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Abstract. In this paper we present a bound for bipartite
graphs with average bidegrees η and ξ satisfying the inequality η ≥
ξα, α ≥ 1. This bound turns out to be the sharpest existing bound.
Sizes of known families of finite generalized polygons are exactly
on that bound. Finally, we present lower bounds for the numbers
of points and lines of biregular graphs (tactical configurations) in
terms of their bidegrees. We prove that finite generalized polygons
have smallest possible order among tactical configuration of given
bidegrees and girth. We also present an upper bound on the size
of graphs of girth g ≥ 2t+ 1. This bound has the same magnitude
as that of Erdös bound, which estimates the size of graphs without
cycles C2t.

1. Introduction

Let Γ be a simple graph (undirected, no multiple edges, no loops) and
let F be a family of graphs none of which is isomorphic to a subgraph of
Γ. In this case we say that Γ is F -free.

This paper is in final form and no version of it will be submitted for publication
elsewhere.
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2 On bipartite graphs

Let P be a certain graph theoretical property. By exP (v, F ) we de-
note the greatest number of edges of F -free graph on v-vertices, which
satisfies property P .

If property P is trivial, that is, valid for all simple graphs we shall
omit index P and write ex(v, F ).

Extremal graph theory contains several important results on ex(v, F ),
where F is a finite collection of cycles of different length (see [2], [24]).

The following unpublished result of Paul Erdös is often refereed to as
The Even Circuit Theorem (see [2], [24]).

Let Cn denote the cycle of length n. Then
ex(v,C2k) ≤ Cv1+1/k,

where C is positive independent constant. For a proof of this result
and its generalization: see [25], [26].

In [24] the upper bound
ex(v,C3, C4, . . . , C2k+1) ≤ (1/2)1+1/kv1+1/k +O(v)

was established for all integers k ≥ 1.
In this paper we will prove that

ex(v.C3, C4, . . . , C2k) ≤ 1/2v1+1/k +O(v),

and obtain the following bound

exP (m)(C3, C4, . . . C2t) ≤ 1/21+1/(m+1)tv1+1/(m+1)t +O(v) for even k,

and

exP (m)(C3, C4, . . . , C2t) ≤ v1+1/m(t+2)+t−1 +O(v) for all odd k,

where m > 1 is a real number and P (m) is a property: graph is bipartite
with average bidegrees η and ξ satisfying inequality η ≥ ξm.

Studies of exP (m)(v,C3, . . . , Ct) is motivated by some problems in
Operation Research, Theory of Communication Networks and Cryptog-
raphy. Among graphs satisfying P (m) are tactical configurations, that
is, biregular bipartite graphs.

In section 1 we shall establish some lower bounds for the numbers of
points and lines of tactical configurations. In section 2 we shall consider
tactical configurations of minimal order. This is a natural generalization
of the well known cages (see [3] and further references). Section 3 is
devoted to upper bounds for size of tactical configurations. In section 4
we shall develop an important technique for computing walks on bipartite
graphs with given average bidegrees. This method allow us to generalize
results of section 3 for more general case of graphs with the property
P (m). We shall establish ex(v,C3, . . . , C2k) and repeat the result of
Erdös and Simonovits on ex(v,C3, C4, . . . , C2k+1) in the last section.
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2. Some inequalities for tactical configurations

A tactical configuration introduced by E. H. Moore [15] almost century
ago is a rank two incidence structure ∆ = ∆(l, p, a, b) consisting of l lines
and p points in which each line is incident to a points and each point is
incident to b lines. We denote the incidence graph of ∆ by Γ = Γ(∆),
though when no confusion arise we may abuse terminology and refer to Γ
as a tactical configuration. We call bipartite graphs the incidence graphs
of the incidence structures. If the structure is a tactical configuration,
then the incidence graphs are called biregular with bidegrees a, b.

We shall assume that the graph Γ(∆) has order v = l + p (number
of vertices), and size e = la = pb (number of edges). We also mean, as
usual, that the girth g of a graph is the length of its minimal cycle.

The following lemma gives a lower bound on the number of points in
a tactical configuration of girth ≥ 2k. It gives also a lower bound for the
number of lines.

Lemma 1. Let Γ = Γ(∆) with ∆(l, p, s + 1, r + 1) of girth ≥ 2k. Then
the following inequalities hold

1. If k = 2t+ 1, then

(1 + r)

t∑

i=0

(rs)i ≤ p (2.1)

(1 + s)

t∑

i=0

(rs)i ≤ l (2.2)

2. If k = 2t, then

(1 + r)
t−1∑

i=0

(rs)i + (rs)t ≤ p (2.3)

(1 + s)

t−1∑

i=0

(rs)i + (rs)t ≤ l (2.4)

Proof. The approach we adopt in the proof has its root in the Theory
of Branching Process in Applied Probability, see for example Karlin and
Taylor [7]. The idea is to consider an arbitrary vertex v and count the
number of vertices at a given distance d, d ≤ [g/2], where g is the girth.

Let us assume that we start counting from a point v = p. The pass of
length d ≤ k between two chosen vertices is unique, because of absence
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of cycles of length 2d. Thus, we may use the idea of branching processes
to count the number of vertices at distance d from p.

If l2h+1 refers to the number of lines at distance 2h + 1 from p and
p2h+2 refers to the number of points at distance 2h + 2 from p, then
l1 = r + 1, p2 = (r + 1)s, l3 = (r + 1)sr, . . . . Finally, we get

l2h+1 = (s+ 1)rhsh (2.5)

p2h+2 = (r + 1)rhsh+1 (2.6)

where h = 0, 1, . . . , t.

Summing (2.5) from h = 0 to t in case of odd t gives (2.2). Summing
(2.6) from h = 0 to t in case of even t gives (2.3). By interchanging points
and lines in (2.5) and (2.6)together with parameters r and s and using
the same a argument as above we obtain (2.1) and (2.4). This completes
the proof.

Remark 1. If t+1 = s+1 = k, then the order of the graph is v = 2p = 2l
and the inequalities in Lemma 1 are equivalent to the well known Tutte’s
inequality for arbitrary regular graph.

v ≥ 2(1 + (k − 1) + . . . (k − 1)(g−2/2))

3. Minimal configurations with prescribed girth and their

applications

The well known assignment problem in Operations Research is equivalent
to finding the tactical configuration of given bidegees r + 1 and s+ 1 of
minimal order. It is an important special case of the Transport Problem
(see, for instance Taha [16]). There is a well known efficient algorithm
to solve this problem. In many cases this algorithm can be modified
to solve efficiently assignments problem with additional restrictions. In
our case this translate to the problem of finding a tactical configuration
with minimal number of vertices among graphs satisfying a the list of
restrictions.

let us consider the case when the precise list of restrictions is the ab-
sence of cycles of length 4, 6, . . . 2k−2. One can notice that the incidence
graph of tactical configuration does not have cycles of odd length and the
last requirement is equivalent to inequality g ≥ 2k. Unfortunately there
is no known modification of existing assignments problem algorithms or
other methods for the efficient solution of this problem.
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Let v(r, s, g) refers to the minimal order of a tactical configuration
with bidegrees s+ 1 and r + 1 and girth g ≥ 2k, that is, the solution of
the variant of assignment problem as above.

The problem of testing whether or not given tactical configuration
∆(r, s, l, p) of the girth g is a solution of the problem, that is, checking the
condition p+ l = v(s, r, g) can be a very difficult one. The computation
of function v(r, s, g) is a hard problem of Applied Combinatorics.

We may assume, without loss of generality, that r ≥ s . It is clear
that if both inequalities (2.1) and (2.3) above turn out to be equalities,
then our test is trivial and ∆ is the solution of our variant of assign-
ment problem. In this special situation we will use term ”extra special
configuration”. In such a configuration we have the ”best possible so-
lution” of the problem. Of course , in the case of small bidegrees and
girth we may easily find examples where tactical configuration ∆ is not
an extraspecial, but p+ l = v(r + 1, s + 1, g)

We will use term ”extraspecial” for graphs of extraspecial tactical
configurations and regular graphs (not necessarily bipartite) of Tutte’s
bound order.

It is important that the totality of extraspecial configurations is non
empty. Generalized m-gons were defined by J. Tits in 1959 (see [18], [19]
and the survey [17]) as a tactical configurations of bidegrees s + 1 and
t + 1 of girth 2m and diameter m. The pair (s, t) is known as order of
generalized m-gon.

The following result is well known (see [3])

Theorem 1. A finite generalized n-gon of order (s, t) has n ∈ {3, 4, 6,
8, 12} unless s = t = 1. If s > 1 and t > 1, then

1. n 6= 12

2. If n = 4, then s ≤ t2, t ≤ s2;

3. If n = 6, then st is a square and s ≤ t3, t ≤ s3;

4. If n = 8, then 2st is a square and s ≤ t2, t ≤ s2;

This is the original Feit-Higman theorem [6] combined with well
known inequalities.

The known examples of generalized n-gons of bidegrees ≥ 3 and
m ∈ {3, 4, 6, 8} are rank 2 incidence graphs of geometries of finite simple
groups of Lie type. The regular incidence graphs are m = 3 ( group
A2(q) ), m = 4 ( group B2(q) or C2(q) ), m = 6 ( group G2(q)). In all
cases s = r = q, where q is prime power.
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The biregular but not regular generalized n-gons have parameters
s = qα and t = qβ, where q is some prime power. The list is below:

1. n = 4

s = q, r = q2 and q is arbitrary prime power,

s = q2, r = q3 and q is arbitrary prime power

2. n = 6

s = q2, t = q3 and q = 32k+1, k > 1

3. n = 8

s = q, t = q2 and q = 22k+1.

Besides finite generalized polygons related to simple groups of Lie
type, which we consider above, there are important ”nonclassical exam-
ples”: nondezargezian projective plane, nonclassical generalized quadrag-
ons and hexagons (see [17] and further references).

Theorem 2. Finite generalized polygons are extraspecial configurations.

Proof. The order of regular generalized m-gons of degree q + 1 is 1 +
q + q2 + · · · + qm−1 and reaches the Tutte’s bound for graphs of girth
m− 2. The finite irregular tactical configurations which are generalized
polygons have to be of even diameter m = 2k . If their degrees are r+ 1
and s + 1 then the numbers of points p and number of lines l can be
computed by the formulas

p = 1 + r + rs+ r2s+ r2s2 + ...+ rksk + rk+1sk,

l = 1 + s+ sr + s2r + s2r2 + ...+ skrk+1 + sk+1rk+1,

where k have to be an element of {2, 3, 4, 6}. They are at bounds (2.1)
and (2.2) for points and lines.

Thus finite generalized m-gone is a perfect cage configuration.

Application in Operations Research need explicit constructions of
tactical configurations of given girth and bi-degrees of ”small size”, that
is, close to bounds (3.1)-(3.4). General constructions of that kind are
presented in [21].
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3.1. Cages and v(r, s, g) for r = s

We shall next examine the function v(k, k, g) and regular extraspecial
configurations. A cage (see [3]) is a k = t + 1-regular graph of given
girth with the minimal number v(k, g) of vertices. As it follows from
definitions of functions v(r, s, g), which is the minimal order of tactical
configuration with bidegrees r + 1 and s+ 1 of girth (see section 2) and
v(k, g)

v(t, t, g) ≥ v(t + 1, g)

Remark. We use same name for two functions but number of variables
shall allow to distinguish them.

If we are dealing with t-regular extraspecial configuration, then
v(t, t, g) is same as v(t, g) which achieves Tutte’s bound.

The cage whose number of vertices is equal to this bound and whose
girth is odd is called Moore graph. The only Moore’s graph of degree
2 are 2n + 1-gons. An m-gon is just a totality of vertices (points) and
edges (lines) of ordinary cycle of length m with the natural incidence. A
Moore graph of degree k ≥ 3 has diameter 2 and k ∈ {3, 7, 51}.

We are interested in the case of even girth because tactical configu-
rations are bipartite graphs and have no odd cycles. When the degree is
2, then we have a 2n-gone which is an example of extraspecial configu-
rations. In fact, the (2, g)-cage is the g-circuit, and v(g, 2) = g.

Let us list some well known families of cages of even girth.

(i) the (k, 4)-cage is the complete bipartite graph Kk,k and v(k, 4) =
2k.

If k = q + 1 for a prime power q, then

(ii) a (k, 6)-cage is the incidence graph of a projective plane PG(2, q),
and v(k, g) = 2(q2 + q + 1);

(iii) a (k, 8)-cage is the incidence graph of a generalized quadrangle
CQ(q, q), and v(k, g) = 2(q3 + q2 + q + 1);

(iv) a (k, 12)-cage is the incidence graph of a generalized hexagon
GH(q, q), and v(k, q) = 2(q + 1)(q4 + q2 + 1)

The (3, 8)-cage is the Tutte - Coxeter graph (v=30) [20].

One has v(7, 6) = 90 and the unique (7, 6) cage was independently
found in [8], [5]. Finally, there are 3 distinct (3, 10)- cages, all of them
are bipartite [9], and v(3, 10) = v(2, 2, 10) = 70.
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The problem of determining v(k, g) was posed in 1959 by F. Kartesi
who noticed that v(3, 5) = 10 was realized by the Petersen graph. Sachs
showed that v(k, g) is finite and Erdös and Sashs gave the upper bound.
This bound was improved in [10] for the best known general bound see
[14]. For the case of bipartite graphs similar problem had been considered
in [12]. A lower bound is given by Tutte’s formula.

Applications in Operations Research, Cryptography, Networking also
need constructions of regular graphs of a given gorth with the lowest
known order. There are some interesting examples of cubic graphs of
that kind (see [22] and further references).

4. Bounds for the size of tactical configurations

The minimization problem for the order of a graph with prescribed bide-
grees r, s and girth g is equivalent to the maximization of the size (num-
ber of edges) of a graph with parameters r, s and g. The maximal number
of edges of the graph of order v without cycles C2k is estimated by Erdös
Even Circuit Theorem.

Let ex(v, n) be, as usual, the greatest number of edges (size) in a
graph on v vertices, which contains no cycles C3, C4, . . ., Cn.

As it was mentioned in the introduction, from Erdös’ Even Circuit
Theorem and its modifications (see [2]) it follows that

ex(v, 2k) ≤ Cv1+1/k (4.1)

where C is a positive constant.

In the case of tactical configuration with the restriction on bidegrees
it is possible to get a stronger bounds than the one given by the Even
Cycle Theorem.

Let us consider some corollaries of the Lemma 1. Without loss of
generality we will assume r = am, s = a, where m ≥ 1

In case of k = 2t, we may omit all terms of the left hand side of (1.3)
and (1.4) except highest terms, amta < p, and atamt < l.

Adding last inequalities

we get a(m+1)t < v/2, or a < (v/2)1/((m+1)t) . We also have l(a+1) = e
or la = e− l. Thus e− l < l(v/2)1/((m+1)t) .

Put v instead of l to get e < v(v/2)(1/((m+1)t) + v, which leads to the
next theorem

Theorem 3.

e ≤ (1/2)(1/(m+1)t)v(1+1/(m+1)t) + v (4.2)
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Remark 2. If m = 1 the magnitude of right hand side is same as that
of Erdös Even Circuit Theorem, but the constant is better. The constant
has monotonic dependence on m, and is always < 1. If m > 1, then
(2.4) is stronger than Erdos inequality in magnitude. Of course (2.4) is
applicable only to bipartite biregular graphs.

Let us consider the case k = 2t + 1. If we discard some of the
summands on the left hand side of (2.1) we get rtst + rt+1st < p. Set as
before r = am, and s = a to get amt+1(am + 1) < p. Also, l(p + 1) =
p(am + 1) = e gives amt+t(l/p)(a + 1)l < p or amt+t(a + 1)l < p2 =
l2(a+ 1)2/(am + 1)2.
Simplifying last inequality we obtain

amt+t(am + 1)2/(a+ 1) < l.

Note that the function f(a) = (am + 1)2/(a+ 1) is increasing.

Thus f(a−1)amt+t < l or amt+t−1[(a−1)2+1] < l. The last inequality
then leads to (a − 1)mt+2m+t−1 < l or a − 1 < e(mt+2m+t−1)−1

. But we
know that l(a + 1) = e. So l(a − 1) = e − 2l, and multiplication of two
sides of the last inequality by l produces

e < ll+(m(t+2)+t−1)−1
+ 2l.

Order v = p + l is ≥ l, thus substitution of v instead of l gives us a
slightly weaker inequality.

Theorem 4.

e ≤ v1+1/(m(t+2)+t−1) + 2v (4.3)

Remark 3. If m = 1, then the above bound has the same magnitude as
that of Erdös bound in Even Circuit Theorem, but the constant is better
than in (3.1). In fact we can improve the constant by substitution l = v/2
into inequality 3 to get.

e ≤ (1/2)1+1/(2t+1)v1+1/(2t+1) + v (4.4)

If m > 1, then magnitude of (3.3) is better than that of Erdös bound.

Remark 4. Theorems 3 and 4 give slightly better bounds than the upper
bounds given in [21] (better constants but the same magnitude). This,
we shall generalize for graphs with average bidegrees in next section.
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5. Bipartite graphs with given average bidegrees

Here, we assume that we have a random tactical configuration ∆ =
∆(l, p, a(ω), b(ω)) consisting of l lines and p points laid out as a Branching
Process. We shall assume, without loss of generality, that level zero
consists of some line x0, say. This line is incident to m points with
probability p(m), where E(M) = η + 1, where M denotes the random
variable representing the outcomes m and η ≥ 1 and is known. Here, E
denotes the usual expectation operator.

Now, let Xn
l ,(Xn

p) be the number of lines (points, respectively) at
level n. We shall assume from level 1 onwards that each line is incident
to a(ω) points with probability p(a(ω)), where a(ω) takes the integer
values 0, ..., p, with E(a) = η. Similarly, we have each point is incident
to b(ω) lines with probability p(b(ω)), with E(b) = ξ,where ξ ≥ 1 and
known.

If the girth of our graph is > 2t, then there is at most one pass
between any two vertices at a distance ≤ t. Points of level k are precisely
at distance 2k+1 from the initial line. The line of level k are at distance
2k. Thus, computation ofXkl, 2k ≤ k and Xp

k can be done by branching
process.

We have

Xp
0 = M,

Xp
n =

Xl
n∑

i=1

Zi

X l
n =

Xl
n−1∑

j=1

Yj

where Z ′
is are i.i.d random variables, with mean η and variance σ2

Z ,
corresponding to a(ω). The variables Yj are i.i.d random variables corre-
sponding to b(ω), with mean ξ and variance σ2

Y . We shall be interested
in finding a closed form for the means and the variances of the random
variables Xp

n, X l
n defined above.

The next two lemmas provide an answer to our query.

Lemma 2. X l
0 = 1,

(i) E[Xp
n] = (η + 1)(ηξ)n, n = 1, ...

Proof. The proof is standard: see Karlin and Taylor [7] for similar ideas.
Note that

E[Xp
n] = E[E[Xp

n|X l
n]].
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Now, consider E[Xp
n|X l

n = x] = E[
x∑

i=1
Zi] = xE[Z] = ηx,

because of the independence of Zi. Hence

E[Xp
n] = ηE[X l

n]. (5.1)

Now, we compute E[Xn
l]. Again E[X l

n] = E[E[X l
n|Xp

n−1]]. But,

E[X l
n|Xp

n−1 = x] = E[

x∑

j=1

Yj] = ξx,

by the independence, whence

E[X l
n] = ξE[Xp

n−1]. (5.2)

by independence. Hence, combining (5.1) and (5.2) we get

E[Xp
n] = ηξE[Xp

n−1] = (ηξ)nE[Xp
0 ]

But E[Xp
0 ] = η + 1. Hence,

E[Xp
n] = (η + 1)(ηξ)n. (5.3)

To show part (ii) note that E[X l
n] = ξE[Xp

n−1] = (η+ 1)ξ(ηξ)n−1, by
(5.3), as required.

The next lemma gives a bound on the variances of the random vari-
ables Xp

n and X l
n.

Lemma 3.

(i) V ar(Xp
n) ≤ Ṽ

{

(η + 1)(ξ + η2)(ξη)n−1 (ηξ)n−1−1
(ηξ)−1 + (ηξ)2(n−1)

}

(ii) V ar(X l
n) ≤ Ṽ

{

ξ(η + 1)(ξ + η2)(ξη)n−2 (ηξ)n−1−1
(ηξ)−1 + (ηξ)2(n−1)

}

,

where Ṽ = max{V ar(X), V ar(Z), V ar(Xp
0 ), V ar(X l

0)}.

Proof. We shall only prove (i). The proof of (ii) is similar. Note that

V ar(Xp
n) = E[(Xp

n)2] − (E[Xp
n])2. (5.4)

Let us compute E[(Xp
n)2]. We have E[(Xp

n)2] = E[E[(Xp
n)2|X l

n]], and

E[(Xp
n)2|X l

n = x] = E

[

(

x∑

i=1

Zi)
2

]

= V ar

[
x∑

i=1

Zi

]

+

(

E

[
x∑

i=1

Zi

])2

= xV ar(Z) + (xη)2,
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by independence. Hence

E[(Xp
n)2] = V ar(Z)E[X l

n] + η2E[(X l
n)2]. (5.5)

Now, we are required to compute E[(X l
n)2]. The same argument used

above gives

E[(X l
n)2] = V ar(Y )E[Xp

n−1] + ξ2E[(Xp
n−1)2]. (5.6)

Combining (5.4), (5.5), and (5.6) gives

V ar(Xp
n) = V ar(Z)E[X l

n]+
+η2

{
V ar(Y )E[Xp

n−1] + ξ2E[(Xp
n−1)2]

}
− (E[Xp

n])2.

This can be shown to be equal to:

V ar(Z)E[X l
n] + η2V ar(Y )E[Xp

n−1] + (ηξ)2V ar(Xp
n−1).

Using the previous lemma the above is less than or equal to:

max{V ar(Y ), V ar(Z)}(η + 1)(ηξ)n−1(ξ + η2) + (ηξ)2V ar(Xp
n−1).

Now, we use induction to get

V ar(Xp
n) ≤ Ṽ

{

(η + 1)(ξ + η2)(ξη)n−1 (ηξ)n−1 − 1

(ηξ) − 1
+ (ηξ)2(n−1)

}

,

where Ṽ = max{V ar(X), V ar(Z), V ar(Xp
0 ), V ar(X l

0)}, as required.

The next lemma (which is a direct consequence of lemmas 3 and 4
and Chebeychev inequality: see [7]) gives confidence intervals for both
Xp
n and X l

n.

(i) The confidence interval for Xp
n is

(η + 1)(ηξ)n ± ksp,

for some nonnegative k > 0 and

sp = (Ṽ

{

(η + 1)(ξ + η2)(ξη)n−1 (ηξ)n−1 − 1

(ηξ) − 1
+ (ηξ)2(n−1)

}

)1/2.

(5.7)
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(ii) The confidence interval for X l
n is

(η+)ξ(ηξ)n−1 ± k′sl,

for some nonnegative k > 0, and

sl = (Ṽ

{

ξ(η + 1)(ξ + η2)(ξη)n−2 (ηξ)n−1 − 1

(ηξ) − 1
+ (ηξ)2(n−1)

}

)1/2.

(5.8)

Remark 5. Note that (4.7) shows that the order of Xp
n is at most O((η+

1)(ηξ)n), while the order of X l
n is at most O((η + 1)ξ(ηξ)n−1).

6. On the size of general bipartite graphs

In this section we will consider upper bounds for the size of bipartite
graphs Gi of increasing order v = vi without cycles of girth g > 2k
satisfying inequality ηi ≥ ξmi , where m ≥ 1 is some positive real number.

and superlinear size without cycles C2k.
We have a free choice which partition set is the point set. So we may

assume that ηi ≥ ξi (the average degree for points is greater than or
equal to average degree of lines). Thus our result for m = 1 estimates
size of general bipartite graphs of a given girth.

Theorem 5. Let Gi, i = 1, . . . be a family of bipartite graphs without
even cycles C4, . . . , C2k such that average degrees ηi and ξi of lines and
points satisfy the inequality: ηi ≥ ξi

m. Then, we have:
(i) e ≤ (1/2)(1/(m+1)t)pv(1/(m+1)t) +O(v)
(ii) e ≤ p1+1/(m(t+2)+t−1) +O(v)
hold for cases k = 2t and k = 2t+ 1 respectively.

Proof. Let Gi, i = 1, . . . be a family of graphs satisfying the restrictions
on the bidegrees and the girths as above. It follows from [12], that the
size of the bipartite graphs of a given girth, with the restrictions on the
bidegrees as stated above, is superlinear function Cvα, α > 1 of order
v. Thus, we may assume that function ξi is unbounded. Else, we may
bound the number of edges of the graphs by a linear expression in v. In
fact, we shall conduct all computations up to O(v). We will also keep the
notations of the previous section: ηi and ξi will be the average degrees
for the lines and the points respectively. Without loss of generality we
may assume ηi ≥ ξi. i = 1, . . . .

Let us consider case k = 2t. In this case, there is not more then one
pass of length ≤ 2t between two given elements at distance 2t. Hence,
we may apply result (4.8) to get, if ξ is ”sufficiently large”

X l
t = (η + 1)ξ(ηξ)t−1 − C1η

(t−1/2)ξn−3/2 ≤ l.
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The expression one left hand side gives us the number of lines at
distance 2t from chosen line, where C1 is some constant. If we swap
points and lines together with their average degrees we get”

(ξ + 1)η(ηξ)t−1 − (ξη)t−1 ≤ p.

Addition of last two inequalities gives us

2(ηξ)t + [(η + ξ)(ηφ)t−1 − C1(ηξ)t−1(η/ξ)1/2 − (ηξ)t−1] ≤ (p+ l) = v

when ξ is sufficiently large, expression in parenthesis is positive and we
are getting

2(ηξ)t < v.

For ξ = a and η ≥ am we may write

a < (v/2)1/(m+1)t

.

Analogously to similar case for biregular graphs we are getting pa ≤
p(v/2)1/(m+1)t

. The last inequality together with p(a + 1) = e gives us
the following bound for the size e

e < p(v/2)1/(m+1)t +O(v).

Let us consider the case k = 2t + 1. It follows from (4.8) that X l
t is at

least (η + 1)ηtξt − Cηtξt−3/2, where C is some positive constant. Thus
instead of the inequality X l

t +X l
t−1 ≤ l we can write:

ηt+1ξt + ηtξt + (ηtξt−1 + ηt−1ξt−1 − Cηtξt−3/2).

For sufficiently large ξ, the expression in brackets in the previous
formula will be negative and we get ηt+1ξt + ηtξt < l. Setting as before
η ≥ am, ξ = a. Thus amt+1(am + 1) < l. From pξ = lη, we get
e = p(a+ 1) > l(am + 1) and (am + 1) ≤ p(a+ 1)/lamt+t(p/l)(a+ 1)l < l
or

mt+t(a+ 1)l < l2 = p2(a+ 1)2/(am + 1)2a.

Simplifying the last inequality we obtain

amt+t(am + 1)2/(a+ 1) < p.

We can notice that the function f(a) = (am + 1)2/(a + 1) is increasing.
Thus f(a − 1)amt+t < l or amt+t−1[(a − 1)2 + p] < l. From the last
inequality we get (a − 1)mt+2m+t−1 < l or a − 1 < l(mt+2m+t−1)−1

. We
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know that p(a + 1) = e. So, p(a− 1) = e− 2l and multiplication of the
two sides of the last inequality by l gives e < pp(m(t+2)+t−1)−1

+O(p) of
lines and the number of pints of Gi satisfy the inequality ηi ≥ ξi

m for
certain real number m > 1. Then, e ≤ (1/2)1+1/kv1+1/k + O(v) in the
case of k even and e ≤ v1+1/k +O(v) if k is odd.

Remark 6. The bounds in the theorem 5 are sharp up to constant when
we deal with families of generalized k + 1-gons. In particular for m > 1,
we have the following list: (m = 2, k = 3), (m = 3/2, k = 3, (m =
3/2, k = 5), (m = 2, k = 7).

7. On the size of general graphs of high girth

In this section, we shall be concerned with the size of graphs of large
girth as function of the order.

Theorem 6. Let F = {Gj}, j = 1, . . . be a family of bipartite graphs
without of cycles Ci, 3 ≤ i ≤ n, n ≥ 3, that is, a family of graphs of
girth g > n. Let e and v be the size and the order of graphs from F
respectively.

Then
(i)e ≤ (1/2)v1+1/k +O(v) for n = 2k
(ii) e ≤ (1/2)1+1/kv1+1/k +O(v) for n = 2k + 1

Proof. Let η be the average degree of graph Gi. Let us consider the case
n = 2t+ 1. If the girth g ≥ 2k + 2, then there is at most 1 pass between
vertices at distance k, we can choose adjacent vertices v and u and count
the number of passes at distance ≤ t via branching process. Let Yl(u)
(Yl(w))be the totality of vertices x of length l, l ≤ k + 1 such that the
pass between u and v does not contain w (u respectively). It is clear,
that |Yl(u)| = |Yl(v)| = yl. We have |Yl(u)∩Ys(v)| = 0, because common
point for Yl(u) and Ys(w) corresponds to cycle of length l+s+1 ≤ 2k+1.
The induced subgraph of Gi with the union of all Yl(u) and Ys(v is a tree
which is a bipartite graph. Thus, we can estimate the number yl via
the technique of section 5. We need just to take in account that in our
case η = ξ and at the first step of branching process we have η instead of
η + 1. Thus yl ≥ ηl−1 − Cηl−2, l = 1, . . . , k + 1. After summation of the
above inequalities and multiplication by 2 we get that the number Ind
of all vertices for our tree is at least

2ηk + 2(1 + η + . . . ηt−1 − C1ηt−2).

If parameter i for Gi and related η are ”sufficiently large” then The
expression in brackets above will be positive. Thus ηk < Ind < (v/2),



16 On bipartite graphs

η < (v/2)1/k and (v/2)η(v/2)1+1/k . But (v/2)(η + 1) = e or (v/2)η =
e − v/2. Finally e < (1/2)1+1/kv1+1/k + O(v) and the statement (i) of
the theorem is proven.

Let us consider the case of n = 2k. There is at most one pass between
two given vertices at the distance l, l ≤ 2k otherwise we have a cycle
C2l−2. Thus we may choose a vertex v and count number Xl vertices
at distance l from v by branching process with η = ξ. As it follows
from results of section 4 sp (sl, respectively) is less then Cηk−2, where
k is a highest degree of η in the expression for Xn

p (respectively Xn
l ) for

appropriate n , where C is a certain constant. Thus

Xl ≥ (η + 1)ηk−1 − Cηk−2.

So from Xl +Xl−1 ≤ v we can obtain

ηk + [2ηk−1 + ηk−2 − C1ηk−2] ≤ v.

If η is sufficiently large then the expression in parenthesis is positive
and we can write simply ηk ≤ v. We can get η ≤ v1/k. Multiplication
by v of both sides of last inequality together with 2e = (η+ 1)v gives us
e ≤ 1/2v1+1/k +O(v).

8. Conclusion

Let us reformulate main results in terms of ex notations.
We presented an upper bound on the ex(v,C3, . . . , C2n) and a bound

exP (m)(v,C3, . . . , Ct), where P (m) is a property of the bipartite graph
whose average bidegrees η and ξ satisfy the inequality η ≥ ξm, m ≥ 1.
We proved that the sizes of the tactical configurations of finite general-
ized polygons are exactly on that bound. In fact, we proved that finite
generalized polygons have minimal possible order among tactical config-
urations of the same bidegrees and girth.

Upper bounds for ex(v,C2n) are known to be sharp up to constant
in case of n ∈ {2, 3, 5}. The question on the sharpness of this bound for
other n is still open. We conjecture that our bound for the
exP (m)(v,C3, . . . C2m) is sharp if and only if (m,n) belongs to the fol-
lowing list: (2, 3), (3/2, 3), (3/2, 5), (2, 14).
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Abstract. In the paper we discuss the notion of “dispersing
representation of a quiver” and give, in a natural special case, a
criterion for the problem of classifying such representations to be
tame. In proving the criterion we essentially use representations of
bundles of semichains, introduced about fifteen years ago by the
author.

1. Introduction

The classical problems of linear algebra on the reduction of the matrix of
a linear map (by means of elementary row and column transformations)
and the matrix of a linear operator (by means of similarity transforma-
tions) to canonical forms can be generalized in the following two ways:
by considering a greater number of maps or giving more complicated
structure of vector spaces. The first way led finally to the notion of rep-
resentations of a quiver (P. Gabriel). As examples of a generalization of
the second type it may be mentioned the well-known vectorspace problem
[1, p. 82], its natural “two-dimensional” analog [2, 3] and a general ex-
tension of the classical problem on one linear operator [4, 3]. Clearly one
can consider various generalizations of the classical problems combining
two indicated ways. In [3] the author consider a common generalization
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of “mixed” type introducing the notion of “dispersing representation of
a quiver (with relations)”. In terms of these representations one can
formulate many classification problems, among them the problems on
representations of posets [5], bundles of semichaines [6], tangles [7], etc.
(and also all the above mentioned ones). In this paper we study dis-
persing representations of (finite and infinite) quivers without relations.
In considering criterions of tameness we essentially use a main result
on representations of bundles of finitely many semichains [8, 6] and his
extension to the case of infinitely many ones (see the last section).

2. Main notions and examples

Throughout the paper, we will keep the right-side notation. All vector
spaces over a field k will be finite-dimensional; the category of such spaces
will be denoted as usual by mod k. Unless otherwise stated, all quivers
and posets will be finite. The sign

∐
will denote the direct sum of

posets, categories or functors. Singletons will be always identified with
the elements themselves.

We first recall the definition of dispersing representations of a quiver
[3, Section 10].

Let A be a Krull-Schmidt category over a field k. By a (right) module
over A we mean as usual a k-linear functor F : A → mod k. A collection
M = {Mi} of modules Mi : A → mod k, where i run through a set
X, is said to be an X-bunch of modules over A. An X-bunch M is
said to be faithful if AnnM =

⋂

i∈X AnnMi = 0 (AnnMi being the
annihilator of Mi). We call X-bunches M and M ′ of modules over A
and A′, respectively, equivalent if there exists an equivalence F : A → A′

such that, for each i ∈ X, the modules Mi and FM ′
i are isomorphic; in

this case we write M ∼= M ′ or (A,M) ∼= (A′,M ′).
Let Γ = (Γ0,Γ1) be a (not necessarily finite) quiver with the set

of vertices (points) Γ0 and the set of arrows Γ1, and k a field. Fix a
Krull-Schmidt category A over k and a Γ0-bunch M of modules over A.
We call M -dispersing representation of Γ (or dispersing representation
with respect to M , or simply dispersing representation if M is fixed) a
pair U = (M(X), f) formed by the collection of vector spaces M(X) =
{Mi(X)| i ∈ Γ0} for an object X ∈ A and a collection f = {fα|α : i →
j run through Γ1} of linear maps fα : Mi(X) → Mj(X). A morphism
from U = (M(X), f) to U ′ = (M(X ′), f ′) is determined by a morphism
ϕ : X → X ′ satisfying fαMj(ϕ) = Mi(ϕ)f ′α for each arrow α : i → j.
The category of M -dispersing representations of Γ is denoted by repMΓ;
by repinv

M Γ we denote the full subcategory of repMΓ consisting of all
objects U = (M(X), f) with invertible linear maps fα (α runs over Γ1).
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If we take A =
∐

i∈Γ0
Ai with Ai = mod k for each i, and Mi =

∐

j∈Γ0
Mij with Mij = δij1Aj

: Aj → mod k (δij being the Kroneker
delta), then the case of usual representations of Γ occurs.

