢

S (gh) =
⌢

S (h)
⌢

S (g), ∀g, h ∈ V ⊳,

⌢

ε(g) =
∑

(g)

g1
⌢

S (g2) =
∑

(g)

⌢

S (g1)g2, ∀g ∈ V ⊳.



Jo
u
rn

al
 A

lg
eb

ra
 D

is
cr

et
e 

M
at

h
.B. Zeković 105

Proof. Taking into account [Z1] and previous considerations we can de-
duce that (3, 2)-bialgebra V can be embedded into a universal enveloping
ring V ⊳, i.e.

V → V ⊳ = V ⊕ V y, y2 = 1,

by the rule r 7→ ry, ∀r ∈ V and V ⊳ is (2,2)-bialgebra.

(1) ⇒(2) Let us extend the map S̄∗ to V ⊳,
⌢

S : V y → V y, V → V,

such that

⌢

S (g) = y
⌢

S (gy),
⌢

S (y) = y, i.e.
⌢

S (gy) = y
⌢

S (g).

There are the following cases:

a)
⌢

S (gh) = y
⌢

S (ghy) = y
⌢

S (hy)
⌢

S (g) =
⌢

S (h)
⌢

S (g),

b) by 1) we have

⌢

S (ghy) =
⌢

S (gyyhy) =
⌢

S (hy)
⌢

S (y)
⌢

S (gy)

=
⌢

S (hy)y
⌢

S (gy) =
⌢

S (hy)
⌢

S (g);

c) by 1) we have

⌢

S (gyh) = y
⌢

S (gyhy) = y
⌢

S (hy)
⌢

S (y)
⌢

S (g)

=
⌢

S (h)y
⌢

S (g) =
⌢

S (h)
⌢

S (gy);

d)
⌢

S (gyhy) = y
⌢

S (gyh) = y
⌢

S (h)
⌢

S (gy) =
⌢

S (hy)
⌢

S (gy).

If g ∈ V , then:

ε̄∗(g) =
∑

(g)

g(1)S̄
∗(g(2)) =

∑

(g)

S̄∗(g(1))g(2)

=
∑

(g)

g(1)
⌢

S
(
g(2)

)
=

∑

(g)

⌢

S (g(1))g(2) =
⌢

ε(g).

If g ∈ V y, then g = hy, h ∈ V :

ε̄∗(h) =
∑

(h)

h(1)S̄
∗(h(2)) =

∑

(h)

h(1)

⌢

S
(
h(2)

)

=
∑

(h)

h(1)y
⌢

S
(
h(2)y

)
=

∑

(g)

g(1)
⌢

S
(
g(2)

)
=

⌢

ε(g).
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Note that antipode S̄∗ : T ∗ → T ∗ is defined by the rule

(S̄∗)(r) = f(S̄(r)), ∀r ∈ T,

where
S̄ : T → T

is an extension of the antipode S : R→ R.
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