Our notion is naturally generalized to the case of quivers with rela-
tions. Moreover, one can take any ring instead of the field k, an arbitrary
category instead of the category A or mod k, etc.

In terms of dispersing representations one can formulate many clas-
sification problems.

Example 2.1. Let Γ be the quiver
1◦−→2◦ and C a finite poset which

is identified with the following category: ObC = C,C(x, y) = {(x|y)} if
x ≤ y and C(x, y) = ∅, otherwise; composition is such that (x|y)(y|z) =
(x|z). Denote by C the category ⊕kC (kC being the linearization of
C and ⊕kC its additive hull) and by N the module over C such that
N(x) = k for each x ∈ C and N(x|y) = 1k. Set A = B∐ C with
B = mod k, and M1 = 1B

∐
0C , M2 = 0B

∐
N with the identity module

1B : B → mod k and the zero ones 0C : C → mod k, 0B : B → mod k.
Then the category of {M1,M2}-dispersing representations of Γ is in fact
the category of representations of the poset C [5, §4].

A general case of a “decomposable” bunch (as in the example) arise,
in other terms, in studying representations of dyadic sets [9, Section 0].

From the point of view of the author, the most interesting cases occur
when (in contrast to the previous case) a system M of modules is not
“decomposable” or there is a quiver with relations.

Before discussing such examples we give some definitions.

Let S = (A, ∗) be a (not necessarily finite) poset with involution. By
an S-graded vector space over k we mean the direct sum U =

⊕

a∈A Ua of
k-vector spaces Ua such that Ua∗ = Ua for all a ∈ A. A linear map ϕ of
an S-graded space U =

⊕

a∈A Ua into an S-graded space U ′ =
⊕

a∈A U
′
a

will be called an S-map if ϕa∗a∗ = ϕaa for each a ∈ A and ϕbc = 0 for
each b, c ∈ A not satisfying b ≤ c, where ϕxy denotes the linear map of Ux
into U ′

y induced by the map ϕ. The category of S-graded vector spaces
over k (with objects the S-graded spaces and with morphisms the S-
maps) is denoted by modSk

1. Because S = (A, ∗) with trivial involution
is naturally identified with A, these definitions involve the case of usual
posets. For a poset A =

∐n
i=1Ai, we identify modAk with

∐n
i=1 modAi

k.

Recall that a semichain is by definition a poset A such that every
element of A is comparable with all but at most one elements. Obviously,
any semichain A can be uniquely represented in the form A =

⋃m
i=1 Ai,

1When S is infinite and U ∈ modSk, we have Ua = 0 for all but finitely many
a ∈ A (because we consider only finite-dimensional vector spaces).
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where each Ai (called a link of A) consist of either one point or two
incomparable points, and A1 < A2 < · · · < Am, where, for subsets X
and Y of a poset, X < Y means that x < y for any x ∈ X, y ∈ Y (if
each Ai consist of one point, the set A is called a chain); the number
m is called the length of A. A semichain A with involution ∗ is called a
∗-semichain if x∗ = x for every x belonging to the union of all two-point
links.

Example 2.2. Let Γ be the quiver with one vertex, one loop ϕ and
one relation f(ϕ) = 0, where f(t) = t2, and let S = (A, ∗) be a poset
with involution. Set A = modSk and denote by M : modSk → mod k
the natural imbedding module. In the case when S is a ∗-semichain, M -
dispersing representations of Γ was classified in [10, §2] (in connection
with classifying the modular representations of quasidihedral groups);
the case of a chain with involution was considered earlier in [11, §1]. The
case, when A is an arbitrary Krull-Schmidt subcategory in mod k and
f(t) an arbitrary polynomial, is considered in [4, 3].

Finally we consider an example which plays a central role in our
consideration.

Example 2.3. Let S = {A1, . . . , An, B1, . . . , Bn} be a family of
pairwise disjoint semichains; set A =

∐n
i=1Ai and B =

∐n
i=1Bi. A

bundle of semichains A1, . . . , An, B1, . . . , Bn is a pair S = (S, ∗), where
∗ is an involution on the set S0 = A

∐
B such that x∗ = x for each x

from the union of all two-point links (of the given semichains).
Let S = (S, ∗) be a bundle of semichaines A1, . . . , An, B1, . . . , Bn. A

representation of the bundle S = (S, ∗) over a field k is a triple (U, V, ϕ),
where

(1) U = {U1, . . . , Un} and V = {V1, . . . , Vn} are collections of k-
spaces such that Ui ∈ modAi

k, Vi ∈ modBi
k (i = 1, . . . , n) , and the

A
∐
B-graded space (

⊕n
i=1 Ui) ⊕ (

⊕n
i=1 Vi) belong to the subcategory

mod(A
∐
B,∗) k of modA

∐
B k;

(2) ϕ = {ϕ1, . . . , ϕn} is a collection of linear maps ϕi ∈ Homk(Ui, Vi),
i = 1, . . . , n.

A morphism from

(U, V, ϕ) = ({U1, . . . , Un}, {V1, . . . , Vn}, {ϕ1, . . . , ϕn})

to
(U ′, V ′, ϕ′) = ({U ′

1, . . . , U
′
n}, {V ′

1 , . . . , V
′
n}, {ϕ′

1, . . . , ϕ
′
n})

is determined by a pair (α, β) formed by a collection α = {α1, . . . , αn}
of Ai-maps αi: Ui → U ′

i and a collection β = {β1, . . . , βn} of Bi-maps
βi: Vi → V ′

i (i = 1, . . . , n) such that
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(3) the A
∐
B-map (

⊕n
i=1 αi) ⊕ (

⊕n
i=1 βi ) of (

⊕n
i=1 Ui) ⊕ (

⊕n
i=1 Vi)

into (
⊕n

i=1 U
′
i) ⊕ (

⊕n
i=1 V

′
i ) belong to the subcategory mod(A

∐
B,∗) k;

(4) ϕiβi = αiϕ
′
i for each i = 1, . . . , n.

The category of representations of the bundle of semichains S = (S, ∗)
is denoted by Bk (S) = Bk (S, ∗) = Bk (A1, . . . , An, B1, . . . , Bn, ∗).

The definition of representations of bundles of semichaines can be
easily rewrited in terms of dispersing representations.

Denote by Λ(n) the quiver with the set of vertices

Λ0(n) = {1−, . . . , n−, 1+, . . . , n+}

and the arrows (i−, i+) : i− → i+ for i = 1, . . . , n. In our new terms, a
representation of the bundle S = (S, ∗) is a P -dispersing representation
of Λ(n) with the category S = K(S) = mod(A

∐
B,∗)k (as A) and the

modules Pi = Pi(S) : S → mod k (i run through Λ0(n)) to be the
composition of the natural embedding of S in S0 = modA

∐
Bk and the

projection of S0 onto modAi
k (resp. modBi

k) for i = j− (resp. i = j+).
Obviously, the category Bk (S) is isomorphic to the category repPΛ(n)
with P = {Pi|i ∈ Λ0(n)}.

The representations of a bundle of semichains (and the notion of
“bundle of semichains” itself) were introduced in [6, §1] (for the first
time, in [8]). In these papers the author give (in terms of matrices) a
complete classification of the indecomposable representations of an arbi-
trary bundle of semichains; the classifying is obtained in the explicit and
invariant (without “trace” of the method of solution) form.

In special case, when there is only two semichaines, representations
of bundles arose under consideration a problem of I. M. Gelfand [12]2, in
the classification of the modular representations of quasidihedral groups
[13, 10] (see also [6, §2]) and in studying numerous other problems: in
studying representations of different classes of quivers with relations and
algebras (see e.g. [14, 15, 16, 17, 18]), in the classification of faithful
posets of infinite (non-polynomial, in other terminology) growth [19],
under consideration representations of posets with involution [20] and
equivalence relation [21]. In studying representations of posets with non-
singularity conditions [22, 23] there arose representations of bundles of
four semichaines. For an arbitrary (even) number of semichaines, repre-
sentations of bundles arose first in solving the Gelfand problem and its
generalizations [6, §3]. Recently the main classification theorem of [6, §1]
is used in solving various classification problems of representation theory,

2The tameness of the problem under consideration also follows from properties of
an algorithm described in [12, §2]), but an inductive answer indicated there (for two
semichaines, if one use our terminology) is false.
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topology and algebraic geometry (see e.g. [24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 34].

The main reason of wide application of representations of bundles
of semichains is that, for many classification problems, “most” of tame
cases are reduced to them (such a reduction is today the only method
of solving many problems of infinite growth, as for representations of
quasidihedral groups [10] or partially ordered sets [19]). As will be seen
below, this is also true for dispersing representations of quiver.

3. Main result

We assume from now on that k is an algebraic closed field. For a Krull-
Schmidt category A (over k), we denote by A0 a fixed full subcategory
of A formed by chosen representatives of all isomorphism classes of inde-
composables; we will assume throughout this section that |ObA0| < ∞
(for the case |ObA0| = ∞ see the next section).

Let N be a module over A, and define

supp0N = {X ∈ ObA0|N(X) 6= 0};

for X,Y ∈ ObA0, set N(X,Y ) = N(A0(X,Y )). We call N satu-
rated if dimkN(X,X) = dimkN(X)(dimkN(X) − 1)/2 + 1 for any
X ∈ supp0N and dimkN(X,Y ) + dimkN(Y,X) is equal to 0 or to
dimkN(X) dimkN(Y ) for any distinct X,Y ∈ supp0N (i.e. nonzero
dimkN(X,X) and dimkN(X,Y ) + dimkN(Y,X) take the greatest pos-
sible values). For X ∈ ObA0, we will denote by NX the submodule of N
generated by N(X). Let L(N) denote the lattice of submodules in N or-
dered by inclusion. We call N lattice-chained (resp. lattice-semichained)
if L(N) is a chain (resp. a semichaine), and chained (resp. semichained)
if in addition it is saturated. Finally, we say that a submodule N ′ of N
is singular if it is comparable (in L(N)) to each submodule of N .

Let Γ = (Γ0,Γ1) be a quiver. For an arrow α, denote by s(α) and
e(α) its starting point and its endpoint, respectively. By w−(i) (resp.
w+(i)), where i ∈ Γ0, denote the number of arrows α with s(α) = i
(resp. e(α) = i); put w(i) = w−(i) + w+(i). A vertex i is said to be
trivial if w(i) = 0, outer if w(i) = 1 and inner if w(i) > 1. The sets
of all trivial, outer and inner vertices are denoted by Γ0

0, Γ1
0 and Γ2

0,
respectively. Let M = {Mi} be a fixed Γ0-bunch of A-modules. We call
Mi isolated if supp0Mi∩supp0Mj = ∅ for any j 6= i. An isolated chained
module Mi 6= 0 with dimkMi(X) ≤ 1 for any object X ∈ A0 is said to
be elementary.

We call Γ M -tame (resp. M -wild) if so is the problem of classifying
the objects of the category repMΓ [35]; a quiver of M -finite (M -infinite)
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type is defined similarly. Further, we call Γ M -inv-wild if the problem of
classifying the object of the category repinv

M Γ is wild. In considering these
problems, it is obviously sufficient to confine oneself to quivers without
trivial vertices.

Our main result is the following theorem.

Theorem 3.1. Let Γ be a finite (not necessarily connected) quiver with-
out trivial vertices and M = {Mi} a Γ0-bunch of nonzero A-modules
without elementary ones for outer vertices. Then Γ is M -tame if and
only if the following conditions hold:

(1) w(i) ≤ 2 for any i ∈ Γ0;
(2) the module Mi is semichained for each i ∈ Γ1

0 and is simple and
isolated for each i ∈ Γ2

0;
(3)

∑

i∈Γ1
0

dimkMi(X) ≤ 2 for each object X ∈ A0; moreover, when

dimkMj(X) = dimkMs(X) = 1 for j 6= s, the submodules MX
j ⊆ Mj

and MX
s ⊆Ms are both singular.

Otherwise, the quiver Γ is M -inv-wild.

Note that in all cases Γ is of M -infinite type.
Sketch of proof. We may assume Γ1

0 = Γ0, because otherwise one can

take the new quiver
→
Γ with

→
Γ0= {α−, α+|α ∈ Γ1},

→
Γ1= {α : α− →

α+|α ∈ Γ1} and the
→
Γ0-bunch of A-modules

→
M with

→
Mα−= Ms(α),

→
Mα+= Me(α) (taking into account that Γ is M -tame iff

→
Γ is

→
M -tame).

Then (1)–(3) imply that (A/AnnM,M) ∼= (K(S), P (S)) for a bundle of
semichaines S = (S, ∗) with S = {Aα, Bα|α ∈ Γ1}, and it follows from
[6, §1] that Γ is M -tame (of M -infinite type). The proof of the fact that
Γ is M -wild if the condition (1), (2) or (3) does not hold is divided into
several steps.

Step 1. Let S = {A1, . . . , An, B1, . . . , Bn} be a family of pairwise
disjoint posets. We call ∗-bundle (or involution bundle) of these posets a
pair S = (S, ∗), where ∗ is an involution on S0 = A

∐
B (A =

∐n
i=1Ai,

B =
∐n
i=1Bi). S is said to be nodal if x∗ 6= x implies that x is comparable

to any element of his poset. Nonempty Ai or Bi is said to be elementary
if it is a chain with all elements being involutory to themselves. We
say “bundle of semichaines” instead “nodal ∗-bundle of semichaines”.
Representations of a ∗-bundle S are defined in the same way as those of
a bundle of semichains.

We have the following statement: a ∗-bundle S of nonempty and
nonelementary posets is wild if (a) there is a poset Ai or Bi which is not
semichained, or (b) the bundle is not nodal.

Present the idea of the proof. For x, y ∈ S0, we write x ∼∗ y iff x = y
or x∗ = y, and x — y iff, for some i, x ∈ Ai, y ∈ Bi or x ∈ Bi, y ∈ Ai;
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put r∗(x) = |{y|y ∼∗ x}|, and, for X ⊆ S0, r∗(X) = maxx∈X r∗(x).
The notation X — Y for subsets X,Y of S0 means that x — y for any
x ∈ X, y ∈ Y . A chain {1 < 2 < . . . < p} is denoted by 〈p〉 and a poset
〈i〉∐ . . .

∐〈j〉 by 〈i, . . . , j〉.
It is proved that (a) or (b) holds iff there is an “alternating” chain

f = {C — x1 ∼∗ x2 — · · · — x2m−1 ∼∗ x2m — D} (m ≥ 0) with
C,D ⊂ S0 such that (c) C ∼= 〈1, 1〉 and r∗(C) = 2, or C ∼= 〈1, 2〉 and
r∗(C) = 1, or C ∼= 〈1, 1, 1〉 and r∗(C1) = 1; (d) D ∼= 〈1, 1〉 and r∗(D) = 1,
or D = {xi} with 1 ≤ i < 2m; (e) xi 6= xj for any i 6= j (for m = 0,
f = {C — D} with D to be of the first form). The main stage of the
proof is to describe all minimal ∗-bundles with a chain f of the above
type and construct for each such ∗-bundle a k〈x, y〉-representation from
the definition of wildness.

Step 2. One can introduce an ∼-bundle of posets and its representa-
tions (and define elementary posets, etc.) in the same way as those in
the case of an involution ∗, replacing everywhere (in particular, in the
definition of modSk) ∗, or equivalently the equivalence relation ∼∗, by
an arbitrary equivalence relation ∼. It is proved that an ∼-bundle S of
nonempty and nonelementary posets is wild if r∼(S0) > 2. The idea of
the proof is similar to that in Step 1. The differences are only (besides
the taking ∼ instead of ∼∗) that, in (c), C is only of the form {y} with
r∼(y) > 2, that, in (d), D can be (in addition) of this form, and that, in
(e), in addition r∼(xi) = 2 for any i.

Step 3. Keeping the notation of Step 1, we call (∗, ◦)-bundle (or

biinvolution bundle) of the given posets a triple S = (S, ∗, ◦), where ∗ and
◦ are, respectively, involutions on S0 and S2

0 satisfying (x, y)◦ = (y, x)◦ for
any x, y, (x, y)◦ = (x, y) for incomparable x, y and the natural conditions
1)–4) of [5, 4.11] if x ≤ y. Its representations are defined similar to that
for a ∗-bundle (for a poset A, (A, ∗, ◦)-graded spaces are (A, ∗)-graded
ones; by (A, ∗, ◦)-maps one must mean (A, ∗)-maps ϕ such that ϕab = ϕcd
whenever (a, b)◦ = (c, d)). It is proved that an (∗, ◦)-bundle of nonempty
and nonelementary (respect to ∗) posets is wild if ◦ is nontrivial. The
idea of the proof is similar to that in Step 2. The difference is only that
the role of x with r∼(x) = 1, 2 is played by x with r◦(x) = 1, 2, where
r◦(x) = 1 if (x, y)◦ = (x, y) for any y and r◦(x) = 2 otherwise.

Step 4. Identifying the modules Mi (i ∈ Γ0) with their images in
mod k, it is proved (with the help of not very complicated arguments)
that the general case is reduced to the cases of Step 1–3.

It follows from the above that our main result can be reformulated
in the following way.

Theorem 3.2. Let Γ and M be as in Theorem 3.1. Then Γ is M -tame
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if and only if there is a bundle of semichaines S = (S, ∗) with S =

{Aα, Bα|α ∈ Γ1} such that (A/AnnM,
→
M) ∼= (K(S), P (S)). Otherwise,

Γ is M -inv-wild.

For ∼-bundles of posets (which include ∗-bundles), we classify tame
cases in the general situation.

4. Extensions of the main result

4.1. The main result for |ObA0| = ∞|ObA0| = ∞|ObA0| = ∞.

Let A be a Krull-Schmidt category over a field k, with |ObA0| = ∞. The
definitions of various types of A-modules, which we gave for |ObA0| <∞
(at the beginning of Section 2), can be directly transferred to this case.
It is easy to see that a module N is chained (resp. semichained) if and
only if so is N |⊕B (the restriction of N on ⊕B), for any B to be a full
subcategory of A0 with finite many objects (because an infinite poset is
a chaine if and only if all its finite subposets are chaines, and the same
is true for semichaines). Using these facts, one can easily prove that the
main result of this section is also true for |ObA0| = ∞.

4.2. The main result for infinite quivers.

Our main result remains also true for an infinite quiver Γ, and the proof
of this fact can be carried out in the same way as that for finite quivers;
moreover, in view of what we said in the preceding section, it suffices
to consider the case when |ObA0| < ∞. But here we already need to
know that the problem of classifying the representations of a bundle of
semichains is tame when the number of ones is infinite (because |ObA0| <
∞, all the semichaines can be assumed to be finite). The intuition tell
us that this fact is true and that the representations of such bundle can
be classified analogously to that for finitely many semichaines. In this
subsection we clarify an explicit solution of this problem.

Let S be S = {Ai, Bi| i ∈ I} be a family of pairwise disjoint (finite)
semichains, where I is some set. Put A =

∐

i∈I Ai, B =
∐

i∈I Bi,
S0 = A

∐
B. A bundle of semichains Ai, Bi, where i runs through ∈

I, is defined similar to that for finitely many semichaines: it is a pair
S = (S, ∗) with ∗ to be is an involution on S0 such that x∗ = x for each
x belonging to the union of all two-point links. In the new situation,
the category Bk (S) of representations of the bundle S are defined in the
same way as that for finitely many semichaines, and it is a Krull-Schmidt
category too.
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It is easy to see that a faithful bundle of infinitely many semichaines
has only countable many ones, and hence we can confine oneself to the
countable case3. As usual, Z denotes the integer numbers and N the
natural ones.

Thus, let S = {Ai, Bi| i ∈ N} be a family of pairwise disjoint (finite)
semichains and S = (S, ∗) a bundle of semichains A1, A2, . . . , B1, B2, . . .;
recall that A =

∐

i∈N
Ai, B =

∐

i∈N
Bi and S0 = A

∐
B. If R = (U, V, ϕ)

is a representation of S with the dimension-function d : S0 → N ∪ 0
(sending x ∈ Ai to dimk(Ui)x and y ∈ Bi to dimk(Vi)y), then the set of
all elements x ∈ S0 such that d(x) 6= 0 will be called the support of R.

The indecomposable representations with finite supports (or equiv-
alently, with finitely many semichains) were classified in [8, 6]. Here
we classify the indecomposable representations (of a bundle of countable
many semichains) with infinite supports.

Let, for a semichaine X, L(X) denotes the set of its links (which is
ordered in a natural way). Put L(A) = ∪i∈NL(Ai), L(B) = ∪i∈NL(Bi),
and denote by L(S), or simply L, the union of the sets L(A) and L(B).
It is convenient for us to denote elements of L by lower case letters and
to identify the one-points links with the points themselves. The number
of points of a link x ∈ L is denoted by l(x).

Define two symmetric binary relations, α and β, on the set L by
putting xαy if and only if x 6= y, l(x) = l(y) = 1 and x∗ = y, or x = y
and l(x) = 2; xβy if and only if either x ∈ L(Ai), y ∈ L(Bi) or x ∈ L(Bi),
y ∈ L(Ai) for some i ∈ N.

We now introduce the notion of L-chains of type (0,+∞), (−∞, 0)
and (−∞,+∞).

Throughout, all graphs are nonoriented. For a graph C, we denote by
C0 and C1 the sets of its vertices and edges, respectively. Let C+∞ be the
graph with C+∞

0 = N and C+∞
1 = {(i, i + 1)| i ∈ N}, C−∞ be the graph

with C−∞
0 = {−n|n ∈ N} and C−∞

1 = {(−i− 1,−i)| i ∈ N}, and C∞ be
the graph with C∞

0 = Z and C∞
1 = {(i, i+1)| i ∈ Z}. A countable L-chain

is a function g, defined on a graph C ∈ {C+∞, C−∞, C∞}, that associates
to each j ∈ C0 an element g(j) ∈ L and to each edge (j, j + 1) ∈ C1 a
relation g(j, j + 1) ∈ {α, β} subject to the following conditions: (a) g(j)
and g(j + 1) satisfy the relation g(j, j + 1); (b) g(j − 1, j) 6= g(j, j + 1);
(c) for each x ∈ L, the set g−1(x) = {j ∈ C0| g(j) = x} is finite. An
isomorphism of L-chains g and g′, defined on C and C ′, respectively, is
an isomorphism τ : C → C ′ such that g = τg′.

3A representation (U, V, ϕ) of a bundle S is called faithful if (Ui)x, (Vi)y 6= 0 for
any i ∈ I, x ∈ Ai and y ∈ Bi; the bundle S is called faithful if it has a faithful
indecomposable representation.
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A countable L-chain defined on C = C+∞, C−∞, C∞ will be called
an L-chain of type (0,+∞), (−∞, 0) and (−∞,+∞), respectively.

A countable L-chain g is called admissible if xαy for distinct elements
x, y ∈ L and g(j) = x imply the existence of an edge ρ containing
the vertex j and satisfying g(ρ) = α (an L-chain of type (−∞,+∞) is
always admissible), and symmetric if there exist a vertex i such that
g(i− s) = g(i+ s) for any s ∈ N (an L-chain of type (0,+∞) or (−∞, 0)
is always nonsymmetric). The vertex 1 (resp. −1) of an L-chain of type
(0,+∞) (resp. (−∞, 0)) is called double if g(1, 2) = β and g(1)αg(1) in
L (resp. g(−2,−1) = β and g(−1)αg(−1) in L). We write d(g) = 1 if
the vertex 1 (resp. -1) is double and d(g) = 0, otherwise; for an L-chain
of type (−∞,+∞), we put d(g) = 0.

Denote by G1(L) the set of admissible nonsymmetric (countable) L-
chains. To an g ∈ G1(L), we associate the representation U1(g) if d(g) =
0, and the representations U1(g), U2(g) if d(g) = 1. These representations
are defined in the same way as those in [8, 6] for finite many semichains
(in these paper we used the language of matrices, but all the results and
proofs can be easily rewrited in terms of vector spaces and linear maps).

The representations Ui(g) of the bundle S = (S, ∗) are all indecom-
posable. Moreover, the following statement holds.

Theorem 4.1. Let S = (S, ∗) be a bundle of countable many semichains.
Choose one representative in each isomorphism class of L-chains of type
(0,+∞), (−∞, 0) and (−∞,+∞) belonging to G1(L). Then the set of
representations of the form Ui(g) associated to the chosen L-chains is a
complete set of pairwise nonisomorphic indecomposable representations
with infinite support.

The idea of the proof is similar to that in [8] for finite many semi-
chaines.
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Tiled orders over discrete valuation rings, finite

Markov chains and partially ordered sets. I

Zh.T. Chernousova, M.A. Dokuchaev, M.A. Khibina,

V.V. Kirichenko, S.G. Miroshnichenko, V.N. Zhuravlev

Abstract. We prove that the quiver of tiled order over a dis-
crete valuation ring is strongly connected and simply laced. With
such quiver we associate a finite ergodic Markov chain. We intro-
duce the notion of the index inA of a right noetherian semiperfect
ring A as the maximal real eigen-value of its adjacency matrix. A
tiled order Λ is integral if inΛ is an integer. Every cyclic Goren-
stein tiled order is integral. In particular, inΛ = 1 if and only if
Λ is hereditary. We give an example of a non-integral Gorenstein
tiled order. We prove that a reduced (0, 1)-order is Gorenstein if
and only if either inΛ = w(Λ) = 1, or inΛ = w(Λ) = 2, where
w(Λ) is a width of Λ.

1. Introduction

This is the first part of an article dedicated to tiled orders over discrete
valuation rings and their relations with finite Markov chains and partially
ordered sets.

These orders appear in various parts of ring theory and representation
theory (see [9], [14], [15], [24] – [35], [39], [42] – [50], [52] – [58]).

All rings are associative with 1 6= 0. R = R(A) denotes the Jacobson
radical of a ring A. A ring A is said to be indecomposable if A cannot
be decomposed into a direct product of two rings.

In section 2 we recall the basic facts about semiperfect rings. In
section 3 we show that an indecomposable semiprime right noetherian
semiperfect semidistributive ring is either simple artinian or a tiled order

2000 Mathematics Subject Classification 16P40, 16G10.
Key words and phrases: semiperfect ring, tiled order, quiver, partially ordered

set, index of semiperfect ring, Gorenstein tiled order, finite Markov chain.
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Λ over a discrete valuation ring. When writing “SPSD-ring” we mean
a semiperfect semidistributive ring [31]. Thus, the tiled orders over a
discrete valuation rings are, exactly, the noetherian (but not artinian)
prime SPSD-rings. For tiled order Λ we introduce Λ-lattices and define
a duality for completely decomposable Λ-lattices. We also remind the
notion of an exponent matrix E(Λ) of a tiled order Λ.

In section 4 we prove that the quiver Q(Λ) of tiled order Λ is strongly
connected simply laced and give a formula for its adjacency matrix
[Q(Λ)]. We introduce the notion of the index inA of a right noethe-
rian semiperfect ring A as the maximal real eigen-value of the adjacency
matrix [Q(A)] of the quiver Q(A).

In section 5 for the quiver of an arbitrary tiled order a finite ergodic
Markov chain is constructed. In particular, such Markov chains are asso-
ciated with finite posets. We remind that Markov chain is called ergodic
if it is possible to go from its every state to any other state. An ergodic
Markov chain is cyclic if each state can be entered only at certain periodic
intervals, and it is called regular otherwise.

According to this terminology, a poset shall be called cyclic if asso-
ciated Markov chain is cyclic and regular otherwise. We observe that
linearly ordered set (chain) is cyclic and that a poset, having an isolated
element, is regular.

In section 6 with any finite partially ordered set (poset) P we asso-
ciate a reduced (0, 1)-order Λ(P ) and conversely, for any (0, 1)-order Λ we
define a poset PΛ such that PΛ(P ) = P and Λ(PΛ) = Λ (see [57], [49]).
The following theorem is proved: a reduced (0, 1)-order Λ is Gorenstein
if and only if PΛ is an ordinal power of either a singleton or an antichain
with two elements.

Section 7 is devoted to quivers of Gorenstein orders. We note that
the quiver Q(Λ) of a cyclic reduced Gorenstein tiled order Λ with the
permutation σ(Λ) in general does not contains a simple cycle of length
n, where n = | < σ(Λ) > |.

A tiled order Λ is called integral if inΛ is an integer. A cyclic Goren-
stein tiled order is integral ( [45], Theorem 3.4.). In particular, inΛ = 1
if and only if Λ is hereditary.

In conclusion, we give an example of a non-integral Gorenstein tiled
order.

The reader is referred to [1] and [41] for information on artinian
algebras and their quivers. We recommend [6], [10], [13], [18], [22],
[37], [42], [49], [52] for general theory of finite dimensional algebras,
ring theory and their applications in representation theory. Applications
of linear algebra in graph theory and the theory of Markov chains can
be found in [3], [11], [16], [17], [23], [36], [38].
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2. Semiperfect rings

The basic facts about semiperfect rings, which were introduced by H.Bass
in 1960, can be found in [13], [22], [37], [18]. In this paper we denote by
A a semiperfect ring and by R = R(A) its Jacobson radical.

An idempotent e ∈ A is said to be local if eAe is local ring.

Theorem 2.1. [40] A ring A is semiperfect if and only if the identity 1 of
A can be decomposed into a sum of pairwise orthogonal local idempotents.

Let Mn(B) be the ring of all square n× n-matrices over a ring B. Then
the ring Ā = A/R is a semisimple artinian. Thus, by Wedderburn-
Artin Theorem, we have Ā = A/R = Mn1(D1) × . . .×Mns(Ds), where
Di, i = 1, . . . , s, are division rings. In this case, every simple A-module
is simple as an Ā-module. Let 1̄ = f̄1+. . .+f̄s be a decomposition of 1̄ ∈
Ā into a sum of central idempotents such that f̄iĀ = Āf̄i = Mni

(Di).
There exists a decomposition 1 = f1 + . . . + fs, where f̄i = fi +R and
fifj = δijfi, i, j = 1, . . . , s and δij is the Kronecker delta (see [37],
Chapter 3).

For an A-module M we denote by Mn the direct sum of n copies of
M and we set M0 = 0.

Consider AA =
s⊕

i=1
fiA. Obviously, fiA = Pni

i , where Pi is an

indecomposable projective A-module (principal right A-module), whose
multiplicity in the right regular moduleAA is ni, i.e. A = Pn1

1 ⊕. . .⊕Pns
s .

Similarly, AA =
s⊕

i=1
Afi. where Afi = Qni

i and each Qi is an in-

decomposable projective left A-module (principal left A-module) with
multiplicity ni in the left regular module AA, i.e. AA = Qn1

1 ⊕ . . .⊕Qns
s .

Any principal right (resp. left) A-module has the form eA (resp. Ae),
where e is a local idempotent.

A semiperfect ring A is called reduced if A/R is a direct product of
division rings. Every semiperfect ring A = Pn1

1 ⊕ . . . ⊕ Pns
s is Morita

equivalent to the reduced ring B = EndA (P1 ⊕ . . . ⊕ Ps).

The element a ∈ A is said to be central modulo R, if a+R lies in the
centre of A/R.

Definition 2.2. An idempotent f ∈ A shall be called the canonical if
f̄ Ā = Āf̄ = Mnk

(Dk) for some k = 1, . . . , s; f̄ = f +R

Equivalently, f is a minimal central modulo R idempotent.

A decomposition 1 = f1 + . . . + fs into a sum of pairwise orthog-
onal canonical idempotents shall be called a canonical decomposition of
identity of a ring A.
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Let I be an (two-sided) ideal of A and 1 = f1+. . .+fs be a canonical

decomposition of 1 ∈ A. Then I =
s⊕

i,j=1
Iij with Ii,j = fiIfj, i, j =

1, . . . , s. As follows from [9], one canonical Peirce decomposition of I can
be obtained from another one by a simultaneous permutation of lines and
columns and the substitution of each Peirce component Iij by aIija

−1,
where a is an invertible element of a ring A. In particular, for A and R
we have such canonical Peirce decompositions:

A =

s⊕

i,j=1

Aij , R =

s⊕

i,j=1

Rij , (1)

where Rij = fiRfj = Aij for i 6= j and Rii is the Jacobson radical of
Aii, i = 1, . . . , s.

Let M be a right A-module and N a left A-module. We set topM =
M/MR and topN = N/RN . Denote Ui = top Pi and Vi = topQi, i =
1, . . . , s. It is well-known that P1, . . . , Ps (Q1, . . . , Qs) represent, up to
isomorphism, all indecomposable right (left) projective A-modules, while
U1, . . . , Us (V1, . . . , Vs) form a representative set of isomorphism classes
of all simple right (left) A-modules. In this case Pi = P (Ui) (Qi =
P (Vi)) is a projective cover Ui (Vi), i = 1, . . . , s. A projective cover
of a finitely generated module M over a semiperfect ring A is built as
follows: M/MR is a module over a semisimple artinian ring Ā = A/R.
Therefore, M̄ = M/MR is isomorphic to a finite direct sum of simple

A-modules: M̄ =
s⊕

j=1
U
mj

j . Then P (M) = P (M̄ ) =
s⊕

j=1
P (Uj)

mj =

s⊕

j=1
P
mj

j .

Lemma 2.3. Annihilation Lemma ( [9], Lemma 3.1). Let 1 =
f1 + . . . + fs be a canonical decomposition of 1 ∈ A. For every simple
right A-module Ui and for each fj we have Uifj = δijUi, i, j = 1, . . . , s.
Similarly, for every simple left A-module Vi and for each fj, fjVi =
δijVi, i, j = 1, . . . , s.

Lemma 2.4. Let A be a semiperfect ring, e and f – nonzero idempotents
of the ring A such that ē = f̄ ∈ Ā. Then there exists an invertible
element a ∈ A such that f = aea−1.

Proof. Denote W1 = ēĀ = f̄ Ā. Obviously, eA and fA are projective
covers of a semisimple A-module W1. Therefore they are isomorphic.
Modules (1− e)A and (1− f)A are projective covers of a semiperfect A-
module W2 = (1̄ − f̄)Ā = (1̄ − ē)Ā. Consequently, they are isomorphic
too. Denote e1 = e, e2 = 1 − e and f1 = f, f2 = 1 − f .
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The isomorphism eiA ≃ fiA is given by suitable element ai ∈ fiAei
such that fiai = aiei (i = 1, 2). Let a = a1+a2. Then aei = aiei = ai
and fia = fiai = ai for i = 1, 2. We’ll show that a is invertible. There
exists the element bi ∈ eiAfi defining the inverse isomorphism fiA ≃ eiA
to (i = 1, 2). Then aibj = δijfj and biaj = δijei. Let b = b1 + b2. We

have ab =
2∑

i=1
aibi = f1 + f2 = 1 and, consequently, fi = aeia

−1 and

f = aea−1.

Lemma 2.5. Let 1 = f1+ . . .+fs be canonical decomposition of identity
1 ∈ A into a sum of pairwise canonical idempotents and g be a central
modulo R idempotent. There exists an invertible element a ∈ A such that
fi1 + . . .+ fik = aga−1.

Proof. Let ḡĀ = Āḡ = Mni1
(Di1) × . . . ×Mnik

(Dik). Then f = fi1 +

. . .+fik is a central modulo R idempotent and f̄ Ā = ḡĀ. By Lemma 2.4
we have f = aga−1.

Corollary 2.6. Each central modulo R idempotent g is a sum of the
canonical idempotents and there exists the canonical decomposition of
1 ∈ A into a sum of pairwise orthogonal canonical idempotents such
that 1 = g1 + . . . + gk + gk+1 + . . . + gs, where g = g1 + . . . + gk and
f = fi1 + . . .+ fik = ag1a

−1 + . . . + agka
−1.

Theorem 2.7. ( [9], Theorem 3.3). Let 1 = f1+. . .+fs = g1+. . .+gt be
two canonical decompositions of 1 ∈ A into a sum of pairwise canonical
idempotents. Then s = t and there exist an invertible element a ∈ A and
a permutation i −→ τ(i) of {1, . . . , s} such that fi = agτ(i)a

−1 for each
i = 1, . . . , s.

3. Noetherian semiprime semiperfect

semidistributive rings

Definition 3.1. ( [18], p. 73). A ring A is called indecomposable if A
cannot be decomposed into a direct product of two rings.

Definition 3.2. ( [18], p. 74). A ring A is called a finitely decomposable
ring (FD-ring) if it decomposable into a direct product of a finite number
of indecomposable rings.

An important class of FD-rings are right noetherian rings (in partic-
ular, all right artinian rings). Semiperfect rings (which may be neither
noetherian, no artinian) are also examples of FD-rings.
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Theorem 3.3. ([18], Theorem 2.5.11) A finitely decomposable ring A
can be uniquely decomposed into a direct product of a finite number of
indecomposable rings, that is if A = B1 × . . .×Bs = C1 × . . . × Ct are
two of such decompositions then s = t and there is a permutation σ of
numbers {1, . . . , t} such that Bi = Cσ(i) for i = 1, . . . , t.

A module M is distributive if its lattice of submodules is distribu-
tive, i.e. for any submodules K,L,N K ∩ (L + N) = K ∩ L + K ∩ N.
Clearly, any submodule and any factormodule of a distributive module
is a distributive module. A semidistributive module is a direct sum of
distributive modules. A ring A is right (left) semidistributive if it is
semidistributive as a right (left) module over itself. A ring A is semidis-
tributive if it is both left and right semidistributive (see [52]).

Theorem 3.4. [4] A module is distributive if and only if the socle of
each of its factormodule contains no more then one copy of each simple
module.

Theorem 3.5. ([51], see also [31], Theorem 4). A semiperfect ring A is
right (left) semidistributive if and only if, for any local idempotents e and
f of the ring A the set eAf is a uniserial right fAf -module (uniserial
left eAe-module).

Corollary 3.6. [31] Let A be a semiperfect ring, and 1 = e1 + . . .+ en
is a decomposition of 1 ∈ A into a sum of mutually orthogonal local
idempotents. The ring A is right (left) semidistributive if and only if for
any idempotents ei and ej (i 6= j) from the above decomposition, the ring
(ei + ej)A(ei + ej) is right (left) semidistributive.

We write SPSD-ring for semiperfect semidistributive ring and
SPSDR-ring (SPSDL-ring) for semiperfect right (left) semidistributive
ring.

Recall that a semimaximal ring A is a semiperfect semiprime right
noetherian ring A such that for each local idempotent e ∈ A, the ring
eAe is a discrete valuation ring (not necessarily commutative) [57]. In
the same paper, a description of these rings is given.

Theorem 3.7. Each semimaximal ring is isomorphic to a finite direct
product of prime rings of the following form:

Λ =







O πα12O . . . πα1nO
πα21O O . . . πα2nO
. . . . . . . . . . . .

παn1O παn2O . . . O






, (∗)
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where n ≥ 1, O is a discrete valuation ring with a prime element π,
the αij are integers such that αij + αjk ≥ αik for all i, j, k (αii = 0 for
any i).

The ring O is embedded into its classical division ring of fractions
D, and (*) denotes the set of all matrices (aij) ∈ Mn(D) such that
aij ∈ παijO = eiiΛejj, where e11, . . . , enn are matrix units of Mn(D).
Thus, Λ is a tiled order over a discrete valuation ring (d.v.r.) ([50], [20]).
Obviously, a tiled order Λ over a d.v.r. O is left noetherian. It is clear
that Mn(D) is the classical quotient ring of fractions of Λ.

The following is a decomposition theorem for semiprime SPSD-rings.
(Compare [5], [13]).

Theorem 3.8. [31] The following conditions for a semiperfect semi-
prime right noetherian ring A are equivalent:

a) the ring A is semidistributive;

b) the ring A is a direct product of a semisimple artinian ring and a
semimaximal ring.

Hence, the tiled orders over a discrete valuation rings are, exactly,
the noetherian (but not artinian) prime SPSD-rings.

Denote by Mn(Z) the ring of all square n× n-matrices over the ring
of integers Z. Let E ∈ Mn(Z). We shall call a matrix E = (αij) the
exponent matrix if αij + αjk ≥ αik for i, j, k = 1, . . . , n and αii = 0
for i = 1, . . . , n. A matrix E is called a reduced exponent matrix if
αij + αji > 0 for i, j = 1, . . . , n.

We shall use the following notation: Λ = {O, E(Λ)}, where E(Λ) =

(αij) is the exponent matrix of the ring Λ, i.e. Λ =
n∑

i,j=1
eijπ

αijO, where

eij are matrix units. If a tiled order is reduced, then αij + αji > 0 for
i, j = 1, . . . , n, i 6= j, i.e. E(Λ) is reduced.

Definition 3.9. A right (resp. left) Λ-module M (resp. N) is called
a right (resp. left) Λ-lattice if M (resp. N) is a finitely generated free
O-module.

For instance, all finitely generated projective Λ-modules are Λ-lat-
tices.

Given a tiled order Λ we denote Latr(Λ) (resp. Latl(Λ)) the category
of right (resp. left) Λ-lattices. We denote by Sr(Λ) (resp. Sl(Λ)) the
partially ordered by inclusion set, formed by all Λ-lattices contained in
a fixed simple Mn(D)-module W (resp. in a left simple Mn(D)-module
V ). Such Λ-lattices are called irreducible.
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Let Λ = {O, E(Λ)} be a tiled order, W (resp. V ) is a simple right
(resp. left) Mn(D)-module with D-basis e1, . . . , en such that eiejk =
δijek (eijek = δjkei).

Then any right (resp. left) irreducible Λ-lattice M (resp. N), lying
in W (resp. in V ) is a Λ-module with O-basis (πα1e1, . . . , π

αnen), while

{
αi + αij ≥ αj , for the right case;
αij + αj ≥ αi, for the left case.

(2)

Thus, irreducible Λ-lattices M can be identified with integer-valued
vector (α1, . . . , αn) satisfying (2). We shall write [M ] = (α1, . . . , αn) or
M = (α1, . . . , αn).

The order relation on the set of such vectors and the operations on
them corresponding to sum and intersection of irreducible lattices are
obvious.

Remark 1. Obviously, irreducible Λ-lattices M1 = (α1, . . . , αn) and
M2 = (β1, . . . , βn) are isomorphic if and only if αi = βi + z for i =
1, . . . , n and z ∈ Z.

Proposition 3.10. The posets Sr(Λ) and Sl(Λ) are anti-isomorphic dis-
tributive lattices.

Proof. As soon Λ is a semidistributive ring, then Sr(Λ) (resp. Sl(Λ)) is
distributive lattice ( [3], Ch. 1, §6) with respect to sum and intersection
of submodules.

Let M = (α1, . . . , αn) ∈ Sr(Λ). Then M∗ = (−α1, . . . ,−αn)T ∈
Sl(Λ). If N = (β1, . . . , βn)T ∈ Sl(Λ), then N∗ = (−β1, . . . ,−βn) ∈
Sr(Λ).

Obviously, the operations ∗ are satisfied such conditions:
1. M∗∗ = M ; 2. (M1+M2)∗ = M∗

1 ∩M∗
2 ; 3. (M1∩M2)∗ = M∗

1 +M∗
2

in the right case and analogous conditions in the left case. Thus, the map
∗: Sr(Λ) −→ Sl(Λ) is the anti-isomorphism.

Remark 2. The maps ∗ are defined the duality for irreducible Λ-lattices.
If M1 ⊂ M2, (M1,M2 ∈ Sr(Λ)), then M∗

2 ⊂ M∗
1 . In this case, the

Λ-lattice M2 is called an overmodule of Λ-lattice M1 (resp. M∗
1 is the

overmodule of M∗
2 ).

Definition 3.11. [30] The direct sum of irreducible Λ-lattices is called
a completely decomposable Λ-lattice.

Let L = M1 ⊕ . . . ⊕Mp be a right completely decomposable (c.d.)
Λ-lattice and K = N1 ⊕ . . . ⊕ Nq be a left c.d. Λ-lattice. Then L∗ =
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M∗
1 ⊕ . . .⊕M∗

p is a left c.d. Λ-lattice and K∗ = N∗
1 ⊕ . . .⊕N∗

q is a right
c.d. Λ-lattice.

A tiled order Λ =
n∑

i,j=1
eijπ

αijO is a completely decomposable both

right and left Λ-lattice lying in Λ̃ = Mn(D).

A projective Λ-lattice (= finitely generated projective Λ-module) is
a c.d. Λ-lattice.

Definition 3.12. A completely decomposable Λ-lattice M is called rela-
tive injective if M = P ∗, where P is a projective Λ-lattice.

Definition 3.13. [28] A tiled order Λ is called Gorenstein tiled order if
Λ∗

Λ is a projective left Λ-lattice.

Remark 3. Obviously, Λ∗
Λ is projective if and only if ΛΛ∗ is projective

right Λ-lattice.

Below Gorenstein tiled orders we often call Gorenstein orders.

—-

Theorem 3.14. (see [28]). Let Λ = {O, E(Λ) = (αpq)} be a reduced
tiled order; then the following conditions are equivalent:

(a) Λ is Gorenstein;

(b) there exists a permutation σ = {i→ σ(i)} such that αik+αkσ(i) =
αiσ(i) for i, k = 1, . . . , n.

The permutation σ is denoted by σ(Λ).

Notice that the permutation σ(Λ) of a reduced Gorenstein order Λ
has no cycles of length 1.

Definition 3.15. A Gorenstein tiled order Λ is said to be cyclic if its
permutation σ(Λ) is a cycle.

We denote by Mr(Λ) (resp. Ml(Λ)) partially ordered subset of the
lattice Sr(Λ) (resp. Sl(Λ)), formed by all projective Λ-modules, lying in
Sr(Λ) (resp. Sl(Λ)).

Proposition 3.16. An irreducible Λ-lattice M ∈ Sr(Λ) (resp. N ∈
Sl(Λ)) is projective if and only if it contains exactly one maximal sub-
module.

Let M ∈ Sr(Λ) and M∗ ∈ Sl(Λ).

Proposition 3.17. A tiled order Λ is Gorenstein if and only if a restric-
tion of the map ∗ : Sr(Λ) −→ Sl(Λ) on Mr(Λ) is an anti-isomorphism
between partially ordered sets Mr(Λ) and Ml(Λ).
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In general case, the poset Mr(Λ) and Ml(Λ) also are anti-isomorphic,
but this anti-isomorphism cannot be extended to anti-isomorphism of the
lattices Sr(Λ) and Sl(Λ).

Let P be an arbitrary poset. A subset of P is called a chain if any
two of its elements are related. A subset of P is called a antichain if no
two distinct elements of the subset are related.

We shall denote a chain of n elements by CHn and an antichain of n
elements by ACHn.

Theorem 3.18. [8], [19] Given a poset the minimal number of disjoint
chains that together contain all elements of P is equal to the maximal
number of elements in an antichain, if this number is finite.

Definition 3.19. [19] The maximal number w(P ) of elements in an
antichain of P is called the width of P .

The width of Mr(Λ) is called the width of a tiled order Λ and is
denoted by w(Λ).

Let P be an arbitrary partially ordered set. Then one can construct
a new partially ordered set P̃ , whose elements are the nonempty subsets
of P , consisting of pairwise incomparable elements. If A,B ∈ P̃ , then
A ≤ B if and only if for any a ∈ A there exists b ∈ B such that a ≤ b.
The poset P is naturally embedded in P̃ : an element a ∈ P is mapped
into the singleton {a}.

Example. If P = ACHn, then P̃ is the poset of all non-empty subsets
of P partially ordered by inclusion.

Proposition 3.20. [57] The set M̃r(Λ) is a lattice. There is a natural
isomorphism of lattices M̃r(Λ) (resp. M̃l(Λ)) and Sr(Λ) (resp. Sl(Λ)),
which is identical on Mr(Λ) (resp. Ml(Λ)).

4. Quivers of tiled orders

Following P. Gabriel a finite directed graph Q is called a quiver.
Denote by V Q = {1, . . . , s} the set of all vertices of Q and by AQ

the set of its all arrows. We shall write Q = {AQ, V Q}. Denote by
1, . . . , s the vertices of a quiver Q and assume that we have tij arrows
beginning at the vertex i and ending at the vertex j. The matrix

[Q] =







t11 t12 . . . t1s
t21 t22 . . . t2s
. . . . . . . . . . . .
ts1 ts2 . . . tss
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is called the adjacency matrix of Q.

Let Q be a quiver. Usually the vertices of Q we will denote by the
numbers 1, 2, . . . , s. If an arrow σ connects a vertex i with a vertex j
then i is called its start vertex and j its end vertex. This will be denoted
as σ : i→ j.

A path of the quiver Q from a vertex i to a vertex j is an ordered set
of k arrows {σ1, σ2, ..., σk} such that the start vertex of each arrow σm
coincides with the end vertex of the previous one σm−1 for 1 < m ≤ k,
and moreover, the vertex i is the start vertex of σ1, while the vertex j is
the end vertex of σk. The number k of these arrows is called the length
of the path.

The start vertex i of the arrow σ1 is called the start of the path and
the end vertex j of the arrow σk is called the end of the path. We shall
say that the path connects the vertex i with the vertex j and it is denoted
by σ1σ2...σk : i→ j.

We remind the definition of the quiver of a right noetherian semiper-
fect ring A ( [18], p. 201).

Let A be a semiperfect right noetherian ring, R its Jacobson radi-
cal, P1, . . . , Ps be all pairwise nonisomorphic projective indecomposable
modules. Let the projective cover P (PiR) of PiR be:

P (PiR) =

s⊕

j=1

P
tij
j , i, j = 1, . . . , s.

We assign to P1, . . . , Ps vertices 1, . . . , s and join vertex i with vertex
j by tij arrows. The resulting directed graph is called the quiver of A
and denote by Q(A).

Analogously, can be defined the left quiver Q′(A) of a left noetherian
semiperfect ring A.

From the definition of a projective cover it follows that Q(A) =
Q(A/R2) .

If A is a semiperfect ring such that A/R2 is right artinian, then we
define Q(A) by formula: Q(A) = Q(A/R2). If A/R2 is left artinian,
then Q′(A) = Q′(A/R2).

Notice that the quiver of a semiperfect ring is invariant under Morita
equivalence.

Proposition 4.1. Let A be a semiperfect ring such that A/R2 is left and
right artinian. Then:

(1) if Q(A) has an arrow from i to j then the left quiver Q′(A) has an
arrow from j to i;
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(2) if Q(A) has an arrow σij then there exist the nonzero homomor-
phisms from Pj to Pi and Qi to Qj.

The proof immediately follows from the definition of Q(A).
Denote by Qu the quiver, obtained from Q, by substituting all arrows

from i to j by a single arrow (we allow i = j). If Q has no arrows from
i to j then neither does Qu.

Let Q̄ be the non-oriented graph obtained from Q by omitting its
orientation.

Corollary 4.2. Let A be a ring such that A/R2 is right and left artinian.
Then Qu(A) = Q′

u(A).

Proof follows from Proposition 4.1.

Theorem 4.3. [31] If A is an right and left artinian ring with R2 = 0,
then the following conditions are equivalent:

(a) A is semidistributive;

(b) every vertex of Q(A) is connected with another (possibly the same)
vertex by at most one arrow, and the left quiver Q′

u(A) can be
obtained from Qu(A) by reversing all arrows.

A ring A is called semiprimary if A/R is artinian and R is nilpotent.

Theorem 4.4. [29] A semiprimary semidistributive ring is right and
left artinian.

Definition 4.5. A semiperfect ring A is called Q-symmetric if A/R2 is
right and left artinian and Q′(A) can be obtained from Q(A) by reversing
all arrows.

It follows from Theorems 4.3 and 4.4, that every SPSD-ring is Q-
symmetric.

Proposition 4.6. For Q-symmetric ring A we have [Q(A)]T = [Q′(A)].

Proof follows from Definition 4.5.

Definition 4.7. Let A be a semiperfect ring such that A/R2 is right
artinian. The index inA of A is the maximal real eigen-value of the
adjacency matrix [Q(A)] of Q(A).

Similarly, can be defined the left index of a semiperfect ring A with
left artinian A/R2. It follows from Proposition 4.6, that the left and
right indices of SPSD-ring coincides. In particular, this is true for tiled
orders over discrete valuation rings.
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Definition 4.8. A quiver is called strongly connected if there is a path
between any two vertices. By convention, a one-point graph without ar-
rows will be considered as a strongly connected quiver.

Definition 4.9. A quiver Q without multiple arrows and multiple loops
is called simply laced, i.e. Q is a simply laced quiver if and only if its
adjacency matrix [Q] is a (0, 1)-matrix.

Theorem 4.10. ( [34], Theorem 4.1). The quiver Q(A) of right and left
noetherian semiprime semiperfect ring A is strongly connected.

Let I be a two-sided ideal of a tiled order Λ. Obviously,

I =

n∑

i,j=1

eijπ
µijO,

where eij are matrix units. Denote by E(I) = (µij) the exponent matrix
of the ideal I. Suppose that I and J are two-sided ideals of the ring
Λ, E(I) = (µij), and E(J) = (νij). It follows easily that E(IJ) = (δij),
where δij = min

k
{µik + νkj}.

Theorem 4.11. The quiver Q(Λ) of a tiled order Λ over a discrete
valuation ring O is strongly connected and simply laced. If Λ is reduced,
then Q(Λ) = E(R2) − E(R).

Proof. Taking into account that Λ is a prime noetherian semiperfect ring
it follows, by Theorem 4.10 that Q(Λ) is a strongly connected quiver.
Let Λ be a reduced order. Then [Q(Λ)] is a reduced matrix. We shall use
the following notation: E(Λ) = (αij); E(R) = (βij), where βii = 1 for
i = 1, . . . , n and βij = αij for i 6= j (i, j = 1, . . . , n); E(R2) = (γij),
where γij = min

1≤k≤n
{βik +βkj} for i, j = 1, . . . , n. Since, E(Λ) is reduced,

we have αij + αji ≥ 1 for i, j = 1, . . . , n, i.e. γii = min
1≤k≤n

{βik + βki} =

min
1≤k≤n, k 6=i

{βik + βki}. Hence γii is equals 1 or 2. If i 6= j, then βij = αij

and γij = min{ min
1≤k≤n, k 6=i,j

{αik + αkj}, αij + 1}, i.e. γij equals αij or

αij + 1.
With any irreducible Λ-lattice M with O-basis (πα1e1, . . . , π

αnen) we
relate the n-tuple [M ] = (α1, . . . , αn). Let us consider now

[Pi] = (αi1, . . . , 0, . . . , αin),

[PiR] = (αi1, . . . , 1, . . . , αin) = (βi1, . . . , βin).

Set [PiR
2] = (γi1, . . . , γin). Then ~qi = [PiR

2] − [PiR] is a (0, 1)-
vector. Suppose that the positions of the units of ~qj are j1, . . . , jm. In view
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of the Annihilation Lemma, this means that PiR/PiR
2 = Uj1⊕. . .⊕Ujm .

By the definition of Q(Λ) we have exactly one arrow from the vertex i
to each of j1, . . . , jm. Thus, the adjacency matrix [Q(Λ)] is:

[Q(Λ)] = E(R2) − E(R).

5. Finite Markov chains associated with tiled orders

We remind some facts about the relations between the square matrices
and quivers.

Let B = (bij) be an arbitrary real square n × n-matrix, i.e. B ∈
Mn(R). Using B one construct a simply laced quiver Q(B) by the fol-
lowing way: the set of vertices V Q(B) of Q(B) are the integers 1, . . . , n.
The set of arrows AQ(B) is defined as follows: there is an arrow from i
to j if and only if bij 6= 0.

Let τ be a permutation of the set {1, 2, . . . , n} and let

Pτ =
n∑

i=1

eiτ(i),

be the permutation matrix, where eij are matrix units. Clearly, P Tτ Pτ =
PτP

T
τ = En is the identity matrix of Mn(R). In particular,

Dn =









0 0 . . . 0 1
0 0 . . . 1 0
. . . . . . . . . . . . . . .
0 1 . . . 0 0
1 0 . . . 0 0









is Pσ, where σ =

(
1 2 . . . n− 1 n
n n− 1 . . . 2 1

)

, and DT
n = Dn.

We next remind a concept which is called “irreducible matrix” in [38]
and “indecomposable matrix” in [17]. We prefer to use the term “permu-
tationally irreducible matrix” in order to avoid confusion with standard
notions of representation theory (see [18], §7.7).

Definition 5.1. ( [18], §7.7). A matrix B ∈ Mn(R) is called permuta-
tionally reducible if there exists a permutation matrix Pτ such that

P Tτ BPτ =

(
B1 B12

0 B2

)

,

where B1 and B2 are square matrices of order less that n. Otherwise,
the matrix B is called permutationally irreducible.
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It follows from the equality Dn

(
B1 B12

0 B2

)

Dn =

(

B
(1)
1 0

B21 B
(2)
2

)

that B is permutationally irreducible if and only if there exists a permu-
tation matrix Pν such that

P Tν BPν =

(

B
(1)
1 0

B21 B
(2)
2

)

,

where B
(1)
1 and B

(2)
2 are square matrices of order less that n.

Proposition 5.2. [38], [11] A matrix B ∈ Mn(R) is permutationally
irreducible if and only if the quiver Q(B) is strongly connected.

Corollary 5.3. A quiver Q is strongly connected if and only if the matrix
[Q] is permutationally irreducible.

The notion of a subquiver Q1 of a quiver Q is obvious.

Definition 5.4. A maximal (with respect to inclusion) strongly con-
nected subquiver of Q is called a strongly connected component of Q.

Definition 5.5. By a partition P (Q,Q1, . . . , Qm) of a quiver Q into
strongly connected components Q1, Q2, . . . , Qm we mean a partition of
the set of vertices of Q into disjoint subsets such that the subquivers
corresponding to these subsets are strongly connected components of Q.

Theorem 5.6. (see [18], Theorem 7.7.5). Every quiver Q has a partition
P (Q,Q1, . . . , Qm) into strongly connected components Q1, Q2, . . . , Qm.
The partition is unique up to a renumbering of vertices of Q, that is
if P (Q,Q1, . . . , Qm) and P (Q,G1, . . . , Gn) are two such partitions then
m = n and there exists a permutation σ of {1, . . . ,m} such that Qi =
Gσ(i) for i = 1, . . . ,m.

Definition 5.7. (of condensation Q∗ of a quiver Q, see [11] and [18],
§7.7). Let P (Q,Q1, . . . , Qm) be a partition of a quiver Q into strongly
connected components Q1, . . . , Qm. The condensation Q∗ of Q is the
quiver, whose vertices are q1, . . . , qm corresponding to Q1, . . . , Qm and
Q∗ has an arrow from qi to qj if and only if Q has an arrow from a
vertex belonging to V Qi to a vertex from V Qj (i 6= j, i, j = 1, . . . ,m).

For basic concepts of Markov chains the reader is referred [23].
Let P = (pij) be the transition matrix for a Markov chain MCn.

Definition 5.8. The quiver Q(MCn) of the Markov chain MCn is the
quiver Q(P ) of its transition matrix P .
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Obviously, Q(MCn) is simply laced quiver.

Definition 5.9. A square n× n-matrix P = (pij) is called stochastic if
P is non-negative and if the sum of the elements of each row of P is 1.

Thus, every stochastic matrix can be regarded as the transition ma-
trix for a finite (homogeneous) Markov chain and, conversely, the tran-
sition matrix for such Markov chain is stochastic.

Let Q be a quiver with the adjacency matrix [Q] = (qij). We shall
refer to the eigen-vectors (resp. eigen-values) of [Q] as the eigen-vectors
(resp. eigen-values) of the quiver Q.

Definition 5.10. A quiver Q with V Q 6= ∅ shall be called Frobenius if
it has a positive right eigen-vector.

Theorem 5.11. (Compare with [16], Ch. 13, §6 and [36], Ch. 7, §4).
For any Frobenius quiver Q there exists a stochastic matrix P such that
Q(P ) = Q.

Proof. Suppose Q has a positive eigen-vector ~z = (z1, z2, . . . , zn) > 0.
This means that zi > 0 for i = 1, . . . , n.

Let λ be an eigen-value corresponding to the eigen-vector ~z, i.e.

[Q]~z = λ~z (3)

We show that λ > 0. Since V Q 6= ∅, then [Q] is a non-zero non-
negative matrix. Hence, in the left hand side of ( 3) we have a non-
zero non-negative vector, and the vector on its right hand side has non-
zero coordinates. Consequently, λ~z > 0 and λ > 0. We consider the
diagonal matrix Z = diag(z1, z2, . . . , zn). Then the matrix P = (pij) =

λ−1Z−1[Q]Z is stochastic. Indeed, we have
n∑

j=1
qijzj = λzi and

n∑

j=1
pij =

λ−1z−1
i

n∑

j=1
qijzj = λ−1z−1

i λzi = 1. Obviously, [Q(P )] = [Q].

As follows from the Perron-Frobenius theorem (see [16], Ch.13 §2 and
Corollary 5.3), every strongly connected quiver is Frobenius.

Examples.

(1). Let P =

(
0 1
0 1

)

. Then Q(P ) = {
1 2
t ��

��
t- }

is a Frobenius quiver.
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(2). Let P =







1 0 0 0
0 1/2 1/2 0
0 1/2 1/2 0

1/4 1/4 1/4 1/4







. Then

[Q(P )] =







1 0 0 0
0 1 1 0
0 1 1 0
1 1 1 1






.

Obviously, χ[Q(P )] = x(x− 1)2(x− 2) and we have







1 0 0 0
0 1 1 0
0 1 1 0
1 1 1 1













0
1
1
2







= 2







0
1
1
2






. (4)

Consequently, the quiver of a Markov chain is not necessarily Frobe-
nius.

6. (0, 1)-orders and finite partially ordered sets

Definition 6.1. A tiled order

Λ = {O, E(Λ)}

is called a (0, 1) − order if E(Λ) is a (0, 1)-matrix.

Therefore, by an (0, 1)-order we shall always mean a tiled (0, 1)-order
over a discrete valuation ring O.

With a reduced (0, 1)-order Λ we associate the partially ordered set

PΛ = {1, . . . , n}

with the relation ≤ defined by the formula: i ≤ j ⇔ αij = 0.

Obviously, (P, ≤) is a partially ordered set (poset).

Conversely, with any finite poset P = {1, . . . , n} we relate the re-
duced (0, 1)-matrix Ep = (λij) by the following way: λij = 0 ⇔ i ≤ j,
otherwise λij = 1. Then Λ(P ) = {O, EP } is a reduced (0, 1)-order.

Proposition 6.2. Given a reduced (0, 1)-order Λ, the width w(Λ) coin-
cide with the width of the partially ordered set PΛ.

Proof is obviously.
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Definition 6.3. ([3], Ch.1, §3). By “a covers” b in a poset P , it is meant
that a > x > b for no x ∈ P .

Definition 6.4. ( [18], p. 233, see also [33]). Let P = {α1, α2, . . . , αn}
be a finite poset with an ordering relation ≤. The diagram of P is the
quiver Q(P ) with the set of vertices V Q(P ) = {1, . . . , n} and the set of
arrows AQ(P ) such that in AQ(P ) there is an arrow σ : i → j if and
only if αj covers αi.

Definition 6.5. ([41], §8.4). A quiver without oriented cycles is called
an acyclic quiver.

Proposition 6.6. The condensation Q∗ of a quiver Q is an acyclic sim-
ply laced quiver.

Definition 6.7. An arrow σ : i → j of an acyclic quiver Q is called
extra if there exists a path from i to j of length greater than 1.

Theorem 6.8. ([33], [18], §7.7). Let Q be an acyclic simply laced quiver
without extra arrows. Then Q is the diagram of some finite poset P .
Conversely, the diagram Q(P ) of a finite poset P is an acyclic simply
laced quiver without extra arrows.

Example. If Q =

��
��

t ��
��

t-

t

@
@

@
@R ?

��
��

then

Q∗ =







1 2
• −→ •

ց ↓
•
3







In Q∗ there is an extra arrow σ13. Deleting it, we obtain

1 2 3
• −→ • −→ •
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which is the diagram Q(CH3) of the poset CH3.

Thus, if we delete from Q∗ all extra arrows, then by Theorem 6.8 we
obtain the diagram of finite partially ordered set, which shall be denoted
by S(Q). In particular, with any matrix B ∈ Mn(R) we associate the
finite poset S(B) = S(Q(B)).

Definition 6.9. Let MCn be a finite Markov chain. The partially or-
dered set SQ(MCn) shall be called the associated poset of MCn. In
particular, if MCn is ergodic, then SQ(MCn) consists of one element.

Definition 6.10. A finite poset P is called connected if its diagram Q(P )
is a connected quiver.

We give a construction which for a given finite partially ordered set
P = {p1, . . . , pn} permits to associate a strongly connected quiver with-
out multiple arrows and multiple loops.

Denote by Pmax (respectively Pmin) the set of the maximal (respec-
tively minimal) elements of P and by Pmax×Pmin their Cartesian prod-
uct.

Definition 6.11. The quiver Q̃(P ) obtained from the diagram Q(P ) by
adding the arrows σij for all (pi, pj) ∈ Pmax × Pmin shall be called the
quiver associated with the partially ordered set P .

Obviously, Q̃(P ) is a strongly connected simply laced quiver.

Theorem 6.12. The quiver Q(Λ(P )) coincides with the quiver Q̃(P ).

Proof. Recall that [Q(Λ(P ))] = E(R2) − E(R). Suppose that in Q(P )
there is an arrow from s in t. This means that αst = 0 and there is
no positive integer k (k 6= s, t) such that αsk = 0 and αkt = 0. The
elements βss and βtt of the exponent matrix E(R) = (βij) are equal to
1. We have that E(R2) = (γij), where γij = min

1≤k≤n
(βsk + βkt) = 1.

Thus, in [Q(Λ(P ))] in the (s, t)-th position we have γst−βst = 1−αst =
1 − 0 = 1. Consequently, Q(Λ(P )) has an arrow from s to t.

Suppose that p ∈ Pmax. This means that αpk = 1 for k 6= p. There-
fore the entries of the p-th row of E(R) are all 1, i.e.

(βp1, . . . , βpp, . . . , βpn) = (1, . . . , 1, . . . , 1).

Similarly, if q ∈ Pmin, then the q-th column (β1q, . . . , βqq, . . . , βnq)
T

of E(R) is (1, . . . , 1, . . . , 1)T . Hence, γpq = 2, βpq = 1, and Q(Λ(P )) has
an arrow from p to q. Consequently, we proved that Q̃(P ) is a subquiver
of Q(Λ(P )).
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We show now the converse inclusion. Suppose that γpq = 2. Then
obviously

(βp1, . . . , βpp, . . . , βpq) = (1, . . . , 1, . . . , 1)

and

(β1q, . . . , βqq, . . . , βnq)
T = (1, . . . , 1, . . . , 1)T .

Therefore p ∈ Pmax, q ∈ Pmin and there is an arrow, which goes from
p to q.

Suppose γpq = 1 and βpq = 0. Consequently, p 6= q, βpq = αpq = 0
and p < q. Since γpq = min

1≤k≤n
(βpk + βkp), then βpk + βkq ≥ 1 for

k = 1, . . . , n. Thus for k 6= p, q we have βpk + βkq ≥ 1 from which we
obtain αpk + αkp ≥ 1. Hence, there is no positive integer k (k 6= p, q)
such that αpk = αkq = 0. This means that in Q̃(P ) there is an arrow
from p to q, which proved the opposite inclusion.

Definition 6.13. Index in P of a finite partially ordered set P is the
maximal real eigen-value of the adjacency matrix of Q̃(P ).

Thus, in P = inΛ(P ).

Examples.

1. The index of finite linearly ordered set CHn is 1.

2. Let ACHn =

{
1 2 3 . . . n− 1 n
• • • . . . • •

}

be an antichain of

width n. Clearly, Q̃(ACHn) is a complete simply laced quiver with n
vertices. Thus inACHn = n.

3. Let Pm,n = (m,m, . . . ,m) - be a primitive partially ordered set
formed by n linearly ordered disjoint sets each of length m. It is easy to
verify that in Pm,n = m

√
n.

4. Consider P4 =







• •
↑ րտ ↑
• •






. Denote by

Un =





1 . . . 1
. . . . . . . . .
1 . . . 1
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the square n×n-matrix whose every entry is 1. Obviously, the adjacency

matrix Q̃(P4) is [Q̃(P4)] =

(
0 U2

U2 0

)

and in P4 = 2

5. Let P2n =







1 3 5 2n− 3 2n− 1
• → • → • . . . • → •

րց րց րց
• → • → • . . . • → •
2 4 6 2n− 2 2n







. Ob-

viously,

[Q̃(P2n)] =









0 U2 0 . . . 0
0 0 U2 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . U2

U2 0 0 . . . 0









and in P2n = 2.

Let r be a maximal eigen-value of permutationally irreducible non-
negative matrix A = (aij). We denote

si =

n∑

k=1

aik (i = 1, 2, . . . , n), s = min
1≤i≤n

si, S = max
1≤i≤n

si.

Proposition 6.14. (see [16], p. 63). Let A be a permutationally irre-
ducible non-negative matrix. Then s ≤ r ≤ S and the equality sign on
the left or the right of r holds for s = S only, i.e. holds only when all
the “row -sums” s1, s2, . . . , sn are equal.

Corollary 6.15. Let A be a (0, 1)-matrix and s = k, S = k + 1.
Then r is not integer.

Proof is obviously.

Definition 6.16. (see [3], pp. 198-199). Let X and Y be any two
(disjoint) posets. The ordinal sum X ⊕ Y of X and Y is the set of all
x ∈ X and y ∈ Y ; x < y for all x ∈ X and y ∈ Y ; the relations x ≤ x1

and y ≤ y1 (x, x1 ∈ X; y, y1 ∈ Y ) have unchanged meanings.

The ordinal sum is associative, and we can consider the ordinal power
X⊕n = X ⊕ . . .⊕X

︸ ︷︷ ︸

n

for any poset X.

In particular, CHn = CH⊕n
1 and P2n = ACH⊕n

2 .
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If X and Y are finite posets, then EX⊕Y =

(
EX 0m×n

Un×m EY

)

, where

m (resp. n) is a number of elements in X (resp. in Y ); 0m×n is m× n-
matrix, whose every entry is 0 and Un×m is n ×m-matrix, whose every
entry is 1. As usual, Un×n = Un and 0n×n = 0n.

Remark. inCHn = w(CHn) = 1 and in P2n = w(P2n) = 2.

Proposition 6.17. If in P = 1, then P is CHn for some n.

The proof follows from the Proposition 6.14 and Theorem 4.11.

Proposition 6.18. For any finite poset P we have:

in P ≤ w(P ).

Proof. Let c1, . . . , cm be an antichain formed by all minimal elements
of P . There are exactly m arrows from a maximal element a to each
ci, (i = 1, . . . ,m).

The elements a1, . . . , ak ∈ P which cover b ∈ P form an antichain.
Thus, there are exactly k arrows from b to a1, . . . , ak. Obviously, m ≤
w(P ) and k ≤ w(P ). Let [Q̃(P )] = B = (bij). Then,

S = max
1≤i≤n

n∑

j=1

bij ≤ w(P )

and by Proposition 6.14 we have in P ≤ w(P ).

Example. A quiver Q with the adjacency matrix [Q] =





0 1 1
1 0 1
1 1 0





is not the quiver associated with a finite poset P .

Theorem 6.19. Let P is a finite poset. Then in P = w(P ) = 2 if and
only if P = P2n = ACH⊕n

2 .

Proof. The equalities in P2n = w(P2n) = 2 follows from (5, examples).

Let P = {p1, . . . , pn}, n ≥ 3 and in P = 2. We show first, that
Q̃(P ) has no loops. Let pn be an isolated element. Then {p1, . . . , pn−1}
is the chain CHn−1. One can suppose that

p1 < p2 < . . . < pn−1.
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Thus,

[Q̃(P )] =











0 1 0 . . . 0 0
0 0 1 . . . 0 0
0 0 0 . . . 0 0
. . . . . . . . . . . . . . . . . .
1 0 0 . . . 0 1
1 0 0 . . . 0 1











.

We have s1 = 1 and sn = 2. By Corollary 6.15, 1 < inP < 2 and
Q̃(P ) has no loops as desired. Consequently, the (0, 1)-matrix [Q(P )]
with in P = 2 has zero main diagonal and exactly two 1’s in each row.
Thus, Pmax consists of two elements: pn−1 and pn.

Denote by P T the poset anti-isomorphic to P . Obviously, in P =
in P T . Then in P T = 2 and P T has exactly two maximal elements.
Moreover, there are exactly two 1’s in each row of [Q̃(P T )]. Thus, one
can assume that Pmin = {p1, p2}, Pmax = {pn−1, pn}. The (0, 1)-matrix
[Q̃(P )] has zero main diagonal and exactly two 1’s each row and in each
column. There exists a numeration of {p3, . . . , pn−2} such that σij ∈
AQ(P ) if and only if i < j, (i = 1, 2, . . . , n − 1, n). Write [Q̃(P )] =
B = (bij). Obviously, bn−1,n = bn1 = bn−1,2 = bn2 = 1. Moreover,

B −
(

0n−2,2 0n−2

u2 02,n−2

)

= [Q(P )] is an upper triangular matrix with

zero main diagonal. Then,

B =

















0 0 1 ∗
0 0 1 ∗
0 0 0 ∗
0 0 0 0
02 02

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

u2 02 . . . . . . . . . . . . 02 02

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

Obviously, B must have at least 4 columns. If 1 occupies the position
(3, 4), then one can assume, that it is in (1, 4)-th position. We have

1 3
• −→ •
↓ ւ
•
4

and the arrow σ14 is extra. By Theorem 6.8 it is impossible.
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If B has 4 columns, then P = P4 and Q̃(P4) =

[
02 u2

u2 02

]

. Contin-

uing this process we shall conclude that 1 can not be in (5, 6)-th position
if B has 6 columns, then P = P6. Obviously, in general case, we have
P = P2n.

Remark. Similarly, one can show that if in P = w(P ) = m and Q̃(P )
has no loops, then P = ACH⊕n

m .

The description of Gorenstein (0, 1)-order is given in [32], Theorem
2.1. In view of Theorem 6.19 and the definition of ordinal power, we
have the following.

Theorem 6.20. A reduced (0, 1)-order Λ is Gorenstein if and only if
PΛ is an ordinal power of either a singleton or an antichain with two
elements.

Theorem 6.21. A reduced (0, 1)-order Λ is Gorenstein if and only if
either in PΛ = w(PΛ) = 1 or in PΛ = w(PΛ) = 2. In the first case, Λ
is hereditary.

7. Quivers of Gorenstein orders

We observe that the quiver Q(Λ) of a cyclic reduced Gorenstein tiled
order Λ with the permutation σ(Λ) not always contains a simple cycle of
length n, where n = | < σ(Λ) > |.

For example, consider the cyclic reduced Gorenstein tiled order Λ =
{O, E(Λ)} with the permutation σ(Λ), where

E(Λ) =











0 0 0 0 0 0
2 0 2 1 1 1
1 0 0 1 0 0
1 0 1 0 1 0
1 0 1 1 0 1
2 0 1 1 1 0











, σ =

(
1 2 3 4 5 6
2 3 4 5 6 1

)

.
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We compute [Q(Λ)].

E(R) =











1 0 0 0 0 0
2 1 2 1 1 1
1 0 1 1 0 0
1 0 1 1 1 0
1 0 1 1 1 1
2 0 1 1 1 1











, E(R2) =











1 0 1 1 0 0
2 1 2 2 2 1
1 0 1 1 1 1
2 0 1 1 1 1
2 1 1 1 1 1
2 1 2 1 1 1











.

Whence,

[Q(Λ)] = E(R2) − E(R) =











0 0 1 1 0 0
0 0 0 1 1 0
0 0 0 0 1 1
1 0 0 0 0 1
1 1 0 0 0 0
0 1 1 0 0 0











.

We see that the quiver Q(Λ) has simple cycles containing vertex 1 as
follows:

{
1 3 5 1
• → • → • → •

}

,

{
1 3 5 2 4 1
• → • → • → • → • → •

}

,

{
1 3 6 2 4 1
• → • → • → • → • → •

}

,

{
1 3 6 2 5 1
• → • → • → • → • → •

}

,

{
1 4 1
• → • → •

}

,

{
1 4 6 3 5 1
• → • → • → • → • → •

}

,

{
1 6 2 5 1
• → • → • → • → •

}

.

Thus the quiver Q(Λ) has no cycle of length 6.

Proposition 7.1. Let Q(Λ) be the quiver of a cyclic reduced Gorenstein
tiled order Λ with the permutation σ(Λ) such that | < σ > | = p is a
prime number; then Q(Λ) contains a simple cycle of length p.
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Proof. Let Λ = {O, E(Λ)} be a cyclic reduced Gorenstein tiled order with
the permutation σ(Λ). It can be assumed that

σ =

(
1 2 · · · n
2 3 · · · 1

)

.

At least one arrow goes out from each vertex of Q(Λ). Suppose that an
arrow connects vertex 1 with the vertex a in Q(Λ), i. e., q1a = 1. Since

σ(a−1) =

(
1 2 · · · n
a a+ 1 · · · a− 1

)

,

we see that a = σ(a−1)(1). Using the Main Lemma of [45], we obtain

qσ(a−1)(1)σ(a−1)(a) = qσ(a−1)(1)σ2(a−1)(1) = 1.

Therefore there exists an arrow from a to σ2(a−1)(1). As before,

qσ2(a−1)(1)σ3(a−1)(1) = 1, . . . , qσk(a−1)(1)σ(k+1)(a−1)(1) = 1,

where k is an arbitrary positive integer.
The permutation σ(a−1) generates the cyclic group < σ(a−1) > of

order b = n /(a− 1, n) . Thus, σb(a−1)(1) = 1 and Q(Λ) contains the
simple cycle

{
1 σ(a−1)(1) σ2(a−1)(1) σ(b−1)(a−1)(1) 1
• → • → • → · · · → • → •

}

.

If n = p is a prime, then b = p and Q(Λ) has a simple cycle of length p.

Suppose that the permutation σ(Λ) of a reduced Gorenstein order Λ
is decomposed into a product of two permutations σ1 and σ2 act over non-
intersecting sets. To be precise, σ1 acts over the set I1 = {1, 2, . . . , n}
and σ2 does over I2 = {n + 1, n + 2, . . . , n + m}. Let 1 = e1 + · · · +
em+n be a decomposition 1 ∈ Λ into a sum of mutually orthogonal local
idempotents. Put e = e1 + · · · + en, f = 1 − e, Q = Q(Λ), where
Q(Λ) is the quiver of Λ; Q1 = Q(eΛe), where Q(eΛe) is the quiver
of eΛe; Q2 = Q(fΛf), where Q(fΛf) is the quiver of fΛf . Trivially,
eΛe and fΛf are also Gorenstein tiled orders with the permutations
σ1(Λ) = σ(eΛe) and σ2(Λ) = σ(fΛf) respectively. It is easily shown
that
i) if there exists an arrow from vertex i to vertex j in Q(Λ), where i, j ∈ I1
or i, j ∈ I2, then there exists an arrow from vertex i to vertex j in Q(eΛe)
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or Q(fΛf) respectively;
ii) if Q(eΛe) or Q(fΛf) has no arrow from vertex i to vertex j, where
i, j ∈ I1 or i, j ∈ I2 respectively, then the quiver Q(Λ) has no arrow from
vertex i to vertex j.

Proposition 7.2. Suppose that σ1 and σ2 are cycles that do not
intersect, whose lengths | < σ1 > | = m > 2 and | < σ2 > | = n > 2 are
mutually prime. Then

[Q] =

(
[Q1] Um×n

Un×m [Q2]

)

,

where Um×n =







1 1 · · · 1
1 1 · · · 1
· · · · · · · · · · · ·
1 1 · · · 1







is an m× n-matrix.

Proof. Since the orders of the permutations σ1 and σ2 are pairwise prime,
it follows that the order of the permutation σ = σ1 × σ2 is equal to mn.
By the Main Lemma of [45], q1n+1 = qσt(1)σt(n+1) = qσt

1(1)σ
t
2(n+1) for any

positive integer t. If t varies from 1 to nm, then σt1(1) changes m times
from 1 to n, σt2(n + 1) changes n times from n + 1 to n + m. However,
among the pairs (σt(1), σt(n+1)), there are no identical pairs. Therefore,
qij = q1n+1 for i ≤ n, j > n. As above, qij = qn+1,1 for i > n, j ≤ n.
Since the quiver Q(Λ) of any reduced Gorenstein tiled order Λ is strongly
connected, it follows that, qij = 1 for i ≤ n, j > n and for i > n, j ≤ n.

Now suppose that there exists an arrow from vertex i (i ≤ n) to
vertex l (l ≤ n) in Q(Λ). Then βij + βjl > βil for any j = 1, . . . , n + m.
Also, this inequality holds for j = 1, . . . , n, that is there exists an arrow
from vertex i to vertex l in Q(eΛe).

Otherwise, suppose that an arrow connects vertex i (i ≤ n) with
vertex l (l ≤ n) in Q(eΛe). Then βij + βjl > βil for any j = 1, . . . , n. It
is clear that l 6= σ(i).

Suppose that Q(Λ) has no arrow from i to l. Hence, there exists t
such that n < t ≤ n+m, βit + βtl = βil.

For i 6= l, we obviously have αit + αtl = αil. Adding αlσ(i) to both
sides of this equality, we obtain

αit + αtl + αlσ(i) = αil + αlσ(i) = αiσ(i).

Then, adding αtσ(i), we obtain

αit + αtσ(i) + αtl + αlσ(i) = αiσ(i) + αtσ(i).
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Whence, αtl + αlσ(i) = αtσ(i) or βtl + βlσ(i) = βtσ(i). At the same time
qtσ(i) = 1. This contradiction proves that there is an arrow which con-
nects vertex i with vertex l in Q(Λ).

Thus, for i 6= l, Q(eΛe) has an arrow from vertex i to vertex l if and
only if there exists an arrow from i to l in Q(Λ), where i, l ∈ I1.

By the same argument, an arrow connects vertex t with vertex k in
Q(fΛf) iff Q(Λ) has an arrow from t to k, where t, k ∈ I2, t 6= k.

Now let i = l; then, by the assumption, αit + αti = αti + αit = 1,
that is Q(Λ) has no loop at vertex t. Since qik = 1 for k > n; we have
αit + αtk > αik if k 6= t. Adding αti to both sides of this equality, we
have 1 + αtk > αti + αik ≥ αtk. Whence, αti + αik = αtk, i. e., qtk = 0
for all k > n, k 6= t. Consequently, the quiver Q2 has no arrow from t
to k, where k 6= t, k = n + 1, . . . , n + m. This contradicts the fact that
the quiver Q(fΛf) is strongly connected. Thus, in Q(Λ), there exists an
loop at vertex i.

Example. Let Γα = {O, E(Γα)}, where

E(Γα) =









0 3α 3α 2α 2α
0 0 3α α α
0 0 0 0 0
0 α 2α 0 2α
0 α 2α 2α 0









, σ(Γα) =

(
1 2 3 4 5
2 3 1 5 4

)

.

Then [Q(Γα)] =

(
[Q(T3α,3)] U3×2

U2×3 E2

)

, where

E(T3α,3) =





0 3α 3α
0 0 3α
0 0 0



 .

The example of Γα shows that conditions m > 2 and n > 2 in Proposi-
tion 7.2 are essential.

Definition 7.3. We remind that a real s× s - matrix P = (pij) is called

doubly stochastic if
s∑

j=1
pij = 1 and

s∑

i=1
pij = 1 for any i, j = 1, . . . , s.

Theorem 7.4. (see [45]). Let Λ = {O, E(Λ)} be a cyclic reduced Goren-
stein tiled order; then [Q(Λ)] = λP , where λ is a positive integer and P
is a doubly stochastic matrix.
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Such matrix λP is called semimagic or semimagic square (see [12],
[36], p. 16).

Corollary 7.5. A cyclic Gorenstein tiled order is integral.

Example. (see [45], p. 4238). Let Λ6 = {O, E(Λ6)}, where

E(Λ6) =











0 0 0 0 0 0
4 0 4 4 3 3
4 0 0 4 2 2
4 0 0 0 1 1
3 0 1 2 0 3
3 0 1 2 3 0











.

Λ6 is a reduced Gorenstein tiled order with

σ(Λ6) =

(
1 2 3 4 5 6
2 3 4 1 6 5

)

and

B = [Q(Λ6)] =











1 0 0 1 1 1
1 1 0 0 1 1
0 1 1 0 1 1
0 0 1 1 1 1
1 1 1 1 1 0
1 1 1 1 0 1











.

Then s = 4 and S = 5 and the order Λ6 is not integral by Corollary
6.15.
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Abstract. In this article the investigation of groups of fi-
nite normal rank is continued. The finiteness of normal rank of
nonabelian p-group G is proved where G has a normal elementary
abelian p-subgroup A for which quotient group G/A is isomorphic
to the direct product of finite number of quasicyclic p-groups.

A number of authors studied the groups in which finiteness conditions
were laid on some systems of their subgroups [1]. Earlier the author
investigated the groups of finite F -rank [2], where F was some system of
nonabelian finitely generated subgroups of a group and some classes of
groups of finite normal rank.

In this article the investigation of groups of finite normal rank is
continued.

Definition. We shall say that a group G has finite normal rank r, if r
is a minimal number with the property that for any finite set of elements
g1, g2, ..., gn of a group G there are the elements h1, h2, ..., hm of G such
that m ≤ r and

< h1, h2, ..., hm >G=< g1, g2, ..., gn >
G .

In the case when there is not such number r, the normal rank of group
G is considered to be infinite.

We shall use the notation rn(G) for the normal rank of group G.
The special rank of group G is denoted by the generally accepted symbol
r(G).

The principal result of this article is the theorem.
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Theorem. Let G be a nonabelian p-group, where p is a prime number.
Let A be a normal subgroup of G, which is an elementary abelian p-group.
Quotient group G/A is isomorphic to the direct product of l quasicyclic
p-groups. If subgroup A can be generated as a G-subgroup by n elements,
i.e.

A =< a1, a2, ...an >
G,

and n, l are the finite numbers, then the normal rank of group G is finite
and rn(G) ≤ n+ l.

This result was announced in [3] earlier.
We shall need the following lemma in proof of the theorem.

Lemma. The normal rank of wreath product of group of prime order p
and direct product of l quasicyclic p-groups is equal to l + 1.

Proof. Let A be the basis of wreath product W ,W =< a > wr(X l
j=1Pj),

where Pj is a quasicyclic p-group. We shall prove at first that for any
b1, b2, ..., bn from A there is such element b ∈ A, for which

< b1, b2, ..., bn >
G=< b >G .

Since the group W = ∪∞
i=1(< a > wr(X l

j=1 < gji >), |gji| = pi, then the

elements b1, b2, ..., bn are contained in subgroup V =< a > wr(X l
j=1 <

gij >) for some number i. The upper central series of subgroup V is

E = Z0 < Z1 < Z2 < ... < Zlpi−1 < Zlpi < V,

where Zlpi is the basis of wreath product V , factors Zk+1/Zk, k =
0, 1, ..., lpi have orders p, factors V/Zlpi is isomorphic to the direct prod-
uct of l cyclic groups of orders pi [4] .

The subgroups Bk =< bk >
Xl

j=1<gij>, k = 1, 2, ..., n are normal in
group V , therefore intersections Bk ∩ Zj, j = 1, 2, ..., lpi are nontrivial.
Since the factors Zk+1/Zk, k = 0, 1, ..., lpi are cyclic of prime order, then
the equalities Bk ∩ Zq = Zq, q = 0, 1, ..., tk , are valid, where tk ≤ lpi.

From here it follows that Bk = Ztk , therefore for any m1,m2 ≤ n
the one from subgroups Bm1 , Bm2 embeds in another. Consequently the
subgroups Bk, k = 1, 2, ..., n form a series of embeded subgroups

Bk1 < Bk2 < ... < Bkn
= B,

where B =< b1, b2, ..., bn >X
l
j=1<gji>. Thererore B =< b >X

l
j=1<gji>,

where b = bkn
. From here follows the equality

< b1, b2, ..., bn >
G=< b >G .
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Now we shall prove that for any c1, c2, ..., cr ∈ W the subgroup C =<
c1, c2, ..., cr >

G can be generated as G-subgroup by no more than l + 1
elements. It is sufficient to consider the case C1 6≤ A, where C1 =<
c1, c2, ..., cr >. Since C1A/A ≃ C1/(C1 ∩ A), the subgroup C1 is finite
and r(C1A/A) ≤ l, then we can choose the elements d1, d2, ..., ds+u such
that

C =< d1, d2, ..., ds, ds+1, ..., ds+u >
G

and di ∈ A, i = 1, 2, ..., s, ds+1, ds+2, ..., ds+u 6∈ A,u ≤ l. As we proved,
there is the element d ∈ A for which

< d1, d2, ..., ds >
G=< d >G,

therefore C =< d, ds+1, ..., ds+u >
G. Consequently the normal rank of

wreath product W is no more than l + 1.
For proving the equality rn(W ) = l + 1 we numerate the elements

of subgroup X∞
j=1Pj as h1, h2, ... and assume ahi = ai. According to the

structure of subgroup W the subgroup A0 =< aia
−1
j , i, j = 1, 2, ... >

is normal in W and quotient group W/A0 is isomorphic to the direct
product of a group of prime order p and l quasicyclic p-groups. Since the
normal rank of quotient group W/A0 is equal to l + 1 and rn(W/A0) ≤
rn(W ), where rn(W ) ≤ l + 1, then we have the equality rn(W ) = l + 1.
Lemma is proved.

Proof of the theorem. At first we shall prove that for any finite set of el-
ements b1, b2, ..., bk of A there are the elements c1, c2, ..., ct of A such that
t ≤ n and < b1, b2, ..., bk >

G=< c1, c2, ..., ct >
G. We shall prove at first

this statement by the induction on number v of elements a1, a2, ..., av ,
where A =< a1, a2, ..., av >

G. If v = 1 then A =< a1 >
G, therefore group

G is isomorphic to some quotient group of wreath product of a group of
prime order p and direct product of l quasicyclic p-groups. From the
proof of the lemma it follows that there is an element b ∈ A for which

< b1, b2, ..., bk >
G=< b >G .

Let our statement be valid for u = n− 1. Let u = n and

B =< b1, b2, ..., bk >
G, A1 =< a1, a2, ..., an−1 >

G .

If subgroup B is contained in A1 then according to the inductive assump-
tion there are such elements c1, c2, ..., ct, t ≤ n that B =< c1, c2, ..., ct >

G.
Let now B 6≤ A1. Quotient group G/A1 is isomorphic to some quotient
group of wreath product of a group of prime order p and direct product of
l quasicyclic p-groups. From this and isomorphism BA1/A1 ≃ B/B∩A1
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it follows by the lemma that there is an element b ∈ B for which
B/B ∩ A1 =< b(B ∩ A1) >G. Consequently for every bi, i = 1, 2, ..., k,
there are such integers n1, n2, ..., nri and the elements g1, g2, ..., gri of G
that the equalities

bi = (bn1)g1(bn2)g2 ...(bnri )grihi

are valid, where hi ∈ (B ∩ A1). Since the element b belongs to the
subgroup B then B =< b, h1, h2, ..., hk >

G, therefore

B =< b >G< h1, h2, ..., hk >
G . (1)

According to the inductive assumption and inclusion< h1, h2, ..., hk >
G≤

A1 there are such elements d1, d2, ..., dm of A that m ≤ n− 1 and

< h1, h2, ..., hk >
G=< d1, d2, ..., dm >G .

From this equality and (1) it follows that B =< b, d1, ..., dm >G,m ≤
n− 1. Our statement is proved.

Let now B =< b1, b2, ..., bk >
G, where even if one from the elements

bi, i = 1, 2, ..., k does not belong to the subgroup A. Since the subgroup
D generated by the elements b1, b2, ..., bk is finite, then the intersection
D ∩ A is finite too. Therefore there are the elements c1, c2, ..., cj , j ≤ n,
for which < D ∩A >G=< c1, c2, ..., cj >

G. Since quotient group G/A is
a direct product of l locally cyclic groups and DA/A ≃ D/D ∩ A, then
there are such elements cj+1, ..., ci+y of D that

< D >G=< c1, c2, ..., cj+y >
G,

y ≤ l. Consequently the equality B =< c1, c2, ..., cj+y >
G is valid, where

j + y ≤ n+ l. The theorem is proved.
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Abstract. The notion of k-nil radical in BCH-algebras is
defined, and related properties are investigated.

1. Introduction

In 1966, Y. Imai and K. Iséki [7] and K. Iséki [8] introduced two classes
of abstract algebras: BCK-algebras and BCI-algebras. It is known that
the class of BCK-algebras is a proper subclass of the class of BCI-
algebras. In 1983, Q. P. Hu and X. Li [4, 5] introduced a wide class of
abstract algebras: BCH-algebras. They have shown that the class of
BCI-algebras is a proper subclass of the class of BCH-algebras. They
have studied some properties of these algebras. In 1992, W. P. Huang
[6] introduced a nil ideals in BCI-algebras. In [9], E. H. Roh and Y. B.
Jun discussed the concept of nil subsets by using nilpotent elements in
BCH-algebras. In this paper, we introduce the notion of k-nil radical
in BCH-algebras, and study some useful properties. We prove that the
k-nil radical of a subalgebra (resp. a (closed, translation, semi-) ideal) is
a subalgebra (resp. a (closed, translation, semi-) ideal). Concerning the
homomorphisms, we discuss related properties.

2. Preliminaries

By a BCH-algebra we shall mean an algebra (X, ∗, 0) of type (2,0) sat-
isfying the following axioms: for every x, y, z ∈ X,

2000 Mathematics Subject Classification 06F35,03G25..
Key words and phrases: (closed, translation) ideal, semi-ideal, k-nil radical..
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(H1) x ∗ x = 0,

(H2) x ∗ y = 0 and y ∗ x = 0 imply x = y,

(H3) (x ∗ y) ∗ z = (x ∗ z) ∗ y.

In a BCH-algebra X, the following holds for all x, y, z ∈ X,

(p1) x ∗ 0 = x,

(p2) (x ∗ (x ∗ y)) ∗ y = 0,

(p3) 0 ∗ (x ∗ y) = (0 ∗ x) ∗ (0 ∗ y),

(p4) x ∗ 0 = 0 implies x = 0,

(p5) 0 ∗
(
0 ∗ (0 ∗ x)

)
= 0 ∗ x.

A nonempty subset S of a BCH-algebra X is said to be a subalgebra of X
if x ∗ y ∈ S whenever x, y ∈ S. A nonempty subset A of a BCH-algebra
X is called an ideal of X if it satisfies

(I1) 0 ∈ A,

(I2) x ∗ y ∈ A and y ∈ A imply x ∈ A, ∀x, y ∈ X.

A nonempty subset A of a BCH-algebra X is called a closed ideal of X
if it satisfies (I2) and

(I3) 0 ∗ x ∈ A, ∀x ∈ A.

Note that every closed ideal of a BCH-algebra is a subalgebra, but the
converse is not true (see [1]). A mapping f : X → Y of BCH-algebras
is called a homomorphism if f(x ∗ y) = f(x) ∗ f(y) for all x, y ∈ X. Note
that if f : X → Y is a homomorphism of BCH-algebras, then f(0) = 0.

3. Main Results

Throughout this section X is a BCH-algebra and k is a positive integer.
For any elements x and y of X, let us write x∗yk for (· · · ((x∗y)∗y)∗· · · )∗y
in which y occurs k times.

Definition 3.1. Let I be a nonempty subset of X. Then the set

k
√
I := {x ∈ X | 0 ∗ xk ∈ I}

is called the k-nil radical of I.
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Lemma 3.2. ([9, Lemmas 3.2 and 3.3]) For any x, y ∈ X, we have

(1) 0 ∗ (0 ∗ x)k = 0 ∗ (0 ∗ xk),

(2) 0 ∗ (x ∗ y)k = (0 ∗ xk) ∗ (0 ∗ yk).

Proposition 3.3. If I and J are nonempty subsets of X, then

k
√
I ∪ J =

k
√
I ∪ k

√
J.

Proof. Note that

x ∈ k
√
I ∪ J ⇔ 0 ∗ xk ∈ I ∪ J

⇔ 0 ∗ xk ∈ I or 0 ∗ xk ∈ J

⇔ x ∈ k
√
I or x ∈ k

√
J

⇔ x ∈ k
√
I ∪ k

√
J.

This completes the proof.

Proposition 3.4. Let {Iα | α ∈ Λ} be a collection of nonempty subsets
of X, where Λ is any index set. Then

(i) k

√ ⋂

α∈Λ
Iα =

⋂

α∈Λ

k
√
Iα.

(ii) ∀α ∈ Λ, 0 ∈ Iα ⇒ 0 ∈ k
√
Iα.

(iii) ∀α, β ∈ Λ, Iα ⊆ Iβ ⇒ k
√
Iα ⊆ k

√
Iβ.

Proof. (i) Note that

x ∈ k

√ ⋂

α∈Λ
Iα ⇔ 0 ∗ xk ∈ ⋂

α∈Λ
Iα

⇔ 0 ∗ xk ∈ Iα for all α ∈ Λ
⇔ x ∈ k

√
Iα for all α ∈ Λ

⇔ x ∈ ⋂

α∈Λ

k
√
Iα,

and hence (i) is valid.

(ii) and (iii) are straightforward.

Proposition 3.5. If I is a subalgebra of X and x ∈ k
√
I, then 0∗x ∈ k

√
I.

Proof. If x ∈ k
√
I, then 0 ∗ xk ∈ I. Since I is a subalgebra of X, we have

0 ∗ (0 ∗ x)k = 0 ∗ (0 ∗ xk) ∈ I by using Lemma 3.2(1). This shows that
0 ∗ x ∈ k

√
I.
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Theorem 3.6. If I is a subalgebra of X, then so is the k-nil radical k
√
I

of I.

Proof. Let x, y ∈ k
√
I. Then 0 ∗ xk ∈ I and 0 ∗ yk ∈ I. Since I is a

subalgebra, it follows from Lemma 3.2(2) that

0 ∗ (x ∗ y)k = (0 ∗ xk) ∗ (0 ∗ yk) ∈ I

so that x ∗ y ∈ k
√
I. Hence k

√
I is a subalgebra of X.

Theorem 3.7. If I is an ideal of X, then so is the k-nil radical k
√
I of

I.

Proof. Assume that I is an ideal of X. Obviously 0 ∈ k
√
I. Let x, y ∈ X

be such that x∗y ∈ k
√
I and y ∈ k

√
I. Then 0∗yk ∈ I and (0∗xk)∗(0∗yk) =

0∗(x∗y)k ∈ I. Since I is an ideal of X, it follows from (I2) that 0∗xk ∈ I
so that x ∈ k

√
I. Hence k

√
I is an ideal of X.

Lemma 3.8. ([1, Theorem 4]) Let I be a subalgebra of a BCH-algebra
X such that x ∗ y ∈ I implies y ∗ x ∈ I for all x, y ∈ X. Then I is a
closed ideal of X.

Theorem 3.9. For any closed ideal I of a BCH-algebra X, the k-nil
radical k

√
I of I is also a closed ideal of X.

Proof. Let I be a closed ideal of X. Then I is a subalgebra of X, and so
k
√
I is a subalgebra of X. Let x, y ∈ X be such that x ∗ y ∈ k

√
I. Then

0 ∗ (x ∗ y)k ∈ I. Using (H3), (p3), (p5) and Lemma 3.2(2), we have

0 ∗ (y ∗ x)k = (0 ∗ yk) ∗ (0 ∗ xk)
=

(
0 ∗ (0 ∗ (0 ∗ yk))

)
∗ (0 ∗ xk)

=
(
0 ∗ (0 ∗ xk)

)
∗
(
0 ∗ (0 ∗ yk)

)

= 0 ∗
(
(0 ∗ xk) ∗ (0 ∗ yk)

)

= 0 ∗
(
0 ∗ (x ∗ y)k

)
∈ I,

since I is a subalgebra. Hence y ∗ x ∈ k
√
I, and so, by Lemma 3.8, k

√
I is

a closed ideal of X.

Definition 3.10. ([1, Definition 12]) A nonempty subset I of a BCH-
algebra X is called a semi-ideal of X if it satisfies (I1) and

(I4) x ≤ y and y ∈ I imply x ∈ I

where x ≤ y means x ∗ y = 0.

Note that every closed ideal is a semi-ideal, but the converse may not
be true (see [1]).
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Theorem 3.11. If I is a semi-ideal of X, then so is k
√
I.

Proof. Obviously 0 ∈ k
√
I . Let x, y ∈ X be such that x ≤ y and y ∈ k

√
I.

Then 0 ∗ yk ∈ I and x ∗ y = 0. These imply that

0 = 0 ∗ (x ∗ y)k = (0 ∗ xk) ∗ (0 ∗ yk), that is, 0 ∗ xk ≤ 0 ∗ yk.

Since I is a semi-ideal of X, it follows that 0 ∗ xk ∈ I or equivalently
x ∈ k

√
I. Hence k

√
I is a semi-ideal of X.

Proposition 3.12. Let f : X → Y be a homomorphism of BCH-
algebras. If S is a nonempty subset of Y , then k

√

f−1(S) ⊆ f−1( k
√
S).

Proof. Let x ∈ k
√

f−1(S). Then 0 ∗ xk ∈ f−1(S), and so 0 ∗ f(x)k =
f(0 ∗ xk) ∈ S. Hence f(x) ∈ k

√
S which implies x ∈ f−1( k

√
S). This

completes the proof.

Theorem 3.13. Let f : X → Y be a homomorphism of BCH-algebras.
If J is a closed ideal of Y , then f−1( k

√
J) is a closed ideal of X containing

k
√

f−1(J).

Proof. The inclusion k
√

f−1(J) ⊆ f−1( k
√
J) is by Proposition 3.12. Let

x, y ∈ f−1( k
√
J). Then f(x), f(y) ∈ k

√
J, and so 0 ∗ f(x)k ∈ J and 0 ∗

f(y)k ∈ J . Since J is a subalgebra of Y , it follows from Lemma 3.2(2)
that

f
(
0 ∗ (x ∗ y)k

)
= 0 ∗ f(x ∗ y)k = 0 ∗

(
f(x) ∗ f(y)

)k

=
(
0 ∗ f(x)k

)
∗
(
0 ∗ f(y)k

)
∈ J

so that 0∗(x∗y)k ∈ f−1(J), that is, x∗y ∈ k
√

f−1(J) ⊆ f−1( k
√
J). Hence

f−1( k
√
J) is a subalgebra of X. Now let a, b ∈ X be such that a ∗ b ∈

f−1( k
√
J). Then f(a)∗f(b) = f(a∗b) ∈ k

√
J, and so 0∗

(
f(a)∗f(b)

)k ∈ J.
Using Lemma 3.2(2), (p5), (H3) and (p3), we have

0 ∗ f(b ∗ a)k = 0 ∗
(
f(b) ∗ f(a)

)k

=
(
0 ∗ f(b)k

)
∗
(
0 ∗ f(a)k

)

=
(
0 ∗ (0 ∗ (0 ∗ f(b)k))

)
∗
(
0 ∗ f(a)k

)

=
(
0 ∗ (0 ∗ f(a)k)

)
∗
(
0 ∗ (0 ∗ f(b)k)

)

= 0 ∗
(
(0 ∗ f(a)k) ∗ (0 ∗ f(b)k)

)

= 0 ∗
(
0 ∗ (f(a) ∗ f(b))k

)
∈ J,

because J is a subalgebra. Hence f(b∗a) ∈ k
√
J, and so b∗a ∈ f−1( k

√
J).

Using Lemma 3.8, we know that f−1( k
√
J) is a closed ideal of X.
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Theorem 3.14. Let f : X → Y be a homomorphism of BCH-algebras.
If U is a semi-ideal of Y , then f−1( k

√
U) is a semi-ideal of X containing

k
√

f−1(U).

Proof. Obviously 0 ∈ f−1( k
√
U). Let x, y ∈ X be such that x ≤ y and

y ∈ f−1( k
√
U). Then x ∗ y = 0 and f(y) ∈ k

√
U, that is, 0 ∗ f(y)k ∈ U .

Using Lemma 3.2(2), we have

(
0∗f(x)k

)
∗
(
0∗f(y)k

)
= 0∗

(
f(x)∗f(y)

)k
= 0∗f(x∗y)k = 0∗f(0)k = 0,

and so 0 ∗ f(x)k ≤ 0 ∗ f(y)k. Since U is a semi-ideal, it follows that

f(0 ∗ xk) = f(0) ∗ f(x)k = 0 ∗ f(x)k ∈ U

so that 0 ∗ xk ∈ f−1(U), i.e., x ∈ k
√

f−1(U) ⊆ f−1( k
√
U). Therefore

f−1( k
√
U) is a semi-ideal of X.

Theorem 3.15. Let f : X → Y be a homomorphism of BCH-algebras.
Then f( k

√
I) ⊆ k

√

f(I) for every nonempty subset I of X. Moreover, the
equality is valid when f is one-to-one.

Proof. Let y ∈ f( k
√
I). Then there exists x ∈ k

√
I such that f(x) = y.

Hence 0 ∗ xk ∈ I and

0 ∗ yk = f(0) ∗ f(x)k = f(0 ∗ xk) ∈ f(I),

and so y ∈ k
√

f(I). Thus f( k
√
I) ⊆ k

√

f(I). Assume that f is one-to-one
and let y ∈ k

√

f(I). Then y = f(x) for some x ∈ X, and

f(0 ∗ xk) = 0 ∗ f(x)k = 0 ∗ yk ∈ f(I).

Since f is one-to-one, it follows that 0 ∗ xk ∈ f−1
(
f(I)

)
= I so that

x ∈ k
√
I. Therefore y = f(x) ∈ f( k

√
I). This completes the proof.

Definition 3.16. [10] A translation ideal of X is defined to be an ideal
U of X satisfying an additional condition:

∀x, y, z ∈ X, x∗y ∈ U, y∗x ∈ U ⇒ (x∗z)∗(y∗z) ∈ U, (z∗x)∗(z∗y) ∈ U.

Theorem 3.17. If U is a translation ideal of X, then so is k
√
U .

Proof. If U is a translation ideal of X, then U is an ideal of X and so
k
√
U is an ideal of X (see Theorem 3.7). Let x, y, z ∈ X be such that

x ∗ y ∈ k
√
U and y ∗ x ∈ k

√
U. Then

(0 ∗ xk) ∗ (0 ∗ yk) = 0 ∗ (x ∗ y)k ∈ U
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and

(0 ∗ yk) ∗ (0 ∗ xk) = 0 ∗ (y ∗ x)k ∈ U.

Since U is a translation ideal, it follows from Lemma 3.2(2) that

0 ∗
(
(x ∗ z) ∗ (y ∗ z)

)k
=
(
(0 ∗ xk) ∗ (0 ∗ zk)

)
∗
(
(0 ∗ yk) ∗ (0 ∗ zk)

)
∈ U

and

0 ∗
(
(z ∗ x) ∗ (z ∗ y)

)k
=
(
(0 ∗ zk) ∗ (0 ∗ xk)

)
∗
(
(0 ∗ zk) ∗ (0 ∗ yk)

)
∈ U,

and so (x ∗ z) ∗ (y ∗ z) ∈ k
√
U and (z ∗ x) ∗ (z ∗ y) ∈ k

√
U. Therefore k

√
U

is a translation ideal of X.

Theorem 3.18. Let f : X → Y be a homomorphism of BCH-algebras.
If U is a translation ideal of Y , then f−1( k

√
U) is a translation ideal of

X containing k
√

f−1(U).

Proof. Let x, y, z ∈ X be such that x∗y ∈ f−1( k
√
U) and y∗x ∈ f−1( k

√
U).

Then f(x) ∗ f(y) = f(x ∗ y) ∈ k
√
U and f(y) ∗ f(x) = f(y ∗ x) ∈ k

√
U.

Hence
(
0 ∗ f(x)k

)
∗
(
0 ∗ f(y)k

)
= 0 ∗

(
f(x) ∗ f(y)

)k ∈ U

and
(
0 ∗ f(y)k

)
∗
(
0 ∗ f(x)k

)
= 0 ∗

(
f(y) ∗ f(x)

)k ∈ U.

Since U is a translation ideal of Y , it follows that

0 ∗ f
(
(x ∗ z) ∗ (y ∗ z)

)k

= 0 ∗
(
f(x ∗ z) ∗ f(y ∗ z)

)k

=
(
0 ∗ f(x ∗ z)k

)
∗
(
0 ∗ f(y ∗ z)k

)

=
(
0 ∗ (f(x) ∗ f(z))k

)
∗
(
0 ∗ (f(y) ∗ f(z))k

)

=
(
(0 ∗ f(x)k) ∗ (0 ∗ f(z)k)

)
∗
(
(0 ∗ f(y)k) ∗ (0 ∗ f(z)k)

)
∈ U

and

0 ∗ f
(
(z ∗ x) ∗ (z ∗ y)

)k

= 0 ∗
(
f(z ∗ x) ∗ f(z ∗ y)

)k

=
(
0 ∗ f(z ∗ x)k

)
∗
(
0 ∗ f(z ∗ y)k

)

=
(
0 ∗ (f(z) ∗ f(x))k

)
∗
(
0 ∗ (f(z) ∗ f(y))k

)

=
(
(0 ∗ f(z)k) ∗ (0 ∗ f(x)k)

)
∗
(
(0 ∗ f(z)k) ∗ (0 ∗ f(y)k)

)
∈ U

so that f
(
(x ∗ z) ∗ (y ∗ z)

)
∈ k

√
U and f

(
(z ∗ x) ∗ (z ∗ y)

)
∈ k

√
U. Hence

(x ∗ z) ∗ (y ∗ z) ∈ f−1( k
√
U) and (z ∗ x) ∗ (z ∗ y) ∈ f−1( k

√
U), completing

the proof.
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Let U be a translation ideal of X and define a relation “∼” on X by
x ∼ y if and only if x∗y ∈ U and y ∗x ∈ U for every x, y ∈ X. Then “∼”
is a congruence relation on X. By [x] we denote the equivalence class
containing x, and by X/U we denote the set of all equivalence classes,
that is, X/U := {[x] | x ∈ X}. Then (X/U ;⊙, [0]) is a BCH-algebra,
where [x]⊙ [y] = [x∗y] for every x, y ∈ X (see [10]). If U is a translation
ideal of X, then so is k

√
U (see Theorem 3.17). Hence (X/ k

√
U ;⊙, [0]) is

a BCH-algebra and [0] = k
√
U . For any two BCH-algebras X and Y ,

the product BCH-algebra is defined to be a BCH-algebra (X × Y ; ∗, 0),
whereX×Y = {(x, y) | x ∈ X, y ∈ Y }, (x1, y1)∗(x2, y2) = (x1∗x2, y1∗y2)
for all (x1, y1), (x2, y2) ∈ X × Y , and 0 = (0, 0) (see [4, 5]).

Lemma 3.19. Let X and Y be BCH-algberas. For any (x, y) ∈ X ×Y ,
we have (0, 0) ∗ (x, y)k = (0 ∗ xk, 0 ∗ yk).

Proof. It is straightforward.

Theorem 3.20. Let A and B be nonempty subsets of BCH-algebras X
and Y , respectively. Then

(i) k
√
A× k

√
B = k

√
A×B,

(ii) if A and B are translation ideals of X and Y respectively, then
k
√
A×B is a translation ideal of X × Y and

X × Y
k
√
A×B

∼= X/
k
√
A× Y/

k
√
B.

Proof. (1) We have that

k
√
A×B = {(a, b) ∈ X × Y | (0, 0) ∗ (a, b)k ∈ A×B}

= {(a, b) ∈ X × Y | (0 ∗ ak, 0 ∗ bk) ∈ A×B}
= {(a, b) ∈ X × Y | 0 ∗ ak ∈ A, 0 ∗ bk ∈ B}
= {(a, b) ∈ X × Y | a ∈ k

√
A, b ∈ k

√
B}

= {a ∈ X | a ∈ k
√
A} × {b ∈ X | b ∈ k

√
B}

= k
√
A× k

√
B

(ii) Obviously k
√
A×B is a translation ideal of X × Y . Consider

natural homomorphisms

πX : X → X/
k
√
A, x 7→ [x] and πY : Y → Y/

k
√
B, y 7→ [y].

Define a mapping Φ : X×Y → X/ k
√
A×Y/ k

√
B by Φ(x, y) = ([x], [y]) for

all (x, y) ∈ X×Y . Then clearly Φ is a well-defined onto homomorphism.
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Moreover,

KerΦ = {(x, y) ∈ X × Y | Φ(x, y) = ([0], [0])}
= {(x, y) ∈ X × Y | ([x], [y]) = ([0], [0])}
= {(x, y) ∈ X × Y | [x] = [0], [y] = [0]}
= {(x, y) ∈ X × Y | x ∈ k

√
A, y ∈ k

√
B}

= k
√
A× k

√
B = k

√
A×B.

By the homomorphism theorem (see [10, Theorem 3.7]), we have

X × Y
k
√
A×B

=
X × Y

KerΦ
∼= X/

k
√
A× Y/

k
√
B.
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Abstract. The normalizer of the finite state automorphism
group of a rooted homogeneous tree in the full automorphism group
of this tree was investigated. General form of elements in the nor-
malizer was obtained and countability of the normalizer was proved.

1. Introduction

Automorphism groups of rooted trees are studied strongly last years in
connection with their application in geometric group theory, theory of
dynamic systems, ergodic and spectral theory, and that they also contain
various interesting subgroups with extremal properties. In particular,
there are free constructions among them, various constructions of groups
of intermediate growth, etc (see [GNS] and its bibliography).

Among subgroups of automorphism group of a rooted tree the finite
state automorphism group arise the big interest [Su].

In the paper [NS] the number of problems on the finite state auto-
morphism group of a rooted tree was posed. This work partially solves
one of these problems. In the paper the normalizer of the finite state
automorphism group of a rooted tree in the full automorphism group
of this tree was investigated. General form of elements in normalizer
was obtained and countability of normalizer was proved. According to

Key words and phrases: group automorphisms, automorphisms of rooted trees,
finite automata.
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[L, LN] this normalizer is isomorphic to the automorphism group of the
finite state automorphism group of a rooted tree.

2. Preliminary

Definition 1. A synchronous automaton is a set A = 〈XI ,XO, Q, π, λ〉,
where

1. XI and XO are finite sets (respectively, the input and the output
alphabets),

2. Q is a set (the set of internal states of the automaton),

3. π : XI ×Q −→ Q is a mapping (transition function), and

4. λ : XI ×Q −→ XO is a mapping (output function).

Automaton A is finite if |Q| <∞.
Henceforth, we will consider the automata whose input and output

alphabets coincide. Let X = XI = XO be a finite alphabet, X∗ be the
set of all words over X, Xω be the set of all ω-words (infinite words) over
X.

A permutation of the set X∗ or Xω is called a (finitely) automatic if
it is caused by a (finite) automaton over alphabet X. All finitely auto-
matic permutations form subgroup of the group GA(X) of all automatic
permutations over X. Let us denote this subgroup by FGA(X).

For the alphabet X we can construct the word tree TX (see also
[GNS]). The vertices of the tree TX are the elements of the set X∗. Two
vertices u and v are incident if and only if u = vx or v = ux for a certain
x ∈ X. The vertex ∅ is the root of the tree.

The group AutTX of all automorphisms TX is isomorphic to the group
GA(X) of all automatic permutations over X.

For every two vertices u, v of the tree TX (i. e. u, v ∈ V (TX)) we
define the distance between u and v, denoted by d(u, v), to be equal to
the length of the path connecting them.

For rooted tree TX with the root v0 = ∅ and an integer n ≥ 0 we
define the level number n (the sphere of the radius n) as the set

Vn = {v ∈ V (TX) : d(v0, v) = n} .

Let us say that vertex v of rooted tree TX lies under vertex w, if path,
that connects vertice v and v0, contains vertex w.

Let us denote by Tv the full subtree consisting of all vertices, that lie
under the vertex v with the root v.
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Let G ≤ AutTX be an automorphism group of the rooted tree TX .
Then for every vertex v of the tree TX and a nonnegative integer n:

1. The group of all automorphisms g ∈ G fixing every vertex outside
the subtree Tv is called the vertex group (or the rigid stabilizer of
the vertex) and is denoted by rist v.

2. The group of all automorphisms fixing all vertices of the level num-
ber n is denoted by stabG(n) or just stab(n) and is called the level
stabilizer.

An automorphism group G is said to be level-transitive if it acts
transitively on all the levels of the rooted tree TX .

An automorphism group G is said to be weakly branch if it is level-
transitive and for every vertex v of the tree the vertex group is nontrivial.

Statement 1. [LN] If G is a weakly branch group then the centralizer
CAutTX

(G) of G in the automorphism group AutTX is trivial.

In the word tree TX every subtree Tv, where v ∈ V (TX), can be
naturally identified with the whole tree TX by the map:

πv : x1x2 . . . xnxn+1 . . . xm 7→ xn+1xn+2 . . . xm,

where x1x2 . . . xn = v.

So, if g ∈ stab(n) then the action of g on Tv for every v ∈ Vn can be
identified by πv with the isometry gv of TX defined by the equality

πv (ug) = (πv (u))gv .

The isometry gv is called the state of g in v or the restriction of g on v.

When g ∈ stab(n), we write g = (gv1 , gv2 , . . . , gvrn )(n), where

{v1, v2, . . . , vrn} = Vn, r = |X|.

Let T nX be the subtree of the rooted tree TX , that consists of all vertices
on a distance no greater than n from the root. Then the group AutT nX
is naturally embedded in the group AutTX and the latter is decomposed
into semidirect product

AutTX = stab(n) ⋋ AutT nX .

So for each g ∈ AutTX we can write

g = gnag = (gv1 , gv2 , . . . , gvrn )(n)ag, (1)
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where gn ∈ stab(n), and ag ∈ AutT nX .

By the state of an element gn in the vertex v ∈ Vn we mean the state
of an element g ∈ AutTX in the vertex v.

An automorphism g ∈ AutTX is called finite state automorphism if
the set of all its states is finite.

All finite state automorphisms form a subgroup of the group AutTX .
The group FGA(TX ) of all finite state automorphisms TX is isomorphic
to the group FGA(X) of all finitely automatic permutations.

End is an infinite sequence of vertices (v0, v1, v2, . . .), vk ∈ Vk such
that d(vk, vk+1) = 1 for every nonnegative integer k. Every ω-word
determines an end of the tree TX . Conversely every end of the tree TX
determines some ω-word.

An ω-word (end) w is called periodic if there exists the word v ∈ X∗

such that w = v · v · v · . . . = vω. We say that w is ultimately periodic if
there exist words u, v ∈ X∗ such that w = u · vω.

Let Xup be the set of all ultimately periodic words over alphabet X
(of the ends of the tree TX).

Lemma 2. [Su]

1. The set Xup is an orbit of the group FGA(X).

2. The action of the group FGA(TX) is faithful on this orbit.

3. The permutation group (FGA(TX ),Xup) is an imprimitive group
and its domain of imprimitivity are intersections of domains of
imprimitivity of permutation group (AutTX ,X

ω) with the set Xup.

3. Main results

In the paper the normalizer N = NAutTX
(FGA(TX )) of the group

FGA(TX ) in the group AutTX of all automorphisms of rooted tree TX ,
|X| ≥ 2 is investigated.

As it was shown in [L] (see also [LN]) the normalizer N is isomorphic
to the automorphism group of the group A = FGA(TX ).

In the paper the next results on the structure of normalizer (of auto-
morphism group) have been obtained:

Theorem 3. Let g ∈ N . For every ultimately periodic end u the sequence
of states {g(n) | n ∈ N} that correspond to the end u (i.e. states in vertices
pertinent to this end) is ultimately periodic.
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Theorem 4. For an element g ∈ N there exist m,k ∈ N, a, b ∈
FGA(TX) and h ∈ N such that

h = (h, ..., h)(m)a,

g = (h, ..., h)(k)b.

Corollary 1. The normalizer N = NAutTX
(FGA(TX )), |X| ≥ 2, is

countable.

4. Proofs

Let |X| = r ≥ 2, and let u0 = 00 . . . be an end of the tree Tr.

Lemma 5. An element of the group N turn an ultimately periodic end
to an ultimately periodic one. That is N : Xup → Xup.

Proof. Since Xup is an orbit of the group A, it is sufficient to prove the
statement for one ultimately periodic end. Let us consider, for example,
the end u0.

Let w be not an ultimately periodic end. Suppose there is g ∈ N
which turn the end w to the end u0.

Let a = (a, 1, ..., 1)(1)τ lie in A where τ is a cyclic permutation of
order r− 1 with 0 as fixed point. Therefore, ua0 = u0, and u0 is the only
fixed end of the element a.

We have gag−1 : w → w. Since g acts on set of ends as permutation,
we have that the end w is the only fixed end of the element gag−1.

Since w /∈ Xup, among subtrees with roots in the vertices of the end
w there are infinitely many different subtrees. That is, gag−1 /∈ A. We
have contradiction.

This lemma implies

Corollary 2. 1. The set Xup is an orbit of the group N .

2. Action of the group N is faithful on this orbit.

Let g ∈ N , and

g = gnag = (gv1 , gv2 , . . . , gvrn )(n)ag

be decomposition (1) for g where {v1, v2, . . . , vrn} = Vn.

Lemma 6. Let g ∈ N . For each Vn the elements gv1 , gv2 , . . . , gvrn are
contained in the same left (right) coset of A.
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Proof. We can assume ag = 1. Let vi, vj ∈ Vn and A ∋ b : vi → vj be
such that bn = 1. We have

(bg)vj
= g−1

vi
gvj
.

Since bg ∈ A then g−1
vi
gvj

∈ A for all vi, vj ∈ Vn.

Corollary 3. For an element g ∈ N there exists a ∈ A such that ga ∈
stab(n) and (ga)vi

= (ga)v1 for all i = 2, ..., r.

Let T be a rooted tree. We will denote by kn(v) the number of vertices
belonging to Vn+1 and adjacent to v for each integer n ≥ 0 and v ∈ Vn.
A tree is spherically homogeneous if kn(v) does not depend on v ∈ Vn. If
kn does not depend on n too then the tree is called homogeneous. For
example word tree TX is homogeneous.

For spherically homogeneous tree the sequence χ = 〈k0, k1, . . .〉 is
called tree index and such a tree is denoted by Tχ. We will use denotation
k̄ = {k, k, ...} for homogeneous tree.

For denotation of vertices of the tree Tχ we will use two indices: first
one is the number of the level containing this vertex, second one is the
number of this vertex (in the lexigraphic ordering) among the all vertices
of the given level.

We will need the next fact

Lemma 7. The group AutTχ contains finitely generated weakly branch
subgroups for all χ = 〈k1, k2, ...〉 (ki ≥ 2).

Proof. The group AutT2̄ contains finitely generated weakly branch sub-
groups, for example, the Grigorchuk 2-group Gr is a such one [GNS].

The natural embeddings {0, 1} in {0, ....ki − 1} define the natural
embedding T2̄ in Tχ and the group AutT2̄ is being ebedded in AutTχ.

Let us define h = h1 ∈ AutTχ recurrently

hi = (hi+1, 1, ..., 1)(1)σi

where σi is the cyclic permutation (vi2, ..., viki
).

Let H = 〈Gr, h〉. The group H acts level-transitively on Tχ. We
use induction by level number n. The group Gr acts transitively on
{v11, v12} ⊂ V1 and h cyclically permutes the vertices v12, ..., v1ki

. Thus
H acts transitively on the first level. Let H acts transitively on Vn. It
is sufficient to prove that for the level number n + 1 the group H acts
transitively on the vertices that are adjacent to the vertex vn1 from level
number n. In this case the proof is similar to the proof for the level
number one with substitution hk1...kn for h.
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Therefore H is a level-transitive subgroup of Tχ.
Since there are vertices with infinite rigid stabilizers in G on each

level we conclude that rigid stabilizer in H of each vertex is infinite.
Thus, H is a finitely generated weakly branch subgroup of group

Tχ.

Remark 1. For homogeneous tree Tk̄ group H is contained in the group
FGA(Tk̄).

Proof of theorem 3. Let |X| = r. Since the group FGA(X) acts
transitively on Xup, it is sufficient to prove the theorem only for one
ultimately periodic end u0, and g : u0 → u0.

1. r = 2.

Let αi ∈ A (i = 1, ..., k) such that αi = (αi, ai)
(1) where a1, ..., ak

are elements genereting a weakly branch group H (for example,
Grigorchuk group). Then

αg : u0 −→ u0, (2)

(αg)vn2 = a
gvn2
i (3)

where vn2 ∈ Vn and vn2 = 00 . . . 01.

Since αgi ∈ A and taking into account (2) we conclude that se-
quences {agvn2

i | n ∈ N} are ultimately periodic for i = 1, ..., k.
Therefore there are pi, n0 ∈ N such that for i = 1, ..., k and n ≥ n0

the next equality holds

a
gvn+pi,2

i = a
gvn2
i .

Thus
gvn+pi,2g

−1
vn2

∈ CAut T2(〈ai〉).
Taking p = gcd(p1, ..., pk) we have

a
gvn+p,2

i = a
gvn2
i ,

gvn+p,2g
−1
vn2

∈ CAutT2(〈ai〉)
for i = 1, ..., k and n ≥ n0. Therefore using (1) we have

gvn+p,2g
−1
vn2

∈ ⋂ki=1 CAutT2(〈ai〉) = CAut T2(〈a1, ..., ak〉) =
= CAut T2(H) = 1

for n ≥ n0.

Thus {gvn2 | n ∈ N} is ultimately periodic, and, taking into account
(2), we have that {gvn1 | n ∈ N} is ultimately periodic too.
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2. r > 2.

Let αi ∈ A (i = 1, ..., k) such that αi = (αi, ai, ..., ai)
(1)σ where

a1, ..., ak are elements genereting a weakly branch group H (such
group exists by statement 7), and σ is the permutation on r points:
σ = (0)(123...r − 1).

Denote (1, ai, ..., ai)
(1)σ by bi (i = 1, ..., k).

All elements gvn1 , α1, b1, ..., αk, bk act naturally on Tχ where χ =
{r − 1, r, r, ...} that is from the tree Tr truncate the subtree Tv10 .

For αi, bi (i=1,...,k) the next equations hold:

αg : u0 −→ u0, (4)

(αg)vn1 |Tχ = b
gvn1
i |Tχ (5)

where vn1 ∈ Vn and vn1 = 00 . . . 00.

Since αgi ∈ A and taking into account (4)we get that sequences
{bgvn1
i |Tχ | n ∈ N} are ultimately periodic for i = 1, ..., k. Therefore

there are pi, n0 ∈ N such that for i = 1, ..., k and n ≥ n0 the next
equality holds

b
gvn+pi,1

i |Tχ = b
gvn1
i |Tχ .

Thus

(gvn+pi,1g
−1
vn1

)|Tχ ∈ CAutTχ(〈bi|Tχ〉).
Taking p = gcd(p1, ..., pk) we have

b
gvn+p,1

i |Tχ = b
gvn1
i |Tχ ,

(gvn+p,1g
−1
vn1

)|Tχ ∈ CAut Tχ(〈bi|Tχ〉)

for i = 1, ..., k and n ≥ n0. Therefore in virtue of (1) and that H1 =
〈b1|Tχ , ..., bk |Tχ〉 is weakly branch subgroup of the group AutTχ we
have

(gvn+p,1g
−1
vn1

)|Tχ ∈ ⋂k
i=1 CAutTχ(〈bi|Tχ〉) =

= CAutTχ(〈b1|Tχ , ..., bk |Tχ〉) = CAutTχ(H1) = 1

for n ≥ n0.

Thus {gvn1 |Tχ | n ∈ N} is ultimately periodic, and we have by (4)
that {gvn1 | n ∈ N} is ultimately periodic too.
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Proof of theorem 4. It follows from the corollary 2 that there is
b1 ∈ A such that gb1 : u0 −→ u0. The sequence {(gb1)vn1 | n ∈ N} is
ultimately periodic by the theorem 3. Therefore there is k ∈ N such that
{(gb1)vn1 | n ≥ k} is periodic.

Let us denote by h = (gb1)vn1 . There is b2 ∈ A such that

gb1b2 = (h, ..., h)(k)

by the corollary 3. For h we have h : u −→ u, and the sequence {hvn1 | n ∈
N} is periodic. Let this period be m.

There is a1 ∈ A such that

ha1 = (h, ..., h)(m)

by the corollary 3. Let us denote by a = a−1
1 , b = (b1b2)−1. We have

h = (h, ..., h)(m)a,

g = (h, ..., h)(k)b,

and statement is proved.
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1. Introduction

A virtual endomorphism of a group G is a homomorphism from a sub-
group of finite index H ≤ G into G. Similarly a virtual automorphism
(an almost automorphism) is an isomorphism between subgroups of finite
index.

Virtual automorphisms (commensurations) appear naturaly in theory
of lattices of Lie groups (see [Mar91]). Virtual endomorphism of more
general sort appear in theory of groups acting on rooted trees. Namely, if
an automorphism g of a rooted tree T fixes a vertex v, then it induces an
automorphism g|v of the rooted subtree Tv, “growing” from the vertex
v. If the rooted tree T is regular, then the subtree Tv is isomorphic to
the whole tree T , and g|v is identified with an automorphism of the tree
T , when we identify T with Tv. It is easy to see that the described map
φv : g 7→ g|v is a virtual endomorphism of the automorphism group of
the tree T (the domain of this virtual endomorphism is the stabilizer of
the vertex v).

The described virtual endomorphisms are the main investigation tools
of the groups defined by their action on regular rooted trees. Histori-
cally the first example of such a group was the Grigorchuk group [Gri80].
Later many other interesting examples where constructed and investi-
gated [GS83a, GS83b, BSV99, SW02]. One of the common feachures of
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these groups is that they are preserved under the virtual endomorphism
φv, i.e., that the restriction g|v of any element of the group also belongs
to the group. Another important property is that the virtual endomor-
phism φv contracts the length of the elements of the groups. (Here length
of an element of a finitely generated group is the length of the represen-
tation of the element as a product of the generators and their inverses.)
The groups with the first property are called self-similar, or state-closed.
The groups with the second property are called contracting. The con-
traction property helps to argue by induction on the length of the group
elements.

The notion of a self-similar group is very similar to the classical no-
tion of a self-similar set, so that in some cases self-similar groups are
called fractal groups. See the survey [BGN02], where the analogy and
the connections between the notions of self-similar set and self-similar
group are studied.

Recentely, the connections became more clear, after the notions of
a limit space of a contracting group and the notion of an iterated mon-
odromy group were defined [Nekc, Nekb, BGN02]. The limit space is
a topological space JG together with a continuous map s : JG → JG,
which is naturally associated to the contracting self-similar group. The
limit space has often a fractal appearence and the map s is an expanding
map on it, which defines a self-similarity structure of the space.

On the other hand, the iterated monodromy groups are groups nat-
urally associated to (branched) self-coverings s : X → X of a topological
space. They are always self-similar, and they are contracting if the map
s is expanding. In the latter case, the limit space of the iterated mon-
odromy group is homeomorphic to the Julia set of the map s, with the
map s on the limit space conjugated with the restriction of s onto the
Julia set.

In the present paper we try to collect the basic facts about the vir-
tual endomorphisms of groups. Since the most properties of self-similar
groups are related with the dynamics of the associated virtual endomor-
phism, the main attention is paid to the dynamics of iterations of one
virtual endomorphisms.

For a study of iterations of virtual endormorphisms of index 2 and vir-
tual endomorphisms of abelian groups, see also the paper [NS01]. Many
results of [NS01] are generalized here.

The structure of the paper is the following. Section “Virtual endo-
morphisms” introduces the basic definitions and the main examples of
virtual endomorphisms. This is the only section, where semigroups of
virtual endomorphisms and groups of virtual automorphisms (commen-
surators) are discussed.
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In the next section “Iterations of one virtual endomorphism” we de-
fine the main notions related to the dynamics of virtual endomorphisms.
This is the coset tree and different versions of the notion of invariant
subgroup.

Section “Bimodule associated to a virtual endomorphism” is devoted
to ring-theoretic aspects of virtual endomorphisms of groups. Every vir-
tual endomorphism of a group defines a bimodule over the group al-
gebra. Many notions related to virtual endomorphisms of groups have
their analogs for bimodules over algebras. For instance, in Subsection
“Φ-invariant ideals” we study the analogs of the notion of a subgroup
invariant under a virtual endomorphism. The rôle of composition of vir-
tual endomorphisms is played by tensor products of bimodules, which
are studied in Subsection “Tensor powers of the bimodule”. The last
subsection introduces, using the language of bimodules, the standard ac-
tions of a group on a regular tree, defined by a virtual endomorphism.
In this way we show that the action of a self-similar group is defined,
up to conjugacy, only by the associated virtual endomorphism. More on
bimodules, associated to virtual endomorphism is written in [Neka].

The last section is devoted to the the notion of a contracting virtual
endomorphism. We give different definitions of the contraction property,
define the contraction coefficient (or the spectral radius) of a virtual
endomorphism, and prove the basic properties of groups, posessing a
contracting virtual endomorphism. For example, we prove that such
groups have an algorithm, solving the word problem in a polynomial
time. This was observed for the first time by R. Grigorchuk for a smaller
class of groups (see, for example [Gri80, Gri83]), but we show in this
paper, that his algorithm works in the general case.

We use the standard terminology and notions from the theory of
groups acting on rooted trees. The reader can find it in [GNS00, BGN02,
Gri00, Sid98]. We use left actions here, so that the image of a point x
under the action of a group element g is denoted g(x). Respectively, in
the product g1g2, the element g2 acts first.

2. Virtual endomorphisms

2.1. Definitions and main properties

Definition 2.1. Let G1 and G2 be groups. A virtual homomorphism
φ : G1 99K G2 is a homomorphism of groups φ : Domφ → G2, where
Dom φ ≤ G1 is a subgroup of finite index, called the domain of the
virtual homomorphism. A virtual endomorphism of a group G is a virtual
homomorphism φ : G 99K G.



V. Nekrashevych 91

The index [G1 : Domφ] is called the index of the virtual endomor-
phism φ : G1 99K G2 and is denoted indφ.

By Ranφ we denote the image of Domφ under φ.

We say that a virtual endomorphism φ is defined on an element g ∈ G
if g ∈ Dom φ.

If H ≤ G is a subgroup of finite index, then the identical virtual
homomorphism idH : G 99K G with the domain H is naturally defined.

A composition of two virtual homomorphisms φ1 : G1 99K G2,
φ2 : G2 99K G3 is defined on an element g ∈ G1 if and only if φ1 is
defined on g and φ2 is defined on φ1(g). Thus, the domain of the com-
position φ2 ◦ φ1 is the subgroup

Dom (φ2 ◦ φ1) = {g ∈ Dom φ1 : φ1(g) ∈ Dom φ2} ≤ G1.

Proposition 2.1. Let φ1 : G1 99K G2 and φ2 : G2 99K G3 be two virtual
homomorphisms. Then

[Domφ1 : Dom (φ2 ◦ φ1)] ≤ [G2 : Domφ2] = indφ2.

If φ1 is onto, then

[Domφ1 : Dom (φ2 ◦ φ1)] = [G2 : Domφ2] .

Proof. We have [Ranφ1 : Domφ2 ∩ Ran φ1] ≤ indφ2 and we have here
equality in the case when φ1 is onto. Let T = {φ1(h1), φ1(h2), . . . φ1(hd)}
be a left coset transversal for Domφ2∩Ranφ1 in Ranφ1. Then for every
g ∈ Dom φ1 there exists a unique φ1(hi) ∈ T such that φ1(hj)

−1φ1(g) =
φ1(h−1

i g) ∈ Dom φ2. This is equivalent to h−1
i g ∈ Dom (φ2 ◦ φ1) and

the set {h1, h2, . . . , hd} is a left coset transversal of Dom (φ2 ◦ φ1) in G1.
Thus,

[G2 : Domφ2] = [Ranφ1 : Domφ2 ∩ Ranφ1] .

Corollary 2.2. A composition of two virtual homomorphisms is again
a virtual homomorphism.

Consequently, the set of all virtual endomorphisms of a group G is a
semigroup under composition. This semigroup is called the semigroup of
virtual endomorphisms of the group G and is denoted V E(G).

Corollary 2.2 also implies that the class of groups as a class of objects
together with the class of virtual homomorphisms as a class of morphisms
form a category, which will be called the category of virtual homomor-
phisms.



92 Virtual endomorphisms of groups

Commensurability

Let φ : G1 99K G2 be a virtual homomorphism. If H ≤ G2 is a subgroup,
then by φ−1(H) we denote the set of such elements g ∈ Dom φ that
φ(g) ∈ H.

If H is a subgroup of finite index then φ−1(H) = Dom (idH ◦ φ), thus
φ−1(H) is a subgroup of finite index in G1.

Lemma 2.3. For every virtual homomorphism φ : G1 99K G2 and for
every subgroup of finite index H ≤ G2 the equality

idH ◦ φ = φ ◦ idφ−1(H)

holds.

Proof. An element g ∈ G1 belongs to the domain of idH ◦φ if and only if
φ(g) ∈ H, i.e., if and only if g ∈ φ−1(H). This implies that the domains
of the virtual endomorphisms idH ◦φ and φ◦ idφ−1(H) coincide. They are
equal on its domains to the virtual homomorphism φ, so they are equal
each to the other.

Definition 2.2. Let φ : G1 99K G2 be a virtual homomorphism and
let H ≤ G1 be a subgroup of finite index. Then the restriction of φ
onto H is the virtual homomorphism φ|H : G1 99K G2 with the domain
Dom φ ∩ H such that φ|H(g) = φ(g) for all g ∈ Dom φ ∩ H. In other
words, φ|H = φ ◦ idH .

Two virtual homomorphisms φ1 : G1 99K G2 and φ2 : G1 99K G2 are
said to be commensurable (written φ1 ≈ φ2) if there exists a subgroup
of finite index H ≤ G1 such that φ1|H = φ2|H .

For example, any two identical virtual endomorphisms idH1 and idH2

are commensurable.

Proposition 2.4. The relation of commensurability is a congruence on
the category of virtual homomorphisms. In particular, it is a congruence
on the semigroup V E(G).

Proof. Let φ1, φ2, ψ1, ψ2 be virtual homomorphisms such that φi ≈ ψi
for i = 1, 2. Then there exist subgroups of finite index Hi such that
φi ◦ idHi

= ψi ◦ idHi
. Lemma (2.3) implies:

φ1 ◦ idH1 ◦ φ2 ◦ idH2 = φ1 ◦ φ2 ◦ idφ−1
2 (H1) ◦ idH2 = φ1 ◦ φ2 ◦ idφ−1

2 (H1)∩H2
,

and

ψ1 ◦ idH1 ◦ ψ2 ◦ idH2 = ψ1 ◦ ψ2 ◦ idψ−1
2 (H1)∩H2

.
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Thus,

φ1 ◦ φ2 ◦ idφ−1
2 (H1)∩H2

= ψ1 ◦ ψ2 ◦ idψ−1
2 (H1)∩H2

.

Multiplying the last equality from the right by idH , whereH = φ−1
2 (H1)∩

ψ−1
2 (H1)∩H2, we get φ1◦φ2◦idH = ψ1◦ψ2◦idH , thus φ1◦φ2 ≈ ψ1◦ψ2.

We will denote by Commen the category with groups as objects
and commensurability classes of virtual homomorphisms as morphisms.
Proposition 2.4 shows that this category is well defined.

Definition 2.3. The quotient of the semigroup V E(G) by the congru-
ence “≈” is called the restricted semigroup of virtual endomorphisms and
is denoted RV E(G).

The semigroup RV E(G) is the endomorphism semigroup of the ob-
ject G in the category Commen.

Example. It is easy to see that every virtual endomorphism of Zn can
be extended uniquely to a linear map Q ⊗ φ : Qn → Qn and that two
extensions Q ⊗ φ1 and Q ⊗ φ2 are equal if and only if the virtual endo-
morphisms are commensurable. Consequently, the semigroup RV E(Zn)
is isomorphic to the multiplicative semigroup End(Qn) of rational n×n-
matrices.

Let us describe the isomorphisms in the category Commen.

Definition 2.4. A virtual homomorphism φ : G1 99K G2 is called com-
mensuration if it is injective and Ranφ is a subgroup of finite index in
G2.

Two groups are said to be commensurable if there exists a commen-
suration between them.

Thus, two groups are commensurable if and only if they have isomor-
phic subgroups of finite index. The identical virtual endomorphisms idH
are examples of commensurations.

If a virtual homomorphism φ is a commensuration, then it has an
inverse φ−1 : G2 99K G1, such that φ◦φ−1 = idRan φ and φ−1◦φ = idDom φ.

It is easy to see that two groups are isomorphic in the category
Commen if and only if they are commensurable. The respective iso-
morphism will be the commensuration.

Definition 2.5. Abstract commensurator of a group G is the group of
commensurability classes of commensurations of the group G with itself.
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We denote the abstract commensurator of a group G by Comm(G).
From the definitions follows that it is the automorphism group of the
object G in the category Commen.

Proposition 2.5. The abstract commensurator Comm(G) is a group
and is isomorphic to the group of invertible elements of the semigroup
RV E(G).

If the groups G1 and G2 are commensurable, then the semigroups
RV E(G1) and RV E(G2) and the groups Comm(G1) and Comm(G2)
are isomorphic.

Remarks. If H is a subgroup of a group G, then its commensurator
is the group of those elements g ∈ G for which the subgroups H and
g−1Hg are commensurable. Two subgroups H1, H2 are said to be com-
mensurable if the intersection H1 ∩H2 has finite index both in H1 and
in H2.

For applications of the notions of commensurators of subgroups and
abstract commensurators of groups in the theory of lattices of Lie groups
see the works [Mar91, AB94, BdlH97].

Examples. 1) It is easy to see that the abstract commensurator of the
group Zn is GL(n,Q), i.e., the automorphism group of the additive group
Qn.

2) An example very different from the previous is the Grigorchuk
group. It is proved by C. Roever [Röv02] that the abstract commen-
surator of the Grigorchuk group is finitely presented and simple. It is
generated by its subgroup isomorphic to the Grigorchuk group and a
subgroup, isomorphic to the Higmann-Thompson group.

More on commensurators see the paper [MNS00].

Conjugacy

Definition 2.6. Two virtual homomorphisms φ,ψ : G1 99K G2 are said
to be conjugate if there exist g ∈ G1 and h ∈ G2 such that Domφ =
g−1 · Domψ · g and ψ(x) = h−1φ(g−1xg)h for every x ∈ Domψ.

If the virtual homomorphism φ is onto, then every its conjugate is
also onto and is of the form ψ(x) = h−1φ(g−1xg)h = φ(f−1xf), where
f = gh′ for h′ ∈ φ−1(h).
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2.2. Examples of virtual endomorphisms

Self-coverings

Let M be an arcwise connected and locally arcwise connected topolog-
ical space, and suppose M0 is its arcwise connected open subset. Let
F : M0 → M be a d-fold covering map.

Take an arbitrary basepoint t ∈ M. Let t′ ∈ M0 be one of its
preimages under F and let ℓ be a path, starting at t and ending at t′.

For every loop γ in M, based at t (i.e., for every element γ of the
fundamental group π(M, t)) there exists a unique path γ′, starting at
t′ and such that F (γ′) = γ. The set G1 of the elements γ ∈ π(M, t)
for which γ′ is again a loop is a subgroup of index d in π(M, t) and is
isomorphic to π(M0, t

′).

The virtual endomorphism, defined by the map F is the virtual en-
domorphism of the group π(M, t) with the domain G1 which is defined
as

φ(γ) = ℓγ′ℓ−1.

Proposition 2.6. Up to a conjugacy, the virtual endomorphism φ of the
group π(M) defined by F does not depend on the choice of t, t′ and ℓ.

Proof. Let us take some basepoint r (possibly r = t), some its preimage
r′ under F and some path ℓ′ in M, connecting r with r′. Let σ be a path
from r to t in M, realizing an isomorphism γ 7→ σ−1γσ of the group
π(M, r) with the group π(M, t). Let φ′ be the virtual endomorphism of
π(M, r) defined by r′ and ℓ′. Let x ∈ π(M) be an element, corresponding
to a loop γ at r. Then x corresponds to the loop σ−1γσ at t. Suppose
that x belongs to the domain of φ′. Then φ′(x) = ℓ′γ′ℓ′−1, where γ′ is
the F -preimage of γ, starting at r′. The loop at t, representing φ′(x) is
then σ−1ℓ′γ′ℓ′−1σ.

Let σ′ be the F -preimage of the path σ, starting at r′. Then its end
t′′ is an F -preimage of t, possibly different from t′. Take some path ρ in
M0 starting at t′ and ending at t′′. Then F (ρ) is a loop based at t. We
get also the loop h = ℓρσ′−1ℓ′−1σ at t. Denote by h the element F (ρ)−1

of the fundamental group π(M, t). Then, in π(M, t):

φ(h−1xh) = φ(F (ρ)σ−1γσF (ρ)−1) = ℓρσ′
−1
γ′σ′ρ−1ℓ−1,

since ρσ′−1γ′σ′ρ−1 is a loop, starting at t, whose F -image is

F (ρ)σ−1γσF (ρ)−1.
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Therefore (see Figure 1)

φ′(g) = σ−1ℓ′γ′ℓ′−1σ =
(
σ−1ℓ′σ′ρ−1ℓ−1

)
·
(

ℓρσ′−1ℓ′−1σ
)

· σ−1ℓ′γ′ℓ′−1σ ·
(
σ−1ℓ′σ′ρ−1ℓ−1

)
·

·
(

ℓρσ′−1ℓ′−1σ
)

=
(
σ−1ℓ′σ′ρ−1ℓ−1

)
·
(

ℓρσ′−1γ′σ′ρ−1ℓ−1
)

·
·
(

ℓρσ′−1ℓ′−1σ
)

= g−1φ(h−1xh)g,

where g = ℓρσ′−1ℓ′−1σ, so that the virtual endomorphisms φ and φ′ are
conjugate.
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Figure 1:

Example. Take the circle T1 = R/Z and define its double-fold self-
covering F , induced by the map x 7→ 2x on R. Let us take a basepoint
t = 0. It has two preimages under F : one is 0 and another is 1/2. Take
t′ = 0 and let ℓ be trivial path at 0. The fundamental group of the circle
is isomorphic to Z and is generated by the loop, which is the image of
the segment [0, 1] in T1. It is easy to see that the virtual endomorphism
of Z, defined by F is the map n 7→ n/2, defined on the subgroup of even
numbers.

The virtual endomorphisms of groups are group-theoretical counter-
parts of self-coverings of topological spaces. More on relations between
dynamics of virtual endomorphisms and dynamics of self-coverings of
topological spaces, see the paper [Nekb].

Stabilizers in automorphism groups of graphs

Let Γ be a locally finite graph and let G be a group acting on Γ by
automorphisms so that its action on the vertices of Γ is transitive.

Take a vertex v and let Gv be the stabilizer of v in the group G.
Let u be another vertex, adjacent to v. Denote by Gvu the stabilizer of
the vertex u in the group Gv and by Gu the stabilizer of u in G. We
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obviously have Gvu = Gv ∩ Gu. The group Gvu has finite index in Gv
and in Gu, not greater than the degree of a vertex in the graph Γ (the
degrees of all the vertices of Γ are equal, since G acts on Γ transitively).

Let g ∈ G be an element such that g(v) = u. Then we get a virtual
endomorphism φ : Gv 99K Gv, with Domφ = Gvu defined as φ(h) =
g−1hg.

This virtual endomorphism is obviously a commensuration. It is
proved in [Nek00] that every commensuration can be constructed in such
a way.

The proof of the next proposition is straightforward.

Proposition 2.7. The virtual endomorphism φ up to a conjugacy, de-
pends only on the orbit of the edge {u, v} with respect to the action of
Gv.

Self-similar actions

Let X be a finite set, called the alphabet. By X∗ we denote the set of all
finite words over X, i.e., the free monoid, generated by X. We include
the empty word ∅.

Definition 2.7. An action of a group G on the set X∗ is self-similar if
for every g ∈ G and every x ∈ X there exist h ∈ G and y ∈ X such that

g(xw) = yh(w) (1)

for every w ∈ X∗.

Let us take some faithful self-similar action of G on X∗. Let Gx be the
stabilizer of the one-letter word x ∈ X∗. Then there exists a unique h ∈ G
such that g(xw) = xh(w) for all w ∈ X∗. The subgroup Gx has a finite
index not greater than |X| in G and the map φx : Gx → G : g 7→ h is a
homomorphism. In this way we get a virtual endomorphism φx : G 99K G
of the group G.

The following is straightforward.

Proposition 2.8. If x, y ∈ X belong to the same G-orbit, then the virtual
endomorphisms φx and φy are conjugate.

If the self-similar action is faithful then for every g ∈ G and for every
finite word v ∈ X∗ there exist a unique element h ∈ G such that

g(vw) = g(u)h(w)
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for every w ∈ X∗. The element h is called restriction of g at v and is
denoted g|v . It is easy to see that the following properties of restriction
hold.

g|v1v2 = (g|v1) |v2 (2)

(g1g2) |v = g1|g2(v)g2|v . (3)

We will see later, that in some sense all virtual endomorphisms of
groups are associated to self-similar actions.

3. Iterations of one virtual endomorphism

3.1. Coset tree

Let φ be a virtual endomorphism of a group G. Denote d = indφ. We
get a descending sequence of subgroups of finite index in G:

Dom φ0 = G ≥ Dom φ1 ≥ Domφ2 ≥ Dom φ3 ≥ . . . . (4)

We have, by Proposition 2.1, an inequality [Domφn : Domφn+1] ≤ d
for every n ≥ 0. Consequently, [G : Domφn] ≤ dn.

Definition 3.1. The virtual endomorphism φ is said to be regular if

[
Dom φn : Domφn+1

]
= d

for every n ≥ 0.

An example of a non-regular virtual endomorphism is the identical
endomorphism idH for H not equal to the whole group.

On the other hand, from Proposition 2.1 follows that if φ is onto, then
it is regular. Nevertheless, non-surjective virtual endomorphism can be
regular, for example the virtual endomorphism n 7→ 3

2n of the group Z,
defined on even numbers, is regular.

Definition 3.2. The coset tree T (φ) of a virtual endomorphism φ is the
rooted tree whose nth level is the set of left cosets {gDom φn : g ∈ G}
and two cosets gDomφn and hDom φn+1 are adjacent if and only if
gDom φn ≥ hDom φn+1. The root of the coset tree is the vertex

1 · Dom φ0 = G.

The coset tree T (φ) is a level-homogeneous tree of branch index

([G : Domφ], [Dom φ : Domφ2], [Domφ2 : Domφ3], . . .).
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In particular, it is regular if and only if the virtual endomorphism is
regular.

The group G acts on the coset tree by left multiplication:

g(hDom φn) = ghDom φn.

This action is obviously an action by automorphisms of the rooted tree
and is level-transitive.

Directly from the description follows that the stabilizer of the vertex
1 ·Dom φn in the group G is the subgroup Domφn. The stabilizer of the
vertex gDom φn is its conjugate subgroup g · Dom φn · g−1.

The nth level stabilizer is the subgroup

Stn(φ) =
⋂

g∈G

g · Domφn · g−1,

equal to the set of all elements of G, fixing every vertex of the nth level
of the coset tree.

The nth level stabilizer is a normal subgroup of finite index in G.

3.2. Invariant subgroups

Definition 3.3. Let φ be a virtual endomorphism of a group G. A
subgroup H ≤ G is said to be

1. φ-semi-invariant if φ(H ∩ Dom φ) ⊆ H;

2. φ-invariant if H ⊆ Dom φ and φ(H) ⊆ H;

3. φ−1-invariant if φ−1(H) ≤ H.

Recall that φ−1(H) = {g ∈ Dom φ : φ(g) ∈ H}. Note that every
φ-invariant subgroup is φ-semi-invariant.

If a subgroup H ≤ G is φ-invariant, then it is a subgroup of Domφn

for every n ∈ N. On the other hand, the parabolic subgroup

P (φ) =
⋂

n∈N

Dom φn

is obviously φ-invariant. Thus, the parabolic subgroup is the maximal
φ-invariant subgroup of G.

Example. Let φ be a surjective virtual endomorphism of a group G.
Let us show that the center Z(G) of the group G is φ-semi-invariant.
If h ∈ Z(G) ∩ Domφ, then φ(h)φ(g) = φ(g)φ(h) for every g ∈ Dom φ.
But the set of elements of the form φ(g) is the whole group G. Thus,
φ(h) ∈ Z(G).
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Proposition 3.1. If H ≤ G is a normal φ-semi-invariant subgroup, then
the formula

ψ(gH) = φ(g)H

for g ∈ Dom φ gives a well defined virtual endomorphism ψ of the quotient
G/H.

Proof. The domain of the map ψ is the image of the subgroup of finite
index Domφ under the canonical homomorphismG→ G/H and thus has
finite index in G/H. Suppose that g1H = g2H for some g1, g2 ∈ Dom φ.
Then g−1

1 g2 ∈ H ∩Dom φ, so φ(g−1
1 g2) ∈ H, thus φ(g1)H = φ(g2)H.

The virtual endomorphism ψ is called the quotient of φ by the sub-
group H and is denoted φ/H.

Proposition 3.2. The subgroup

C(φ) =
⋂

n∈N

Stn(φ) =
⋂

n∈N

⋂

g∈G

g−1 · Dom φn · g

is the maximal among normal φ-invariant subgroups of G.

The subgroup C(φ) is the kernel of the action of G on the coset tree
T (φ).

Proof. An element h ∈ G belongs to C(φ) if and only if every its conjugate
belongs to Domφn for every n ∈ N. From this follows that C(φ) is normal
and φ-invariant, since from h ∈ C(φ) follows that all the conjugates of h
and φ(h) belong to C(φ).

On the other hand, if N is a normal, φ-invariant subgroup of G, then
for every h ∈ N the element φn(h) belongs to N for all n ∈ N and thus,
g−1φn(h)g ∈ N for all g ∈ G and n ∈ N. This implies that h ∈ C(φ).

Definition 3.4. The subgroup C(φ) is called the core of the virtual
endomorphism φ or the φ-core of G. The group G is said to be φ-simple
if its φ-core is trivial.

Examples. 1) Let φ be the virtual endomorphism n 7→ n/2 of Z, with
the domain equal to the set of even numbers. Then the group Z is
obviously φ-simple.

2) More generally, if φ is a virtual endomorphism of the Zn, then Zn

is φ-simple if and only if no eigenvalue of the respective linear transfor-
mation is an algebraic integer (see [NS01]).

3) For examples of virtual endomorphisms of linear groups with trivial
core, see the paper [NS01].
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4) It is an open question, if the free group of rank 3 with the genera-
tors a, b, c is φ-simple, where φ is defined on the generators of its domain
by the equalities

φ(a2) = cb

φ(b2) = bc

φ(ab) = c2

φ(c) = a

φ(a−1ca) = b−1ab.

This question is equivalent to a question of S. Sidki in [Sid00] and origi-
nates from an automaton, defined by S. V. Aleshin in [Ale83].

Proposition 3.3. Let φ be a virtual endomorphism of a group G. If
H ≤ G is a φ-invariant normal subgroup, then

C (φ/H) = C(φ)/H.

Proof. Let K be a normal φ/H-invariant subgroup of G/H and let K̃ be
its full preimage in G. Then K̃ is also normal. We have K ≤ Dom (φ/H),
so every element of K̃ is a product of an element of Domφ and an element
of H (see the definition of a quotient of a virtual endomorphism by a
normal subgroup). But H ≤ Dom φ, thus K̃ ≤ Dom φ. Let g̃ ∈ K̃ be
an arbitrary element and let g be its image in K. Then, by definition
of φ/H, φ(g̃)H = (φ/H) (g), but (φ/H) (g) ∈ K, so φ(g̃) ∈ K̃ and the
subgroup K̃ is φ-invariant.

On the other hand, if K̃ is a normal φ-invariant subgroup of G, then
its image in G/H is also normal and φ-invariant.

This implies that the maximal φ/H-invariant normal subgroup of
G/H is the image of the maximal φ/H-invariant normal subgroup of
G.

Corollary 3.4. The group G/ C(φ) is φ/ C(φ)-simple.

In this way new groups can be constructed. We can start from some
known group F , define a virtual endomorphism φ on it, and get the group
F/ C(φ). If the group F is finitely generated, then the domain of φ is
also finitely generated, and φ is uniquely determined by its value on the
generators of its domains.

Example. The Grigorchuk group is the group F/ C(φ) for F the free
group generated by {a, b, c, d} and φ defined on the generators of its
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domain as

φ(a2) = 1

φ(b) = a φ(a−1ba) = c

φ(c) = a φ(a−1ca) = d

φ(d) = 1 φ(a−1da) = b.

The next proposition shows that we can restrict in such constructions
to the case when F is a free group.

Proposition 3.5. Let φ be a virtual endomorphism of a finitely gener-
ated group G. Then there exist a virtual endomorphism φ̃ of a finitely
generated free group F , a φ̃-invariant normal subgroup K ≤ F and an

isomorphism ρ : F/K → G such that ρ ◦
(

φ̃/K
)

= φ ◦ ρ. Then the

quotient F/ C
(

φ̃
)

is isomorphic to G/ C(φ).

Proof. Let {g1, g2, . . . , gn} be a finite generating set of the groupG. Set F
to be the free group of rank n with the free generating set {g̃1, g̃2, . . . , g̃n}.
Let π : F → G be the canonical epimorphism π (g̃i) = gi and let K be the
kernel of π, so that F/K ∼= G. Denote by ρ the respective isomorphism
ρ : F/K → G.

The preimage π−1(Domφ) is a subgroup of finite index in F , so it is
a finitely generated free group. Let {h1, h2, . . . , hm} be a free generating
set of π−1(Domφ). We can define a virtual endomorphism φ̃ of the group
F with the domain Dom φ̃ = π−1(Dom φ) putting φ̃(hi) to be equal to
some of the elements of the set π−1 (φ(π(hi))). Then we have π(φ̃(g)) =
φ (π (g)) for all g ∈ {h1, h2, . . . , hm}, and thus for all g ∈ Dom φ̃.

Note that K ≤ π−1(Domφ) = Dom φ̃, and that for every g ∈ K we
have π(φ̃(g)) = φ(π(g)) = 1, so that φ̃(g) ∈ K and K is φ̃-invariant.

Then the equality π ◦ φ̃ = φ◦π is equivalent to the equality ρ◦
(

φ̃/K
)

=

φ ◦ ρ.
We have, by Proposition 3.3

C(φ) = ρ
(

C
(

φ̃/K
))

= ρ
(

C
(

φ̃
)

/K
)

,

thus ρ induces an isomorphism of F/ C
(

φ̃
)

with G/ C(φ).

Definition 3.5. Let H be a subgroup of G. Define ∆φ(H) to be the
set of all elements g ∈ G such that for every h ∈ G the element h−1gh
belongs to Domφ and φ(h−1gh) ∈ H.

We write ∆n
φ for the nth iteration of the operation ∆φ.



V. Nekrashevych 103

Note that ∆n
φ(G) is the nth level stabilizer Stn(φ).

Proposition 3.6. 1. For every subgroup H ≤ G the subgroup ∆φ(H)
is normal and is contained in St1(φ) ≤ Domφ.

2. φ(∆φ(H)) ≤ H.

3. If H is normal, then the virtual endomorphism φ induces a well
defined virtual homomorphism φ : G/∆φ(H) 99K G/H .

4. If the subgroup H is a normal φ-invariant subgroup, then ∆φ(H)
is a normal φ-invariant subgroup.

5. A normal subgroup H is φ-invariant if and only if H ≤ ∆φ(H).

Proof. The first two claims follow directly from the definitions.

If H is normal, then the equality φ(g∆φ(H)) = φ(g)H gives a well de-
fined virtual homomorphism φ : G/∆φ(H) 99K G/H, since from g−1

1 g2 ∈
∆φ(H) follows that φ(g−1

1 g2) ∈ H.

If H is normal and φ-invariant, then φ(h−1gh) is defined and belongs
to H for every h ∈ G, thus H ≤ ∆φ(H). But then φ(∆φ(H)) ≤ H ≤
∆φ(H), so ∆φ(H) is φ-invariant.

If H ≤ ∆φ(H), then for every g ∈ H ≤ ∆φ(H) we have φ(g) ∈ H,
thus H is φ-invariant.

Definition 3.6. For any virtual endomorphism φ we define

En(φ) = ∆n
φ({1})

and E∞(φ) = ∪n≥0En(φ).

Proposition 3.6 implies that the subgroups En(φ) are normal and φ-
invariant for all n = 0, 1, . . . ,∞. It also implies that En(φ) ≤ En+1(φ) for
all n.

Note also that if E1(φ) = {1}, then En(φ) = {1} for all n = 0, 1,
. . . ,∞. Therefore, E∞(φ) = {1} if and only if E1(φ) = {1}.

4. Bimodule associated to a virtual endomorphism

4.1. Permutational G-bimodules and the set φ(G)G

Definition 4.1. Let G be a group. A (permutational) G-bimodule is a
set M with left and right commuting actions of G on M , i.e., with two
maps G ×M → M : (g,m) 7→ g ·m and M × G → M : (m, g) 7→ m · g
such that
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1. 1 ·m = m · 1 = m for all m ∈M ;

2. (g1g2) ·m = g1 ·(g2 ·m) and m ·(g1g2) = (m ·g1) ·g2 for all g1, g2 ∈ G
and m ∈M ;

3. (g1 ·m) · g2 = g1 · (m · g2) for all g1, g2 ∈ G and m ∈M .

Two bimodules M1,M2 are isomorphic if there exists a bijection
f : M1 → M2, which agrees with the left and the right actions, i.e.,
such that g · f(m) · h = f(g ·m · h) for all g, h ∈ G and m ∈M1.

We say that the right action is free if for any m ∈M from m · g = m
follows that g = 1. The right action is d-dimensional if the number of
the orbits for the right action is d. The bimodule is irreducible if for any
two elements m1,m2 ∈M there exist g, h ∈ G such that m2 = g ·m1 · h.

Proposition 4.1. Suppose that M is an irreducible G-bimodule with a
free d-dimensional right action. Take some x ∈M . Let G1 be the subset
of all the elements g ∈ G for which g · x and x belong to the same orbit
of the right action. Then G1 is a subgroup of index d in G and for every
g ∈ G1 there exists a unique h ∈ G such that g · x = x · h. The map
φx : g 7→ h is a virtual endomorphism of the group G.

The constructed virtual endomorphism φx is the endomorphism, as-
sociated to the bimodule M (and the element x).

Proof. The element h is uniquely defined, since the right action is free.
The set G1 is obviously a subgroup. The fact that the map φx is a
homomorphism from G1 to G follows directly from the definition of a
permutational bimodule. The subgroup G1 has index d in G, since the
right action is d-dimensional, and the bimodule is irreducible.

Proposition 4.2. Let M be an irreducible G-bimodule with free d-dimen-
sional right action. Then any two associated virtual endomorphisms φx
and φy are conjugate. If φ is conjugate with an associated virtual en-
domorphism φx, then it is also associated to M , i.e., φ = φy for some
y ∈M .

Proof. Since the bimodule is irreducible, for every x, y ∈ M there ex-
ist g, h ∈ G such that y = g · x · h. Then for every f ∈ G we have
f · y = y · φy(f), what is equivalent to fg · x · h = g · x · hφy(f), i.e., to
g−1fg · x = x · hφy(f)h−1. It implies that φy(f) = h−1φx(g−1fg)h, i.e.,
that φy and φx are conjugate.

Similar arguments show that if φ(f) = h−1φx(g−1fg)h, then φ is the
virtual endomorphism, associated to M and g · x · h ∈M .



V. Nekrashevych 105

Let us show that the bimodule M is uniquely determined, up to an
isomorphism, by the associated virtual endomorphism.

Let φ be a virtual endomorphism of a group G. We consider the
set φ(G)G of expressions of the form φ(g1)g0, where g1, g0 ∈ G. Two
expressions φ(g1)g0 and φ(h1)h0 are considered to be equal if and only
if g−1

1 h1 ∈ Dom φ, and φ(g−1
1 h1) = g0h

−1
0 .

Another way to describe this equivalence relation is to say that two
expressions φ(g1)g0 and φ(h1)h0 are equal if and only if there exists an
element s ∈ G such that sg1, sh1 ∈ Domφ and φ(sg1)g0 = φ(sh1)h0 in
G.

It is not hard to prove that the described relation is an equivalence.

Definition 4.2. Let v = φ(g1)g0 be an element of φ(G)G and g ∈ G be
arbitrary. Right action of the group G on φ(G)G is defined by the rule
v · g = φ(g1)g0g and the left action is defined by g · v = φ(gg1)g0.

The actions are well defined, since from φ(g1)g0 = φ(h1)h0 follows
that

φ
(
g−1
1 h1

)
= φ

(

(gg1)−1 (gh1)
)

= g0h
−1
0 = (g0g)(h0g)

−1,

thus φ(gg1)g0 = φ(gh1)h0 and φ(g1)g0g = φ(h1)h0g.

From the definition directly follows that the left and the right actions
commute, i.e., that (g · v) · h = g · (v · h) for all g, h ∈ G and v ∈ φ(G)G.

The set φ(G)G together with the left and right actions of the group
G is called the G-bimodule, associated to the virtual endomorphism φ.

It is easy to see that the bimodule φ(G)G is irreducible. The right
action is free, since from φ(g1)g0g = φ(g1)g0 follows that φ(g−1

1 g1) =
g−1
0 g0g, thus g = 1. The right action is (indφ)-dimensional, since φ(g1)g0

and φ(h1)h0 belong to one orbit of the right action if and only if g−1
1 h1 ∈

Dom φ.

Proposition 4.3. Let M be an irreducible G-bimodule with free d-dimen-
sional right action and let φ be its associated virtual endomorphism.
Then the bimodule M is isomorphic to the bimodule φ(G)G.

Proof. Let us fix some x0 ∈M . Let φ = φx0 be the virtual endomorphism
associated to M and x0. Define a map F : φ(G)G → M by the rule
φ(g1)g0 = g1 · x0 · g0.

If φ(g1)g0 = φ(h1)h0, then g−1
1 h1 · x0 = x0 · g0h−1

0 , thus h1 · x0 · h0 =
g1 · x0 · g0, what implies that the map F is well defined.

On the other hand, if h1·x0 ·h0 = g1·x0 ·g0, then g−1
1 h1·x0 = x0·g0h−1

0 ,
i.e., φ(g1)g0 = φ(h1)h0, thus the map F is injective.
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Since the bimodule M is irreducible, for every x ∈ G one can find
g1, g0 ∈ G such that x = g1 · x0 · g0, so the map F is a bijection.

We have F (φ(g · g1)g0 · h) = gg1 · x0 · g0h = g · F (φ(g1)g0) · h, thus
the map F agrees with the right and the left multiplications, so it is an
isomorphism of the G-bimodules.

The next is a corollary of Propositions 4.2 and 4.3.

Corollary 4.4. The G-bimodules φ1(G)G and φ2(G)G are isomorphic
if and only if the virtual endomorphisms φ1 and φ2 are conjugate.

Example. 1. Consider a faithful self-similar action of a group G on the
set X∗. Let M = X ×G be a direct product of sets. The right action of
the group G on M is the natural one:

(x · g) · h = x · gh.

We write an element (x, g) of M as x · g.
If x · g ∈M and h ∈ G then, by the definition of a self-similar action,

there exists h|x ∈ G such that h(xw) = h(x)h|x(w) for all w ∈ X∗. We
define the left action of G on M by the formula

h · x · g = h(x) · h|xg.

The obtained permutational bimodule M is called the self-similarity
bimodule of the action. It is easy to see that the right action of the self-
similarity bimodule is free and |X|-dimensional and that the bimodule is
irreducible, if the action is transitive on the set X1.

The self-similarity bimodule M is isomorphic to the permutational
bimodule φ(G)G, where φ is the virtual endomorphism, associated to the
self-similar action.

Example. 2. Let F : M0 → M be a d-fold covering map, where M
is an arcwise connected and locally arcwise connected topological space
and M0 is its open arcwise connected subset. Let t ∈ M be an arbitrary
point.

Let L be the set of homotopy classes of the paths starting at t and
ending at a point z such that F (z) = t. (We consider only the homo-
topies, fixing the endpoints.) Then the set L is a permutational π1(M, t)-
bimodule for the following actions:

1. For all γ ∈ π1(M, t) and ℓ ∈ L:

γ · ℓ = ℓγ′,

where γ′ is the F -preimage of γ, which starts at the endpoint of ℓ.
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2. For all γ ∈ π1(M, t) and ℓ ∈ L:

ℓ · γ = γℓ.

It is not hard to prove that the described permutational bimodule is
irreducible, free and d-dimensional from the right. Consequently, it is
of the form φ(π1(M, t))π1(M, t), where φ is the associated virtual endo-
morphism. It is the endomorphism, defined by F , as in Subsection 2.2.

4.2. Quotients of a permutational bimodule

Definition 4.3. Let Mi be a permutational bimodule over a group Gi,
i = 1, 2. The bimodule M2 is a quotient of the bimodule M1 if there
exists a surjective map p : M1 → M2 and a surjective homomorphism
π : G1 → G2 such that

π(g1) · p(m) · π(g2) = p(g1 ·m · g2)

for all g1, g2 ∈ G1 and m ∈M1.

Proposition 4.5. Let φ1 and φ2 be virtual endomorphisms of the groups
G1 and G2 respectively. Then the bimodule φ2(G2)G2 is a quotient of the
bimodule φ1(G1)G1 if and only if there exists a normal φ1-semi-invariant
subgroup N ≤ G1 such that G2 is isomorphic to G1/N so that φ2 is
conjugate to φ1/N .

Proof. Suppose that the bimodule φ2(G2)G2 is a quotient of the bimod-
ule φ1(G1)G1. Let π : G1 → G2 be the respective homomorphism and
let p : φ1(G1)G1 → φ2(G2)G2 be the surjective map. Denote by N the
kernel of the homomorphism π.

Replacing, if necessary φ2 by a conjugate virtual endomorphism (see
Proposition 4.2), we may assume that p(φ1(1)1) = φ2(1)1. Then

p(φ1(g1)g0) = p(g1 · φ1(1) · g0) = π(g1)p(φ1(1)1)φ(g0) = φ2(π(g1))π(g0)

for all g0, g1 ∈ G1.

If g is an element of N ∩Domφ1, then φ1(g)1 = φ1(1)g′ in φ1(G1)G1,
where g′ = φ(g), thus p(φ1(g)1) = φ2(π(g))1 = φ2(1)1 = φ2(1)π(g′).
Hence, π(g′) = 1, i.e., φ(g) ∈ N and the subgroup N is φ-semi-invariant.
If g is an arbitrary element of Domφ1, then again

p(φ1(g)1) = φ2(π(g))1 = φ2(1)π(g′)

for g′ = φ1(g). Consequently, π(φ1(g)) = φ2(π(g)), i.e., φ2 = φ1/N .
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Suppose now that N is a normal φ1-semi-invariant subgroup of G1.
Let us introduce an equivalence relation on φ1(G1)G1 by the rule:

φ1(g1)g0 ∼ φ1(h1)h0

if and only if

g−1
1 h1 ∈ Dom φ1 and φ1(g−1

1 h1)h0g
−1
0 ∈ N.

It is easy to see that the defined relation is an equivalence and that the
quotient of φ1(G1)G1 has a structure of a permutational bimodule over
G1/N , which is isomorphic to the bimodule φ1/N

(
G1/N

)
G1/N . Then

Proposition 4.2 finishes the proof.

4.3. Bimodules over group algebras

Definition 4.4. Let A be an algebra over a field k. An A-bimodule is
a k-space Φ with structures of left and right A-modules such that the
left and the right multiplications commute. In other words, two k-linear
maps A ⊗k Φ → Φ : a ⊗ v 7→ a · v and Φ ⊗ kA → Φ : v ⊗ a 7→ v · a are
fixed such that

1. (a1a2) · v = a1 · (a1 · v) and v · (a1a2) = (v · a1) · a2 for all a1, a2 ∈ A
and v ∈ Φ;

2. (a1 · v) · a2 = a1 · (v · a2) for all a1, a2 ∈ A and v ∈ Φ.

If M is a permutational G-bimodule, and k is a field, than the left
and the right actions of G on M extend by linearity to a structure of
kG-bimodule on the linear space 〈M〉k. Here 〈M〉k denotes the linear
space over the field k with the basis M , and kG is the group algebra of
G over the field k. The kG-bimodule 〈M〉k is called linear span of the
permutational bimodule M .

In particular, if φ is a virtual endomorphism of the group G, then the
linear span Φ = Φk over k of the permutational bimodule φ(G)G is called
the bimodule, associated to φ. By ΦR and ΦL we denote the underlying
right and left modules, respectively.

We get directly from Corollary 4.4 the next

Proposition 4.6. Let φ1 and φ2 be conjugate virtual endomorphisms
of a group G. Then the respective associated bimodules Φ1 and Φ2 are
isomorphic.
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4.4. Inner product

Definition 4.5. Let Φ be the C-span of the permutational bimodule
φ(G)G. The group algebra CG is equipped with the involution (αg)∗ =
αg−1, where α is the complex conjugation.

The inner product on the bimodule Φ, associated to the virtual endo-
morphism φ is the function 〈·| ·〉 : Φ×Φ → CG, defined by the conditions:

1. the function 〈·| ·〉 is linear over the second variable;

2. 〈v1| v2〉 = 〈v2| v1〉∗ for all v1, v2 ∈ Φ;

3. 〈φ(g1)h1| φ(g2)h2〉 = 0 if g−1
1 g2 /∈ Dom φ and

〈φ(g1)h1| φ(g2)h2〉 = h−1
1 φ(g−1

1 g2)h2

otherwise.

In general, even if k is not equal to C, the last condition of the
definition gives a well defined function 〈·| ·〉 : φ(G)G×φ(G)G → G∪{0},
which will be also called inner product.

Proposition 4.7. The equality

〈v1| g · v2〉 =
〈
g−1 · v1

∣
∣ v2〉 (5)

holds for all v1, v2 ∈ φ(G)G and g ∈ G.

If 〈v1| v2〉 6= 0 for v1, v2 ∈ φ(G)G, then

v1 · 〈v1| v2〉 = v2. (6)

Proof. Let vi = φ(gi)hi for i = 1, 2. Then, for equality (5):

〈v1| gv2〉 = h−1
1 φ(g−1

1 gg2)h−1
2 = h−1

1 φ
((
g−1g1

)−1
g2

)

h2 =
〈
g−1 · v1

∣
∣ v2〉 .

For equality (6):

v1 · 〈v1| v2〉 = φ(g1)h1 · h−1
1 φ(g−1

1 g2)h2 = φ(g2)h2.

As a corollary, we get, that in the case k = C we have

〈v1| a · v2〉 = 〈a∗ · v1| v2〉 (7)

for all v1, v2 ∈ Φ and a ∈ CG.
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4.5. Standard bases and wreath products

Definition 4.6. A basis of a permutational G-bimodule M is an orbit
transversal of the right action.

A standard basis of the bimodule Φ, associated to a virtual endomor-
phism φ is the set of the form

{φ(r1)h1, φ(r2)h2, . . . , φ(rd)hd},

where {r1, r2, . . . , rd} is a left coset transversal of the subgroup Domφ in
G and {h1, h2, . . . , hd} is an arbitrary sequence of elements of the group
G.

It is easy to see that the notions of standard basis of the bimodule Φ
and standard basis of the permutational bimodule φ(G)G coincide.

Proposition 4.8. Every standard basis of the bimodule Φ is a free kG-
basis of the right module ΦR. In particular, the module ΦR is a free right
kG-module of dimension indφ.

Note also, that directly from the definitions follows that the standard
basis is orthonormal, i.e., that 〈xi| xj〉 is 0 for i 6= j and 1 for i = j.

Since the left and the right multiplications commute, we get a homo-
morphism

ψL : kG→ Endk(ΦR) = Md×d(kG)

defined by the rule ψL(a)(v) = a · v. By Proposition 4.8, the algebra
Endk(ΦR) is isomorphic to the algebra Md×d(kG) of d× d-matrices over
kG. Here, as usual d = indφ. We call the homomorphism ψL the linear
recursion, associated to φ.

The linear recursion is computed using the formula in the next propo-
sition, which follows directly from the definitions.

Proposition 4.9. Let X = {x1 = φ(r1)h1, x2 = φ(r2)h2, . . . , xd =
φ(rd)hd} be a standard basis of ΦR. Then for any g ∈ G and xi ∈ X we
have

g · xi = xj · h−1
j φ

(

r−1
j gri

)

hi,

where j is uniquely defined by the condition r−1
j gri ∈ Dom φ.

The formula in Proposition 4.9 can be also interpreted as a homo-
morphism ψ : G → Symm(X) ≀ G, where “≀” is the wreath product and
Symm(X) is the symmetric group on X. Let us recall at first the notion
of a permutational wreath product.
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Definition 4.7. Let G be a group and let H be a permutation group
of a set X. Then the (permutational) wreath product H ≀ G is the semi-
direct product H⋉GX , where H acts on the group GX by the respective
permutations of the direct multiples.

The elements of the wreath product H ≀ G are written as products
h · f , where f ∈ GX and h is an element of H. The element f can be
considered either as a function from X to G, or as a tuple (g1, g2, . . . gd),
if an indexing X = {x1, x2, . . . , xd} of the set X is fixed. In the last case
the multiplication rule for the elements of H ≀G are the following:

h′(g′1, g
′
2, . . . g

′
d) · h(g1, g2, . . . gd) = h′h(g′h(1)g1, g

′
h(2)g2, . . . , g

′
h(d)gd), (8)

where h(i) is the index for which h(xi) = xh(i).
In the case of a standard basis Proposition 4.9 implies that for every

g ∈ G and x ∈ X there exist y ∈ X and h ∈ G such that g · x = y · h. It
is easy to see that x 7→ y is a permutation of the set X. Let us denote
this permutation by σg. In this way we get a homomorphism g 7→ σg of
G to the symmetric group Symm(X). The kernel of this homomorphism
is the first-level stabilizer St1(φ).

Proposition 4.10. The map

ψ : g 7→ σg(h
−1
i1
φ(r−1

i1
gr1)h1, h

−1
i2
φ(r−1

i2
gr2)h2, . . . , h

−1
id
φ(r−1

id
grd)hd),

where the sequence (i1, i2, . . . , id) is such that r−1
ik
grk ∈ Dom φ for all

k = 1, 2, . . . , k and σg is the permutation k 7→ ik, is a homomorphism
ψ : G→ Symm(X) ≀G.

Proof. If ψ(g) = σg(g1, g2, . . . gd) and ψ(h) = σh(h1, h2, . . . , hd) then
hg · xi = h · xj · gi = σhσg(xi) · hjgi, where xj = σg(xi). This agrees with
the multiplication formula (8), thus ψ(hg) = ψ(h)ψ(g).

The obtained homomorphism ψ : G → Symm(X) ≀ G is called the
wreath product recursion associated to the virtual endomorphism φ (and
the basis X).

On the other hand, any homomorphism ψ : G → Symm(X) ≀ G is
associated to some virtual endomorphism. It is the virtual endomorphism
φ which is defined on g ∈ G if and only if ψ(g) = σ(g1, g2, . . . , gd), where
σ(x1) = x1. If φ is defined on g, then φ(g) = g1. Let us choose a left coset
transversal T = {r1, r2, . . . , rd} of Domφ such that ri = σi(ri1, . . . , rid),
where σi(x1) = xi. Then Y = {y1 = φ(r1)r−1

11 , y2 = φ(r2)r−1
21 , . . . , yd =

φ(rd)r
−1
d1 )} is a standard basis of the respective module ΦR. Then a direct

computation shows that the homomorphism ψ is reconstructed back as
the wreath product recursion, associated to the virtual endomorphism φ
and the basis Y .
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Example. Let us consider the virtual endomorphism φ(n) = n/2 of
the group Z. Its domain is the subgroup of even numbers. The coset
transversal is in this case, for example, the set {0, 1}.

Let us write the elements of the group Z in a multiplicative notation,
so that Z is identified with the infinite cyclic group, generated by an
element τ . Then, the coset transversal is written as {1, τ}.

Thus we choose the following standard basis of the permutational
bimodule φ(Z) + Z:

X = {0 = φ(1)1, 1 = φ(τ)1}.

Then the wreath recursion is

ψ(τ) = σ(1, τ),

where σ is the transposition (0 , 1 ) of the set X.

The respective linear recursion is

ψ(τ) =

(
0 τ
1 0

)

.

Proposition 4.11. The kernel of the wreath product recursion associated
to a virtual endomorphism φ is equal to E1(φ).

Proof. An element g ∈ G belongs to the kernel of ψ if and only if g ·xi =
xi · 1 for every xi ∈ X. Hence, g ∈ kerψ if and only if g ∈ St1(φ)
and h−1

i φ(r−1
i gri)hi = 1, i.e., φ(r−1

i gri) = 1. But {ri} is the left coset
representative system, so g ∈ kerψ if and only if for every h ∈ G the
element h−1gh belongs to Domφ and φ(h−1gh) = 1

4.6. Φ-invariant ideals

Definition 4.8. Let Φ be a bimodule over a k-algebra A and let I be a
two-sided ideal of A. Denote by I ·Φ the k-subspace of Φ spanned by the
elements of the form a · v, where a ∈ I and v ∈ Φ. Analogically, denote
by Φ · I the subspace spanned by the elements v · a.

If I ⊂ A is a two-sided ideal in A then its Φ-preimage is the set

Φ−1(I) = {a ∈ A : a · v ∈ Φ · I for all v ∈ Φ}.

Proposition 4.12. For every two-sided ideal I ⊂ A the sets I · Φ and
Φ · I are sub-bimodules of Φ and the set Φ−1(I) is a two-sided ideal of A.
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Proof. Let a ∈ A and v ∈ I · Φ be arbitrary. Then v is a linear combi-
nation over k of the elements of the form b · u, where b ∈ I and v ∈ Φ.
Hence, a · v and v · a are linear combinations of the elements of the form
ab · u and b · (u · a), respectively. But ab ∈ I, so that ab · u ∈ I · Φ. The
element b · (u · a) belongs to I · Φ by definition. Thus, a · v and v · a
belong to the set I · Φ and it is a sub-bimodule. The fact that Φ · I is a
sub-bimodule is proved in the same way.

Let a1, a2 ∈ Φ−1(I) and a ∈ A be arbitrary. Then for every v ∈ Φ we
have a1 · v, a2 · v ∈ Φ · I, thus (a1 + a2) · v = a1 · v + a2 · v ∈ Φ · I, since
Φ · I is closed under addition. We also have aa1 · v = a · (a1 · v) ∈ Φ · I,
since Φ · I is a left-submodule of Φ; and a1a · v = a1 · (a · v) ∈ Φ · I, since
a1 ∈ Φ−1(I).

Definition 4.9. An ideal I is said to be Φ-invariant if I ⊆ Φ−1(I). The
algebra A is said to be Φ-simple if it has no proper Φ-invariant two-sided
ideals.

An ideal I is Φ-invariant if and only if I · Φ ⊆ Φ · I.

Suppose that the ideal I is Φ-invariant. Denote by Φ/I the quotient
of the k-spaces Φ/(Φ · I). Then Φ/I has a structure of an A/I-bimodule,
defined as

(a+I) ·(v + Φ · I) = a ·v+Φ ·I, (v + Φ · I) ·(a+I) = v ·a+Φ ·I. (9)

It is easy to prove, using Proposition 4.12, that multiplications (9)
are well defined.

Example. If Φ is associated to a virtual endomorphism φ of a group
G and N is a normal φ-invariant subgroup of G, then the ideal of kG
generated by 1 −N is Φ-invariant, since

φ((1 − g)g1)g0 = φ(g1)g0 − φ(gg1)g0 =

φ(g1)g0 − φ(g1)g0 ·
(
g−1
0 φ

(
g−1
1 gg1

)
g0
)

=

φ(g1)g0
(
1 − g−1

0 φ
(
g−1
1 gg1

)
g0
)
.

Consequently, if G is not φ-simple, then kG is not Φ-simple.

In fact, the operation Φ−1 on ideals is an exact analog of the operation
∆φ on the normal subgroups of the group G. Namely, the above formula
shows that if H is a normal subgroup, then Φ−1

(
(1−H)

)
= (1−∆φ(H)),

where (A) denotes the two-sided ideal of kG generated by the set A.

The algebra kG needs not to be Φ-simple even if the group G is φ-
simple. But a Φ-simple quotient of the algebra kG can be constructed
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from a φ-simple group by the following construction, which is essentially
due to S. Sidki.

Let us define a sequence of ideals in kG:

I0 = {0}, In = Φ−1 (In−1) for n ≥ 1, I∞ =
⋃

n≥0

In (10)

It is easy to see that In+1 ⊇ In, that In are Φ-invariant and that
Φ−1(I∞) = I∞. The ideals In and I∞ are analogs of the φ-invariant
subgroups En(φ), E∞(φ), defined before. In particular, the ideal I1 is
exactly the kernel of the linear recursion ψL : kG → EndkG(ΦR), which
parallels Proposition 4.11.

Theorem 4.13. Let G be a φ-simple group and let I be a proper Φ-
invariant ideal of kG. Then I ⊆ I∞. In particular, the algebra kG/I∞
is Φ/I∞-simple.

Let us prove at first the following lemmas.

Lemma 4.14. Let I be a Φ-invariant ideal of A and let J be a Φ/I-
invariant ideal of A/I. Then the full preimage J̃ of J in A is Φ-invariant.

Proof. Let a belong to J̃ . This means that a+ I belongs to J . Then for
every v ∈ Φ the element (a + I)(v + Φ · I) belongs to (Φ/I) · J , since it
belongs to J · (Φ/I) and J is Φ/I-invariant. But (a + I)(v + Φ · I) =
a · v + I · Φ · I ⊆ a · v + Φ · I, since I is Φ-invariant. Thus the coset
a · v + Φ · I is a subset of Φ · J̃ , which is the preimage of (Φ/I) · J . In
particular, a · v ∈ Φ · J̃ , and the ideal J̃ is Φ-invariant.

Lemma 4.15. Let {r1, r2, . . . , rd} ⊂ G be a left coset transversal of
Dom φ in G. Let I be an ideal of kG. Then a = α1g1+α2g2+· · ·αmgm ∈
kG, were αi ∈ k and gi ∈ G, belongs to Φ−1(I) if and only if for every
i = 1, 2, . . . , d the sum

ai =
∑

gjri∈Domφ

αjφ(gjri)

belongs to I.

Proof. The set vi = {φ(ri)·1}i=1,...,d is a kG-basis of the right module ΦR.

Consequently, v ∈ Φ is an element of Φ · I if and only if v =
∑d

i=1 vi · bi,
where bi ∈ I. We also obviously have that a ∈ Φ−1(I) if and only if
a · vi ∈ Φ · I for every i = 1, . . . , d. But

a · vi =

d∑

j=1

vj · aj,

where the elements aj are defined as in the proposition.
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Proof of Theorem 4.13. Choose a left coset transversal

{r1 = 1, r2, . . . , rd} ⊂ G

of Domφ in G. Suppose that I is not a subset of I∞. Let α1g1 +α2g2 +
· · · + αmgm be an element of I not belonging to I∞ with the minimal
possible m. By Lemma 4.15 the elements ai =

∑

gjri∈Domφ αiφ(gjri)

belong to I. There exists i such that ai /∈ I∞, otherwise all ai ∈ In for
some n and thus a ∈ Φ−1(In) = In+1 ⊆ I. But a was chosen to be the
shortest element of I \ I∞. Thus, the only possibility is that one ai0 is
equal to

∑m
j=1 αjφ(gjri0) ∈ I \ I∞ and for all the other i we have ai = 0.

Then ai0 is again a minimal element of I \ I∞ and we can repeat the
considerations.

It follows that for any two indices 1 ≤ i, j ≤ m we have gig
−1
j ∈

Dom φ. On the next step we get φ(giri0)φ(gjri0)−1 = φ(gig
−1
j ) ∈ Dom φ

and then by induction, that gig
−1
j ∈ Dom φn for all 1 ≤ i, j ≤ m and n ∈

N. Considering ga =
∑m

i=1 αiggi we prove that g(gig
−1
j )g−1 ∈ Dom φn.

Hence, gig
−1
j belongs to the core C(φ) of virtual endomorphism, which is

trivial. Consequently, all gi are equal, i.e., m = 1 and a = α1g1 for some
g1 ∈ G. But then 1 ∈ I and I = kG. Contradiction.

The Φ/I∞-simplicity of kG/I∞ follows now directly from
Lemma 4.14.

Example. The first paper, where the algebra kG/I∞ was considered
is [Sid97]. It is investigated there for the case of the Gupta-Sidki group
[GS83a] and the field F3.

The Gupta-Sidki group can be defined as the group G = F/ C(φ),
where F is the free group generated by two elements a, b and φ is its
virtual endomorphism

φ(a3) = 1, φ(b) = b, φ(a−1ba) = a, φ(a−2ba2) = a−1.

It is proved in [GS83a] that G is a torsion 3-group, i.e., that every its
element is of order 3k. S. Sidki proved that the ring kG/I∞ for k = F3

is primitive and is just-infinite, i.e., that every its proper quotient is
finite-dimensional.

4.7. Tensor powers of the bimodule

We define the set φn(G)φn−1(G) . . . φ(G)G, analogically to the set
φ(G)G, as the set of formal expressions of the form

φn(gn)φn−1(gn−1) . . . g0,



116 Virtual endomorphisms of groups

where an expression φn(gn)φn−1(gn−1) . . . g0 is identified with an expres-
sion

φn(hn−1)φn−1(hn−1) . . . h0

if and only if there exists s ∈ G such that

φ (φ (φ (sgn) gn−1) . . . g1) g0 = φ (φ (φ (shn)hn−1) . . . h1)h0

in G.
The group G acts on the set φn(G)φn−1(G) . . . G on the left by

g : φn(gn)φn−1(gn−1) . . . g0 7→ φn(gg1)φn−1(gn−1) . . . g0

and on the right by

g : φn(gn)φn−1(gn−1) . . . g0 7→ φn(gn)φn−1(gn−1) . . . g0g.

It is easy to see that these actions are well defined.
We have the following natural interpretation of the set

φn(G)φn−1(G) . . . G

in terms of the associated bimodule.
Recall, that if Φ1 and Φ2 are two A-bimodules, then their tensor

product is the bimodule Φ1 ⊗A Φ2 which, as a k-space is the quotient
of the k-tensor product Φ1 ⊗k Φ2 by the k-subspace, spanned by the
elements

(v1 · a) ⊗ v2 − v1 ⊗ (a · v2),

for all v1 ∈ Φ1, v2 ∈ Φ2, a ∈ A. The left and the right multiplications are
defined by the rules a1 · (v1 ⊗ v2) ·a2 = (a1 ·v1)⊗ (v2 ·a2). We will denote
in the sequel the tensor product Φ1 ⊗A Φ2 just as Φ1 ⊗ Φ2.

Proposition 4.16. The linear span over the field k of the permuta-
tional bimodule φn(G) . . . φ(G)G is isomorphic to the nth tensor power
Φ⊗n = Φ ⊗ Φ ⊗ · · · ⊗ Φ

︸ ︷︷ ︸

n times

of the bimodule Φ associated to the virtual endo-

morphism φ.

Proof. Consider the map F1 : φn(G)φn−1(G) . . . G→ Φ⊗n defined as

F1

(
φn(gn)φn−1(gn−1) . . . g0

)
= φ(gn)1⊗φ(gn−1)1⊗· · ·⊗φ(g2)1⊗φ(g1)g0.

It is easy to see that the map F1 preserves the left and the right multi-
plications by the elements of G, thus, it can be extended to a morphism
of kG-bimodules.
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On the other hand, the map F2 : Φ⊗n → φn(G)φn−1(G) . . . G defined
as

F2

(
φ(gn)hn ⊗ φ(gn−1)hn−1 ⊗ · · · ⊗ φ(g1)h1

)
=

= φn(gn)φn−1(hngn−1)φn−2(hn−1gn−2) . . . φ(h2g1)h1

also can be extended to a morphism of kG-bimodules and is inverse
to the map F1. Thus, the maps F1 and F2 are isomorphisms of the
bimodules.

4.8. Standard actions

Proposition 4.17. Let X = {xi = φ(ri)hi}i=1,...,d be a standard basis of
the right module ΦR. Then the set

Xn = {xi1 ⊗ xi2 ⊗ · · · ⊗ xin : xik ∈ X}

is a basis of the right module of the bimodule Φ⊗n.

Proof. The set {x · g : x ∈ X, g ∈ G} is a k-basis of the space Φ.
Consequently, the set Mn of the elements of the form xi1 · g1 ⊗ xi2 · g2 ⊗
· · · ⊗ xin · gn is a k-basis of the tensor power Φ⊗kn. By Proposition 4.9,
every element of Mn can be reduced to the form xj1 ⊗ xj2 ⊗ · · · ⊗ xjn · h,
where h is some element of G. It is easy to see that such reduction is
unique, and that two elements ofMn are equal if and only if the respective
reductions coincide. From this follows that the set Xn is a basis of the
right kG-module of Φ⊗n.

For every n ≥ 1 we get a homomorphism ψ⊗n : kG → End Φ⊗n
R

coming from the left multiplications seen as endomorphisms of the right
module Φ⊗n

R . For every standard basis X, the set Xn is a free basis of the
right module Φ⊗n

R , and thus, the module Φ⊗n is free |X|n-dimensional,
and the algebra End Φ⊗n

R is isomorphic to the algebra of |X|n × |X|n-
matrices over the algebra kG. The homomorphisms maps ψ⊗n are called
the iterated linear recursions.

More generally, the bimodule structure defines natural homomor-

phisms ψn : End Φ⊗n
R → End Φ

⊗(n+1)
R . Namely, if g is an endomorphism

of the right module Φ⊗n
R , then its image in End Φ

⊗(n+1)
R is the endomor-

phism ψn(g) defined as

ψn(g)(v1 ⊗ v) = g(v1) ⊗ v,

where v1 ∈ Φ⊗n and v ∈ Φ.

The defined homomorphism ψn agrees with the introduced linear re-
cursions, i.e., ψn ◦ ψ⊗n = ψ⊗(n+1).
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Note that the kernel of the iterated linear recursion ψ⊗n is the ideal
In.

We will write in many cases the element xi1 ⊗ xi2 ⊗ · · · ⊗ xin ∈ Xn

as a word xi1xi2 . . . xin ∈ X∗. Then the set Xn is identified with the set
of the words of length n over the alphabet X.

It follows from Proposition 4.9 that for every v ∈ Xn and for every
g ∈ G there exists a unique pair (u, h), where u ∈ Xn and h ∈ G, such
that

g · v = u · h. (11)

It is easy to see that the map v 7→ u is a permutation of the set Xn

and that in this way we get an action of the group G on the set Xn.
Taking union we get an action of G on the set X∗. We will call this
action the standard action of G with respect to the basis X.

It follows from Equation (11) that the standard actions are self-similar
in sense of Definition 2.7.

The element h in (11) is called the restriction of g at v and is denoted
g|v . The image of a word v under the action of g ∈ G and the restriction
g|v can be computed inductively using Proposition 4.9. This notion of
a restriction is a generalization of the previously defined notion for self-
similar actions. In particular, the properties (2) and (3) hold, and if the
action is faithful, then the restriction is defined uniquely by the condition
that g(vu) = g(v)g|v(u) for all u ∈ X∗.

Proposition 4.18. Take any faithful self-similar action of a group G
over the alphabet X = {x1, x2, . . . , xd}. Let φ = φx1 be the associ-
ated virtual endomorphism. Take elements ri for i = 1, 2, . . . , d such
that ri(x1) = xi. Let hi = ri|x1 . Then X̃ = {x̃1 = φ(r1)h−1

1 , x̃2 =
φ(r2)h−1

2 , . . . , x̃d = φ(rd)h
−1
d } is a standard basis of the bimodule Φ, as-

sociated to the virtual endomorphism φ and the original action of G on
X∗ coincides with the standard action of G with respect to the basis X̃,
i.e.,

g(xi1xi2 . . . xin) = g(x̃i1 x̃i2 . . . x̃in)

for every g ∈ G and xi1xi2 . . . xin ∈ X∗.

Proof. Let g be an arbitrary element of the group G and let xi ∈ X be an
arbitrary letter. Let g(xi) = xj . Then s−1

j gsi(x1) = x1, so that s−1
j gsi ∈

Dom φ. For every v ∈ X∗ we have s−1
j gsi(x1v) = x1φ(s−1

j gsi)(v), by
definition of φ. Then

g(xiv) = gsi(x1h
−1
i (v)) = sj(s

−1
j gsi)(x1h

−1
i (v)) =

= sj(x1φ(s−1
j gsi)h

−1
i (v)) = xjhjφ(s−1

j gsi)h
−1
i (v)

and the proof is finished by induction on the length of the word v.
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Proposition 4.19. Let X = {xi = φ(ri)hi} and Y = {yi = φ(si)gi}
be two standard bases of the bimodule Φ. Then the respective standard
actions of the group G on X∗ and Y ∗ are conjugate, i.e., there exists a
bijection α : X∗ → Y ∗ such that the equality α−1gα(v) = g(v) holds for
every g ∈ G and v ∈ X∗.

Proof. Let v = xi1xi2 . . . xin be an arbitrary element of X∗. It follows
from Proposition 4.9 that there exists a unique α(v) ∈ Y ∗ such that
v = α(v) · h for some h ∈ G.

We have g · v = g(v) · g|v for the standard action on X∗, so that
g · v = α(g(v)) · hg|v for some h ∈ G. On the other hand

g · v = g · α(v) · h(v) = g(α(v)) · g|α(v)h(v).

Consequently, α(g(v)) = g(α(v)).

Recall, that due to Proposition 4.7, we have for every xi ∈ X the
equality xi = yj · 〈yj| xi〉, where yj is such that 〈yj| xi〉 6= 0, i.e., s−1

j ri ∈
Dom φ. Therefore, v = yj1 · 〈yj1| xi1〉⊗yj2 · 〈yj2| xi2〉⊗· · ·⊗yjn · 〈yjn | xin〉
for some yj1yj2 . . . yjn ∈ Y ∗, and the map α : X∗ → Y ∗ can be more
explicitely defined by the recurrent formula

α(xi ⊗ v) = yj ⊗ 〈yj| xi〉 (α (v)) , (12)

where v ∈ X∗, yj ∈ Y is such that 〈yj| xi〉 6= 0, and 〈yi| xi〉 ∈ G acts on
α(v) by the standard action of G on Y ∗.

Proposition 4.20. The virtual endomorphism φ is regular if and only
if the respective standard action is transitive on the sets Xn (is level
transitive).

If the virtual endomorphism φ is regular, then the standard action
is conjugate with the action of the group G on the coset tree of φ, i.e.,
there exists an isomorphism of rooted trees Λ : X∗ → T (φ) such that
Λ(g(v)) = g(Λ(v)) for all v ∈ X∗.

Proof. It follows from Proposition 4.19 that if one standard action is
level-transitive, then all the other standard actions are level-transitive.
Therefore, it is sufficient to prove the proposition for one standard basis,
so we can assume that our standard basis contains the element x0 =
φ(1)1. The standard action is level transitive if and only if the index
of the stabilizer of the word x0x0 . . . x0 = xn0 is equal to dn, where d =
|X| = indφ. But the stabilizer of the word x0x0 . . . x0 = xn0 is equal to
Dom φn.

If the virtual endomorphism φ is regular, then the isomorphism Λ :
X∗ → T (φ) may be defined as Λ(v) = g · Dom φ|v|, where g is such that
g(xn0 ) = v.
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5. Contracting virtual endomorphisms

5.1. Definitions and basic properties

Let φ be a virtual endomorphism of a group G. Choose some standard
basis X = {x1 = φ(r1)h1, . . . ,Xd = φ(rd)hd} of the right module ΦR and
consider the standard action of the group G on the space X∗.

Definition 5.1. The standard action is said to be contracting if there
exists a finite set N such that for every g ∈ G there exists n0 ∈ N such
that

g|v ∈ N ,

for all v ∈ Xn, n ≥ n0.

The minimal set N with the above property is called the nucleus of
the standard action.

It is easy to see that if the standard action is contracting then it is
finite state, i.e., for every g ∈ G the set {g|v : v ∈ X∗} is finite.

We will use the following notation. If A and B are two subsets of a
group G, then AB is the set of products ab, where a ∈ A and b ∈ B.
The power An is a short notation for A · A · · ·A

︸ ︷︷ ︸

n times

. If A ⊂ G and W ⊂ X∗,

then A|W is the set of restrictions a|w, where a ∈ A and w ∈W .

Lemma 5.1. Suppose that the group G is generated by a finite set S =
S−1 ∋ 1. Then a standard action of G is contracting if and only if there
exists a finite set N ⊂ G and a number n such that

(S ∪ N )2|Xn ⊆ N .

Proof. If the action is contracting, then the above condition holds for N
equal to the nucleus. In the other direction, by induction on the length
of a group element we prove that for every g ∈ G there exists k0 ∈ N

such that g|v ∈ N for all v ∈ Xnk, where k ≥ k0. Then the nucleus of
the action is a subset of N|∪0≤m≤n−1Xm .

Proposition 5.2. Suppose that the virtual endomorphism φ is contract-
ing with respect to the standard basis X. Let A ⊂ G be a finite set. Then
the set of all possible h ∈ G such that

g1 · xi1 ⊗ g2 · xi2 ⊗ · · · ⊗ gm · xim = v · h, (13)

for some gi ∈ A, xik ∈ X and v ∈ Xm, is finite.
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Proof. It is sufficient to prove the proposition for some set A′ ⊇ A, so
we assume that the set A contains the nucleus N of the action and that
it is state-closed, i.e., that for every g ∈ A and v ∈ X∗ the restriction g|v
also belongs to A. We can do this, since the action is finite-state.

There exists a number k such that A2|v ⊆ N ⊆ A for every word
v ∈ X∗ of length greater or equal to k. It is easy to see that then
A2n|v ⊆ An for every v ∈ Xk and every n ∈ N.

It is sufficient to find a finite set B such that it contains all h, which
appear in Equation (13) for numbers m divisible by k.

We can write

g1 · xi1 ⊗ g2 · xi2 ⊗ · · · ⊗ gm · xim = v1 · h1 ⊗ v2 · h2 ⊗ · · · ⊗ vm/k · hm/k,

where hi ∈ G and vi ∈ Xk for all i. From the fact that A is state-closed
follows that hi ∈ Ak. But then h1 · v2 = h1(v2) · h1|v2 and h1|v2 also
belongs to Ak, so (h1|v2h2) |v3 ∈ A2k|v3 ⊆ Ak, and we get an inductive
proof of the fact that v1 · h1 ⊗ v2 · h2 ⊗ · · · ⊗ vm/k · hm/k = u · h for some

h ∈ Ak.

Directly from Proposition 5.2 we get

Corollary 5.3. If the standard action is contracting then for any finite
set A ⊂ G there exists a finite set ΣA ⊂ G such that A ⊆ ΣA and

ΣA|X · A ⊆ ΣA.

Now we are ready to prove that the property of an action to be
contracting does not depend on the particular choice of the standard
basis.

Proposition 5.4. If some standard action for a virtual endomorphism
φ is contracting, then any other standard action for φ is contracting.

Proof. Let X = {x1, x2, . . . , xd} and Y = {y1, y2, . . . , yd} be two stan-
dard bases. Then we can permute the vectors in the basis so that there
exist ri ∈ G such that yi = xi · ri. Take A = {ri}i=1,...,d. Let ΣA be as in
Corollary 5.3 with respect to the standard action over the alphabet X.

Let g ∈ G and yi ∈ Y be arbitrary. Then g|yi
is defined by the

condition g ·xi · ri = xj · rjg|yi
. Thus, g|yi

= r−1
j g|xi

ri. It is easy to prove
now by induction on n that for every v ∈ Y n the restriction g|v belongs
to the set Σ−1

A · g|u · ΣA for some u ∈ Xn. Consequently, the standard
action with respect to Y is also contracting with the nucleus a subset of
Σ−1
A · N · ΣA, where N is the nucleus of the action on X∗.

Proposition 5.4 justifies the following notion.
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Definition 5.2. A virtual endomorphism φ is contracting if some (equiv-
alently, if all) respective standard actions are contracting.

The next proposition shows that the contraction can be detected by
a finite number of group relation.

Proposition 5.5. Suppose that the virtual endomorphism φ of a finitely
generated group G is contracting. Then there exist a finitely presented
group F , a contracting virtual endomorphism φ̃ of F , a normal φ̃-inva-
riant subgroup N of F and an isomorphism ρ : G → F/N such that
ρ ◦ φ = φ̃/N ◦ ρ.
Proof. Let us fix some standard basis X = {xi}i=1,...,d, where x1 = φ(1)1
and consider the respective standard action of the group G. Let N be
its nucleus, and let S be a finite symmetric generating set of G, which
includes the identity. Since the action is contracting, we may suppose
that the set S is state-closed, i.e., that for every s ∈ S and x ∈ X the
restriction s|x also belongs to S. We may also suppose that S contains
the nucleus N . Let S̃ be a set, which is in a bijective correspondence
S̃ → S : s̃ 7→ s with the set S. Take the group F generated by the set
S̃ and defined by all relations of the form s̃1s̃2 = s̃3, where s̃i are such
that s1s2 = s3 in the group G. In other words, the group F is the group
defined by all the relations of the length 3, which hold for the generators
S of the group G.

Let us define a permutational bimodule M over the group F with the
standard basis X by the natural rules:

s̃1 · x = y · s̃2, if and only if s1 · x = y · s2.

Another way to interpret the above construction is to say that we define
the wreath product recursion F → Symm(X) ≀F on the generators of F
in the same way as was defined the recursion G→ Symm(X) ≀G on the
generators of G.

The only thing to check in order to prove that the bimodule M is well
defined, is to prove that if g is a word in generators S̃, representing the
trivial element, then g · x = x · 1 in M for every x ∈ X. But this follows
from the fact that if s1s2 = s3 in G, s2 ·x = y · s′2, s1 · y = z · s′1, for some
s1, s2, s3, s

′
1 = s1|y, s′2 = s2|x ∈ S and x, y, z ∈ X, then s3 · x = z · s′3,

s1s2 · x = z · s′1s′2, so that s′3 = s′1s
′
2, where s′3 = s3|x ∈ S.

Let φ̃ be the virtual endomorphism of F , associated to the bimodule
M and the element x1 (recall that x1 corresponds to φ(1)1).

Directly from the definitions follows that the permutational bimodule
φ(G)G is a quotient of the bimodule M with the natural quotient map
π : s̃ 7→ s : F → G and the map p : M → φ(G)G defined as p(x · g) =
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x ·π(g). Then by Proposition 4.5, the kernel N of the map π is a φ̃-semi-
invariant subgroup such that φ̃/N is conjugated with φ. But from the
choice of φ̃ follows that in fact we have φ̃/N = φ.

If g ∈ N , then g · x = x · g|x for every x, since π(g) · x = x · π(g)|x.
Thus, N ≤ Dom φ̃, and N is a normal φ̃-invariant subgroup.

It remains to prove that the virtual endomorphism φ̃ is contracting.
Since the action of G is contracting, by Lemma 5.1 there exists n such
that S2|Xn ⊆ S. But we have included all the relations of the form
s1s2 = s3, si ∈ S into the relations of F and the restrictions of the words
in generators of F are computed by the same rules as the restrictions of
the words in generators of G. Thus, S̃2|Xn ⊆ S̃, and by Lemma 5.1, the
action of F is contracting.

Proposition 5.6. If a virtual endomorphism φ of a group G is contract-
ing and the nucleus of a standard action does not contain non-trivial
elements of C(φ) then C(φ) = E∞(φ).

Proof. Let that g ∈ C(φ) be arbitrary. Then there exists n ∈ N such that
g|v belongs to the nucleus for every v ∈ Xn. But then g · v = v · g|v and
g|v ∈ C(φ), hence g|v = 1 and g ∈ En(φ).

The following is a direct corollary of Proposition 4.5.

Proposition 5.7. If a virtual endomorphism φ of a group G is contract-
ing, and N is a normal φ-semi-invariant subgroup of G, then the virtual
endomorphism φ/N of the group G/N is also contracting.

The next easy fact is proved in [Nekc].

Proposition 5.8. If a virtual endomorphism φ of a group G is con-
tracting and onto, then the group G is generated by the nucleus of the
standard action.

5.2. Contraction coefficient

If the group is finitely generated, then the contractivity of a virtual en-
domorphism can be established using a more intuitive definition.

If the group G is finitely generated, then we denote by l(g) the length
of the shortest representation of g in a product of the generators and the
inverses, for a fixed finite generating set of the group.

Definition 5.3. Let G be a finitely generated group, let φ be its virtual
endomorphism. Let us fix also a standard self-similar action of G on X∗.
The number

ρ = lim
n→∞

n

√

lim sup
l(g)→∞

max
v∈Xn

l (g|v)
l(g)
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is called the contraction coefficient of the action.
The number

ρφ = lim
n→∞

n

√

lim sup
g∈Domφn,l(g)→∞

l (φn (g))

l(g)
, (14)

is called the contraction coefficient (or the spectral radius) of the virtual
endomorphism φ.

Note that the function ρφ(n) = lim supg∈Domφn,l(g)→∞
l(φn(g))
l(g) is sub-

multiplicative, i.e., ρφ(n+m) ≤ ρφ(n)ρ(m), since

l (φn+m (g))

l(g)
=
l (φn+m (g))

l(φn(g))
· l (φ

n (g))

l(g)
,

lim sup
g∈Domφn+m,l(g)→∞

l (φn+m (g))

l(φn(g))
≤ lim sup

g∈Domφm,l(g)→∞

l (φm (g))

l(g)

and

lim sup
g∈Domφn+m,l(g)→∞

l (φn (g))

l(g)
≤ lim sup

g∈Domφn,l(g)→∞

l (φn (g))

l(g)
.

Therefore, from the well-known Polya Lemma, the limit in (14) exists.
Similar arguments show that the contraction coefficient ρ of the standard
action also exists. Both coefficients are finite, since ρφ ≤ ρ and ρ is not
greater than maxg∈S,x∈X l(g|x), where S is the generating set.

Note also, that if l1 and l2 are the length functions computed with
respect to different finite generating sets, then there exists a number
C > 0 such that C−1l2(g) ≤ l1(g) ≤ Cl2(g) for all g ∈ G. From this
easily follows that the contraction coefficients computed with respect to
l1 will be the same as the coefficients, computed with respect to l2.

The following proposition is proved in [Nekc].

Proposition 5.9. A standard action is contracting if and only if its
contraction coefficient is less than one.

Suppose that the virtual endomorphism φ is regular. Then it is con-
tracting if and only if its contraction coefficient is less than one. If it
is contracting, then ρφ is equal to the contraction coefficient of every
associated standard action.

Let w be an infinite word in the alphabet X, i.e., a sequence x1x2 . . .,
xi ∈ X. If g ∈ G, then by g(x1x2 . . .) we denote the word y1y2 . . . such
that g(x1x2 . . . xn) = y1y2 . . . yn for every n. From the definition of a
self-similar action follows that the word g(x1x2 . . .) is well defined and
that we get in this way an action of G on the set Xω of infinite words.
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Definition 5.4. Let G be a finitely generated group, acting on a set A.
Growth degree of the G-action is the number

γ = sup
w∈A

lim sup
r→∞

log |{g(w) : l(g) ≤ r}|
log r

where l(g) is the length of a group element with respect to some fixed
finite generating set of G.

One can show, in the same way as before, that the growth degree γ
does not depend on the choice of the generating set of G.

Proposition 5.10. Suppose that a standard action of a group G on X∗

is contracting. Then the growth degree of the action on Xω is not greater
than log |X|

− log ρ , where ρ is the contraction coefficient of the action on X∗.

Proof. The statement is more or less classical. See, for instance the
similar statements in [Gro81, BG00, Fra70].

Let ρ1 be such that ρ < ρ1 < 1. Then there exists C > 0 and n ∈ N

such that for all g ∈ G we have l(g|x1x2...xn) < ρn1 · l(g) + C.
Then cardinality of the set B(w, r) = {g(w) : l(g) ≤ r}, where

w = x1x2 . . . ∈ Xω is not greater than

|X|n · |{B (xn+1xn+2 . . . , ρ
n
1 · r +C)| ,

since the map σn : x1x2 . . . 7→ xn+1xn+2 . . . maps B(w, r) into

B (xn+1xn+2 . . . , ρ
n
1 · r + C)

and every point of Xω has exactly |X|n preimages under σn. The map
σn is the nth iteration of the shift map σ(x1x2 . . .) = x2x3 . . ..

Let k =
[

log r
−n log ρ1

]

+1. Then ρnk1 ·r < 1 and the number of the points

in the ball B(w, r) is not greater than

|X|nk ·
∣
∣
∣B
(

σnk (w) , R
)∣
∣
∣ ,

where

R = ρnk1 · r + ρ
n(k−1)
1 · C + ρ

n(k−2)
1 · C + · · · + ρn1 · C + C < 1 +

C

1 − ρn1
.

But |B(u,R)| for all u ∈ Xω is less than K1 = |S|R, where S is the
generating set of G (we assume that S = S−1 ∋ 1). Hence,

|B(w, r)| < K1 · |X|n
(

log r
−n log ρ1

+1
)

=

= K1 · exp
(

log |X| log r
− log ρ1

+ n log |X|
)

= K2 · r
log |X|
− log ρ1 ,

where K2 = K1 · |X|n. Thus, the growth degree is not greater than
log |X|
− log ρ1

for every ρ1 ∈ (ρ, 1), so it is not greater than log |X|
− log ρ .
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Lemma 5.11. Let φ be a contracting virtual endomorphism of a φ-simple
infinite finitely generated group G. Then the contraction coefficient of its
standard action is greater or equal to 1/ indφ.

Proof. Consider the standard action on the set X∗ for a standard basis
X, containing the element x0 = φ(1)1. Then the parabolic subgroup
P (φ) = ∩n≥0 Dom φn is the stabilizer of the word w = x0x0x0 . . . ∈ Xω.
The subgroup P (φ) has infinite index in G, otherwise ∩g∈Gg−1Pg = C(φ)
will have finite index, and G will be not φ-simple. Consequently, the G-
orbit of w is infinite. Then there exists an infinite sequence of generators
s1, s2, . . . of the group G such that the elements of the sequence

w, s1(w), s2s1(w), s3s2s1(w), . . .

are pairwise different. This implies that the growth degree of the orbit
Gw

γ = lim sup
r→∞

|{g(w) : l(g) ≤ r}|
log r

is greater or equal to 1, thus the growth degree of the action of G on Xω

is not less than 1, and by Proposition 5.10, 1 ≤ log |X|
− log ρ .

Proposition 5.12. If there exists a faithful contracting action of a fini-
tely-generated group G then for any ǫ > 0 there exists an algorithm of
polynomial complexity of degree not greater than log |X|

− log ρ + ǫ solving the
word problem in G.

Proof. We assume that the generating set S is symmetric (i.e., that S =
S−1) and contains all the restrictions of all its elements, so that always
l(g|v) is not greater than l(g).

We will denote by F the free group generated by S and for every
g ∈ F by ĝ we denote the canonical image of g in G.

Let 1 > ρ1 > ρ. Then ρ1 · |X| > 1, since by Lemma 5.11, ρ · |X| ≥ 1.
There exist n0 and l0 such that for every word v ∈ X∗ of the length n0

and every g ∈ G of the length ≥ l0 we have

l (g|v) < ρn1 l(g).

Assume that we know for every g ∈ F of the length less than l0 if ĝ
is trivial or not. Assume also that we know all the relations g · v = u · h
for all g, l(g) ≤ l0 and v ∈ Xn0 .

Then we can compute in l(ĝ) steps, for any g ∈ F and v ∈ Xn, the
element h ∈ F and the word u ∈ Xn0 such that ĝ · v = u · ĥ. If v 6= u
then we conclude that ĝ is not trivial and stop the algorithm. If for all
v ∈ Xn0 we have v = u, then ĝ is trivial if and only if all the obtained
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restrictions ĥ = ĝ|v are trivial. We know, whether ĥ is trivial if l(h) < l0.
We proceed further, applying the above computations for those h, which
have the length not less than l0.

But l(h) < ρn1 l(g), if l(g) ≥ l0. So on each step the length of the
elements becomes smaller, and the algorithm stops in not more than
− log l(g)/ log ρ1 steps. On each step the algorithm branches into |X|
algorithms. Thus, since ρ1 · |X| > 1, the total time is bounded by

l(g)
(

1 + ρ1 · |X| + (ρ1 · |X|)2 + · · · + (ρ1 · |X|)[− log l(g)/ log ρ1]
)

<

l(g)
ρ1·|X|−1

(

(ρ1 · |X|)1−log l(g)/ log ρ1 − 1
)

=

l(g)ρ1·|X|
ρ1·|X|−1

(

(ρ1 · |X|)− log l(g)/ log ρ1 − (ρ1 · |X|)−1
)

=

C1l(g)
(

exp
(

log l(g)
(

log |X|
− log ρ1

− 1
))

− C2

)

=

= C1l(g)
− log |X|/ log ρ1 − C1C2l(g),

where C1 = ρ1·|X|
ρ1·|X|−1 and C2 = (ρ1 · |X|)−1.
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Sushchanskii, Automata, dynamical systems and groups, Proceedings of the
Steklov Institute of Mathematics 231 (2000), 128–203.

[Gri80] Rostislav I. Grigorchuk, On Burnside’s problem on periodic groups, Fun-
tional Anal. Appl. 14 (1980), no. 1, 41–43.

[Gri83] Rostislav I. Grigorchuk, On the Milnor problem of group growth, Dokl. Akad.
Nauk SSSR 271 (1983), no. 1, 30–33.

[Gri00] Rostislav I. Grigorchuk, Just infinite branch groups, New horizons in pro-p
groups (Aner Shalev, Marcus P. F. du Sautoy, and Dan Segal, eds.), Progress
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Commensurators of groups and reversible automata, Dopovidi NAN Ukrainy
(2000), no. 12, 36–39.

[Neka] Volodymyr V. Nekrashevych, Cuntz-Pimsner algebras of group actions, sub-
mitted.

[Nekb] Volodymyr V. Nekrashevych, Iterated monodromy groups, preprint, Geneva
University, 2002.

[Nekc] Volodymyr V. Nekrashevych, Limit spaces of self-similar group actions,
preprint, Geneva University, 2002.

[Nek00] Volodymyr V. Nekrashevych, Stabilizers of transitive actions on locally finite
graphs, Int. J. of Algebra and Computation 10 (2000), no. 5, 591–602.

[NS01] Volodymyr V. Nekrashevych and Said N. Sidki, Automorphisms of the binary
tree: state-closed subgroups and dynamics of 1/2-endomorphisms, preprint,
2001.
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Abstract. A ball structure is a triple (X,P,B), where X , P
are nonempty sets and, for any x ∈ X , α ∈ P , B(x, α) is a subset
of X , x ∈ B(x, α), which is called a ball of radius α around x. We
characterize up to isomorphism the ball structures related to the
metric spaces of different types and groups.

Following [1, 2], by ball structure we mean a triple B = (X,P,B),
where X, P are nonempty sets and, for any x ∈ X, α ∈ P , B(x, α) is a
subset of X, which is called a ball of radius α around x. It is supposed
that x ∈ B(x, α) for all x ∈ X, α ∈ P .

Let B1 = (X1, P1, B1) and B2 = (X2, P2, B2) be ball structures,
f : X1 → X2. We say that f is a ≻-mapping if, for every β ∈ P2, there
exists α ∈ P1 such that

B2(f(x), β) ⊆ f(B1(x, α))

for every x ∈ X1. If there exists a ≻-mapping of X1 onto X2, we write
B1 ≻ B2.

A mapping f : X1 → X2 is called a ≺-mapping if, for every α ∈ P1,
there exists β ∈ P2 such that

f(B1(x, α)) ⊆ B2(f(x), β)

for every x ∈ X1. If there exists an injective ≺-mapping of X1 into X2,
we write B1 ≺ B2.

A bijection f : X1 → X2 is called an isomorphism between B1 and
B2 if f is a ≻-mapping and f is a ≺-mapping.

Key words and phrases: ball structure, ball isomorphism, metrizablility.
2001 Mathematics Subject Classification 54E35, 05C75.



130 Metrizable ball structures

We say that a property P of ball structures is a ball property if a ball
structure B has a property P provided that B is isomorphic to some ball
structure with property P.

Example 1. Let (X, d) be a metric space, R+ = {x ∈ R : x ≥ 0}. Given
any x ∈ X, r ∈ R+, put

Bd(x, r) = {y ∈ X : d(x, y) ≤ r}.

A ball structure (X,R+, Bd) is denoted by B(X, d).

We say that a ball structure B is metrizable if B is isomorphic to
B(X, d) for some metric space (X, d).

To obtain a characterization (Theorem 1) of metrizable ball struc-
tures, we need some definitions and technical results.

A ball structure B = (X,P,B) is called connected if, for any x, y ∈ X,
there exists α ∈ P such that y ∈ B(x, α), x ∈ B(y, α).

Lemma 1. Let B1 = (X1, P1, B1) and B2 = (X2, P2, B2) be ball struc-
tures and let f be a ≺-mapping of X1 onto X2. If B1 is connected, then
B2 is connected.

Proof. Given any y, z ∈ X1, choose α ∈ P1 such that y ∈ B1(z, α),
z ∈ B1(y, α). Since f is a ≺-mapping, then there exists β ∈ P2 such that
f(B1(x, α)) ⊆ B2(f(x), β) for every x ∈ X1. Hence, f(y) ∈ B2(f(z), β)
and f(z) ∈ B2(f(y), β). Since f(X1) = X2, then B2 is connected.

Lemma 2. Let B1 = (X1, P1, B1) and B2 = (X2, P2, B2) be ball struc-
tures and let f be an injective ≻-mapping of X1 into X2. If B2 is con-
nected, then B1 is connected.

Proof. Given any y, z ∈ X1, choose β ∈ P2 such that f(y) ∈ B2(f(z), β)
and f(z) ∈ B2(f(y), β). Since f is a ≻-mapping, then there exists α ∈
P1 such that B2(f(x), β) ⊆ f(B1(x, α)) for every x ∈ X1. Since f is
injective, then z ∈ B1(y, α) and y ∈ B1(z, α). Hence, B1 is connected.

Let B = (X,P,B) be a ball structure. For all x ∈ X, α ∈ P , put

B∗(x, α) = {y ∈ X : x ∈ B(y, α)}.

A ball structure B∗ = (X,P,B∗) is called dual to B. Note that
B∗∗ = B.

A ball structure B is called symmetric if the identity mapping i : X →
X is an isomorphism between B and B∗. In other words, B is symmetric
if, for every α ∈ P , there exists β ∈ P such that B(x, α) ⊆ B∗(x, β) for
every x ∈ X, and vice versa.
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Lemma 3. Let B1 = (X1, P1, B1) and B2 = (X2, P2, B2) be ball struc-
tures, f : X1 → X2. If f is a ≺-mapping of B1 to B2, then f is a
≺-mapping of B∗

1 to B∗
2. If f is an isomorphism between B1 and B2,

then f is an isomorphism between B∗
1 and B∗

2.

Proof. Let f be a ≺-mapping of B1 to B2 and let α ∈ P1. Choose
β ∈ P2 such that f(B1(x, α)) ⊆ B2(f(x), β) for every x ∈ X1. Take
any element y ∈ B∗

1(x, α). Then x ∈ B1(y, α) and f(x) ∈ B2(f(y), β).
Hence, f(y) ∈ B∗

2(f(x), β) and f(B∗
1(x, α)) ⊆ B∗

2(f(x), β). It means that
f is a ≺-mapping of B∗

1 to B∗
2.

Suppose that f is an isomorphism between B1 and B2. By the first
statement, f is a ≺-mapping of B∗

1 to B∗
2 and f−1 is a ≺-mapping of B∗

2

to B∗
1. It follows that f is an isomorphism between B∗

1 and B∗
2.

Lemma 4. Let B1 = (X1, P1, B1) and B2 = (X2, P2, B2) be isomorphic
ball structures. If B1 is symmetric, then B2 is symmetric.

Proof. Let f : X1 → X2 be an isomorphism between B1 and B2. Denote
by i1 : X1 → X1 and i2 : X2 → X2 the identity mappings. Clearly, f−1 is
an isomorphism between B2 and B1. By Lemma 3, f is an isomorphism
between B∗

1 and B∗
2. By assumption, i1 is an isomorphism between B1

and B∗
1. Since i2 = fi1f

−1, then i2 is an isomorphism between B2 and
B∗

2.

A ball structure B = (X,P,B) is called multiplicative if, for any
α, β ∈ P , there exists γ(α, β) ∈ P such that

B(B(x, α), β) ⊆ B(x, γ(α, β))

for every x ∈ X. Here, B(A,α) =
⋃

a∈AB(a, α) for any A ⊆ X, α ∈ P .

Lemma 5. If a ball structure B = (X,P,B) is multiplicative, then B∗

is multiplicative.

Proof. Given any α, β ∈ P , choose γ(α, β) such that B(B(x, α), β) ⊆
B(x, γ(α, β)). Take any element z ∈ B∗(B∗(x, α), β) and pick y ∈
B∗(x, α) such that z ∈ B∗(y, β). Then x ∈ B(y, α) and y ∈ B(z, β),
so x ∈ B(B(z, β), α). Since B(B(z, β), α) ⊆ B(z, γ(β, α)), then x ∈
B(z, γ(β, α)). Hence, B∗(B∗(x, α), β) ⊆ B∗(x, γ(β, α)) and B∗ is multi-
plicative.

Lemma 6. Let B1 = (X1, P1, B1) and B2 = (X2, P2, B2) be isomorphic
ball structures. If B1 is multiplicative, then B2 is multiplicative.
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Proof. Denote by f1 : X1 → X2 the isomorphism between B1 and B2.
Fix any β1, β2 ∈ P2. Since f is a bijection, it suffices to prove that there
exists β ∈ P2 such that

B2(B2(f(x), β1), β2) ⊆ B2(f(x), β)

for every x ∈ X1.
Since f is a ≻-mapping, then there exist α1, α2 ∈ P1 such that

B2(f(x), β1) ⊆ f(B1(x, α1)), B2(f(x), β2) ⊆ f(B1(x, α2))

for every x ∈ X1.
Since B1 is multiplicative, then there exists α ∈ P1 such that

B1(B1(x, α1), α2) ⊆ B1(x, α)

for every x ∈ X1.
Since f is a ≺-mapping, then there exists β ∈ P2 such that

f(B1(x, α)) ⊆ B2(f(x), β)

for every x ∈ X1.
Now fix x ∈ X1 and take any element f(z) ∈ B2(B2(f(x), β1), β2).

Pick f(y) ∈ B2(f(x), β1) with f(z) ∈ B2(f(y), β2). Then y ∈ B1(x, α1),
z ∈ B1(y, α2) and z ∈ B1(B1(x, α1), α2). Hence, z ∈ B1(x, α) and
f(z) ∈ B2(f(x), β).

For an arbitrary ball structure B = (X,P,B), we define a preodering
≤ on the set P by the rule

α ≤ β if and only if B(x, α) ⊆ B(x, β)

for every x ∈ X. A subset P
′

of P is called cofinal if, for every α ∈ P ,
there exists β ∈ P

′
such that α ≤ β. A cofinality cfB of B is a minimum

of cardinalities of cofinal subsets of P . Thus, cfB ≤ ℵ0 if and only if
there exists a cofinal sequence < αn >n∈ω in P such that α0 ≤ α1 ≤
. . . ≤ αn ≤ . . ..

Lemma 7. If the ball structures B1 = (X1, P1, B1) and B2 = (X2,
P2, B2) are isomorphic, then cfB1 = cfB2.

Proof. Let f : X1 → X2 be an isomorphism between B1 and B2 and let
P

′

1 be a cofinal subset of P1. Since f is a ≻-mapping, then there exists a
mapping h1 : P2 → P

′

1 such that B2(f(x), β) ⊆ f(B1(x, h1(β))) for any
x ∈ X1, β ∈ P2. Since f is a ≺-mapping, then there exists a mapping
h2 : P

′

1 → P2 such that f(B1(x, α)) ⊆ B2(f(x), h2(α)) for any x ∈ X1,
α ∈ P

′

1. From the construction of h1, h2 we conclude that h2(P
′

1) is a
cofinal subset of P2. Hence, cfB2 ≤ cfB1.
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Theorem 1. A ball structure B = (X,P,B) is metrizable if and only if
B is connected symmetric multiplicative and cfB ≤ ℵ0.

Proof. First suppose that B is isomorphic to B(X, d) for an appropriate
metric space (X, d). Obviously, B(X, d) is connected symmetric multi-
plicative and cfB ≤ ℵ0. By Lemma 1, 4, 6, 7 B has the same properties.

Now assume that B is connected symmetric multiplicative and cfB ≤
ℵ0. Let < αn >n∈ω be a cofinal sequence in P . Put β0 = α0 and choose
β1 ∈ P such that β1 ≥ α1, β1 ≥ β0, β1 ≥ γ(β0, β0), where γ is a
function from definition of multiplicativity. Suppose that the elements
β0, β1, . . . , βn have been chosen. Take βn+1 ∈ P such that

βn+1 ≥ αn+1, βn+1 ≥ βn, βn+1 ≥ γ(βi, βj)

for all i, j ∈ {0, 1, . . . , n}. Then < βn >n∈ω is a nondecreasing cofinal
sequence in P and B(B(x, βn), βm) ⊆ B(x, βn+m) for all x ∈ X, n,m ∈
N.

Define a mapping d : X ×X → ω by the rule d(x, x) = 0 and

d(x, y) = min{n ∈ N : y ∈ B(x, βn), x ∈ B(y, βn)}

for all distinct elements x, y ∈ X. Since the sequence< βn >n∈ω is cofinal
in P and B is connected, then the mapping d is well defined. To show that
d is a metric we have only to check a triangle inequality. Let x, y, z be dis-
tinct elements of X and let d(x, y) = n, d(y, z) = m. Since y ∈ B(x, βn)
and z ∈ B(y, βm), then z ∈ B(B(x, βn), βm) ⊆ B(x, βn+m). Since
y ∈ B(z, βm) and x ∈ B(y, βn), then x ∈ B(B(z, βm), βn) ⊆ B(z, βn+m).
Hence, d(x, z) ≤ n+m.

Consider the ball structure B(X, d) and note that

Bd(x, n) = B(x, βn)
⋂

B∗(x, βn).

Since B is symmetric, then the identity mapping of X is an isomorphism
between B and B(X, d).

Remark 1. A metric d on a set X is called integer if d(x, y) is an integer
number for all x, y ∈ X. It follows from the proof of Theorem 1 that,
for every metrizable ball structure B = (X,P,B), there exists an integer
metric d on X such that B and B(X, d) are isomorphic.

Remark 2. Let B = (X,P,B) be an arbitrary ball structure. Consider
a metric d on X defined by the rule d(x, x) = 0 and d(x, y) = 1 for
all distinct elements of X. Then the identity mapping i : X → X is a
≺-mapping of B onto B(X, d). In particular, for every ball structure B,
there exists a metric space (X, d) such that B ≺ B(X, d).
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Remark 3. Let B = (X,P,B) be a connected multiplicative ball struc-
ture, cfB ≤ ℵ0. Repeating arguments of Theorem 1, we can prove that
there exists a metric d on X such that the identity mapping i : X → X
is a ≺-mapping of B(X, d) onto B.

Question 1. Characterize the ball structure B = (X,P,B), which admit
a metric d on X such that the identity mapping i : X → X is a ≺-
mapping of B(X, d) onto B.

By Remark 2, every ball structure can be strengthened to some mer-
tizable ball structure, so Question 1 asks about ball structure, which can
be weekened to metrizable.

Example 2. Let Gr = (V,E) be a connected graph with a set of vertices
V and a set of edges E, E ⊆ V × V . Endow V with a path metric d,
where d(x, y), x, y ∈ V is a length of the shortest path between x and
y. Denote by B(Gr) the ball structure B(V, d). Obviously, B(Gr) is
metrizable.

Our next target is a description of the ball structures, isomorphic to
B(Gr) for an appropriate graph Gr.

Let B = (X,P,B) be an arbitrary ball structure, α ∈ P . We say that
a finite sequence x0, x1, . . . , xn of elements of X is an α-path of length
n if xi−1 ∈ B(xi, α), xi ∈ B(xi−1, α) for every i ∈ {1, 2, . . . , n}. A ball
structure B is called an α-path connected if, for every β ∈ P , there exists
µ(β) ∈ ω such that x ∈ B(y, β), y ∈ B(x, β) imply that there exists an
α-path of length ≤ µ(β) between x and y. Note that B(Gr) is 1-path
connected for every connected graph Gr.

A ball structure B = (X,P,B) is called path connected if B is α-path
connected for some α ∈ P .

Lemma 8. Let B1 = (X1, P1, B1) and B2 = (X2, P2, B2) be isomorphic
ball structures. If B1 is path connected, then B2 path connected.

Proof. Let f : X1 → X2 be an isomorphism between B1 and B2. Choose
α ∈ P1 such that B1 is α-path connected and fix a corresponding map-
ping µ : P1 → ω. Since f is a ≺-mapping, then there exists β ∈ P2 such
that

f(B1(x, α)) ⊆ B2(f(x), β)

for every x ∈ X1. Since f is a ≻-mapping, then there exists a mapping
h : P2 → P1 such that

B2(f(x), λ) ⊆ f(B1(x, h(λ))

for any x ∈ X1, λ ∈ P2.
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Fix any λ ∈ P2 and suppose that

f(x) ∈ B2(f(y), λ), f(y) ∈ B2(f(x), λ).

Since f is a bijection, then x ∈ B1(y, h(λ)), y ∈ B1(x, h(λ)). Since B1

is α-path connected, then there exists an α-path x = x0, x1, . . . , xm = y
of length ≤ µ(h(λ)). Then f(x) = f(x0), f(x1), . . . , f(xm) = f(y) is a
β-path of length ≤ µ(h(λ)) between f(x) and f(y).

Theorem 2. For every ball structure B, the following statements are
equivalent

(i) B is metrizable and path connected;
(ii) B is isomorphic to a ball structure B(Gr) for some connected

graph Gr.

Proof. (ii)⇒(i). Clearly, B(Gr) is metrizable and path connected.
Hence, B is metrizable and path connected by Lemma 8.

(i)⇒(ii). Fix a path connected metric space (X, d) such that B is
isomorphic to B(X, d). Then there exists m ∈ ω such that (X, d) is m-
path connected. Consider a graph Gr = (X,E) with the set E of edges
defined by the rule

(x, y) ∈ E if and only if x 6= y and d(x, y) ≤ m.

Since B(X, d) is path connected, then the graph Gr is connected.
Let d

′
be a path metric on the graph Gr. By assumption, for every

n ∈ ω, there exists µ(n) ∈ ω such that d(x, y) ≤ n implies that there
exists a m-path of length ≤ µ(n) in (X, d) between x and y. Hence,
d(x, y) ≤ n implies d

′
(x, y) ≤ µ(n). On the other side, d

′
(x, y) ≤ k

implies that d(x, y) ≤ km. Therefore, the identity mapping of X is an
isomorphism between the ball structures B(X, d) and B(Gr).

Example 3. Let X = {2n : n ∈ ω}, d(x, y) = |x− y| for any x, y ∈ X.
By Theorem 2, there are no connected graphs Gr such that B(X, d) is
isomorphic to B(Gr).

Example 4. Let d be an euclidean metric on Rn. By Theorem 2, there
exists a connected graph Grn = (Rn, En) such that B(Rn, d) is isomor-
phic to B(Grn).

By Remark 2, for every ball structure B = (X,P,B), there exists a
connected graph Gr = (X,E), E = {(x, y) : x, y ∈ X,x 6= y} such that
the identity mapping i : X → X is a ≻-mapping of B(Gr) onto B.

Question 2. Characterize the ball structure, which admit a ≻-bijection
to the ball structure B(Gr) for an appropriate graph Gr.
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A metric d on a set X is called non-Archimedian if

d(x, z) ≤ max{d(x, y), d(y, z)}

for all x, y, z ∈ X. The following definitions will be used to describe the
ball structures isomorphic to B(X, d) for an appropriate non-Archimeian
metric space (X, d).

Let B = (X,P,B) be an arbitrary ball structure, x ∈ X, α ∈ P . We
say that a ball B(x, α) is a cell if B(y, α) = B(x, α) for every y ∈ B(x, α).
If (X, d) is a non-Archimedian metric space, then each ball B(x, r), x ∈
X, r ∈ R+ is a cell.

Given any x ∈ X, α ∈ P , denote

Bc(x, α) = {y ∈ X : there exists an α− path between x and y}.

A ball structure Bc = (X,P,Bc) is called a cellularization of B. Note
that each ball Bc(x, α) is a cell.

We say that a ball structure B is cellular if the identity mapping
i : X → X is an isomorphism between B and Bc. In other words, B
is cellular if and only if, for every α ∈ P , there exists β ∈ P such that
B(x, α) ⊆ Bc(x, β) for every x ∈ X and, for every β ∈ P , there exists
α ∈ P such that Bc(x, β) ⊆ B(x, α) for every x ∈ X.

A ball structure B = (X,P,B) is called directed if, for any α, β ∈ P ,
there exists γ ∈ P such that α ≤ γ, β ≤ γ.

Lemma 9. If B = (X,P,B) is a directed symmetric ball structure, then
the identity mapping i : X → X is a ≺-mapping of B onto Bc.

Proof. Given any α ∈ P , choose β, γ ∈ P such that

B(x, α) ⊆ B∗(x, β) ⊆ B(x, γ)

for every x ∈ X. Since B is directed, we may assume that β ≤ γ.
Take any element y ∈ B(x, α). Then x ∈ B(y, β) ⊆ B(y, γ). Thus,
y ∈ B(x, γ), x ∈ B(y, γ). Hence, there exists a β-path of length ≤ 1
between x and y. It means that y ∈ Bc(x, γ), so B(x, α) ⊆ Bc(x, γ).

Lemma 10. Let B1 = (X1, P1, B1) and B2 = (X2, P2, B2) be ball struc-
tures. If f : X1 → X2 is a ≺-mapping of B1 to B2, then f is a ≺-mapping
of Bc

1 to Bc
2. If f is an isomorphism between B1 and B2, then f is a

isomorphism between Bc
1 and Bc

2.

Proof. Given any α ∈ P1, choose β ∈ P2 such that f(B1(x, α)) ⊆
B2(f(x), β) for every x ∈ X. Take any y ∈ Bc

1(x, α) and choose an
α-path x = x0, x1, . . . , xn = y between x and y. Then

f(x) = f(x0), f(x1), . . . , f(xn) = f(y)
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is a β-path between f(x) and f(y). Hence, f(y) ∈ Bc
2(f(x), β) and

f(Bc
1(x, α)) ⊆ Bc

2(f(x), β) for every x ∈ X1.

Suppose that f is an isomorphism between B1 and B2. By the first
statement, f is a ≺-mapping of Bc

1 to Bc
2 and f−1 is a ≺-mapping of Bc

2

to Bc
1. Hence, f is an isomorphism between Bc

1 and Bc
2.

Lemma 11. Let B1 = (X1, P1, B1) and B2 = (X2, P2, B2) be isomorphic
ball structures. If B1 is cellular, then B2 is cellular.

Proof. Let f : X1 → X2 be an isomorphism between B1 and B2. Denote
by i1 : X1 → X1 and i2 : X2 → X2 the identity mappings. Clearly,
f−1 is an isomorphism between B2 and B1. By the Lemma 10, f is an
isomorphism between Bc

1 and Bc
2. By assumption, i1 is an isomorphism

between B1 and Bc
1. Since i2 = fi1f

−1, then i2 is an isomorphism
between B2 and Bc

2.

Theorem 3. For every ball structure B, the following statements are
equivalent

(i) B is metrizable and cellular;

(ii) there exists a non-Archimedian metric space (X,d) such that B
is isomorphic to B(X, d).

Proof. (ii)⇒(i). Clearly, B(X, d) is metrizable and cellular. Hence, B is
metrizable and cellular by Lemma 11.

(i)⇒(ii). Fix a metric space (X, d
′
) such that B(X, d

′
) is cellular and

isomorphic to B. Define a mapping d : X ×X → ω by the rule

d(x, y) = min{m ∈ ω : y ∈ Bc(x,m)}.

Obviously, d(x, x) = 0 and d(x, y) = d(y, x) for all x, y ∈ X.

Let x, y, z ∈ X and let d(x, y) = m, d(y, z) = n, m ≤ n. Then
y ∈ Bc(x,m), z ∈ Bc(y, n). It follows that there exists a n-path between
x and z. Hence, z ∈ Bc(x, n) and d(x, z) ≤ n. Thus, we have proved
that d is a non-Archimedian metric on X.

Since d(x, y) ≤ d
′
(x, y), then the identity mapping i : X → X is a

≺-mapping of B(X, d) to B(X, d
′
). Since B(X, d

′
) is cellular, then there

exists a mapping h : ω → ω such that Bc(x,m) ⊆ B(x, h(m)) for all
x ∈ X,m ∈ ω. Hence, i is a ≻-mapping of B(X, d) to B(X, d

′
). Hence,

B(X, d) and B(X, d
′
) are isomorphic.

By Remark 2, for every ball structure B = (X,P,B), there exists a
non-Archimedian metric d on X such that the identity mapping of X is
a ≻-mapping of B(X, d) to B.
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Lemma 12. For every metric space (X, d), there exists a family {Pn :
n ∈ ω} of partitions of X with the following properties

(i) every partition Pn+1 is an enlargement of Pn, i.e. every cell of
the partition Pn+1 is a union of some cells of the partition Pn;

(ii) there exists a function f : ω → ω such that, for every C ∈ Pn
and every x ∈ C, C ⊆ B(x, f(n));

(iii) for any x, y ∈ X, there exists n ∈ ω such that x, y are in the
same cell of the partition Pn.

Proof. Fix any well-ordering {xα : α < γ} of X. Choose a subset Y0 ⊆
X, x0 ∈ Y0 such that the family {B(y, 1) : y ∈ Y0} is disjoint and
maximal. For every x ∈ X, pick a minimal element f0(x) ∈ Y0 such that
B(x, 1)

⋂
B(f0(x), 1) 6= ∅. Put H(x, 1) = {z ∈ X : f0(z) = f0(x)} and

note that the family {H(y, 1) : y ∈ Y0} is a partition of X. If x, z ∈
H(y, 1), then d(x, y) ≤ 2, d(x, z) ≤ 2. Therefore, H(y, 1) ⊆ B(x, 4) for
every x ∈ H(y, 1). Put P0 = {H(y, 1) : y ∈ Y0}, f(0) = 4.

Assume that the partitions P0,P1, . . . ,Pn−1 have been constructed
and the values f(0), f(1), . . ., f(n− 1) have been determined. Choose a
subset Yn ⊆ X, x0 ∈ Yn such that the family {B(y, n + 1) : y ∈ Yn} is
disjoint and maximal. Define a mapping fn : X → Yn inductively such
that fn is constant on each cell of the partition Pn−1. Put fn(x) = x0

for every x ∈ X such that H(x, n)
⋂
B(x0, n + 1) 6= ∅. Then take the

minimal element x ∈ X such that fn(x) is not determined. Choose the
minimal element y ∈ Yn such that B(x, n + 1)

⋂
B(y, n + 1) 6= ∅. Put

fn(x) = y and fW (z) = y for every z ∈ H(x, n). After this transfinite
procedure, we denote H(x, n + 1) = {z ∈ X : fn(z) = fn(x)}. Put
Pn = {H(y, n + 1) : y ∈ Yn}. Then Pn is a partition of X and each cell
of Pn is a union of some cells of Pn−1. Thus, (i) is satisfied.

If z ∈ H(y, n + 1), then d(z, y) ≤ f(n − 1) + 2(n + 1). Hence, to
satisfy (ii), put f(n) = 2(f(n − 1) + 2(n+ 1)).

At last, given any x, y ∈ X, choose m ∈ ω such that d(x0, x) ≤ m+1,
d(x0, y) ≤ m+ 1. Thus x, y are in the same cell of the partition Pm and
we have verified (iii).

Theorem 4. For every metric space (X,d), there exists a non-Archime-
dian metric d

′
on X such that the identity mapping i : X → X is a

≺-mapping of B(X, d
′
) to B(X, d).

Proof. Fix a family {Pn : n ∈ ω} of partitions of X, satisfying (i), (ii),
(iii) from Lemma 12. Define a mapping d

′
: X ×X → ω by the rule

d
′
(x, y) = min{n : x and y are in the same cell of Pn}.
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By (iii), d
′

is well defined. By (i), d
′

is a non-Archimedian metric.
By (ii), the identity mapping of X is a ≺-mapping of B(X, d

′
) onto

B(X, d).

Now we consider non-metrizable versions of Lemma 12 and Theorem
4.

Lemma 13. Let B = (X,P,B) be a directed symmetric multiplicative
ball structure. Then there exists a family {Pα : α ∈ P} of partitions of
X such that

(i) for every α ∈ P , there exists β ∈ P such that C ⊆ B(x, β) for
every C ∈ Pα and every x ∈ C.

Moreover, if B is connected then

(ii) for any x, y ∈ X, there exists α ∈ P such that x, y are in the
same cell of the partition Pα.

Proof. Fix any well-ordering of X and denote by x0 its minimal element.
Fix α ∈ P and choose a subset Y ⊆ X, x0 ∈ Y such that the family
{B(y, α) : y ∈ Y } is disjoint and maximal. For every x ∈ X, pick a
minimal element f(x) ∈ Y such that B(x, α)

⋂
B(f(x), α) 6= ∅. Put

H(x, α) = {z ∈ X : f(z) = f(x)}. Then the family Pα = {H(y, α) : y ∈
Y } is a partition of X.

Since B is directed and symmetric, then there exists α
′
> α such that

y ∈ B(x, α) implies x ∈ B(y, α
′
).

Fix x ∈ X and take x
′ ∈ B(x, α)

⋂
B(f(x), α). Then x, x

′
, f(x) is

an α
′
-path. Hence, for every z ∈ H(x, α), we can find an α

′
-path of

length 4 between x and z. Using multiplicativity of B, choose β ∈ P
such that y4 ∈ B(y0, β) for every α

′
-path y0, y1, y2, y3, y4 in X. Then

H(x, α) ⊆ B(x, β).

Suppose that B is connected and x, y ∈ X. Since B is directed, then
there exists α ∈ P such that x0 ∈ B(x, α), x0 ∈ B(y, α). Hence, x, y
belong to the cell H(x0, α) of the partition Pα.

Theorem 5. If a ball structure B = (X,P,B) is directed symmetric and
multiplicative, then there exists a cellular ball structure B

′
= (X,P,B

′
)

such that the identity mapping of X is a ≺-mapping of B
′
onto B. More-

over, if B is connected, then B
′
is connected.

Proof. Use the family of the partitions {Pα : α ∈ P} from Lemma 13 and
put B

′
(x, α) = H(x, α). Clearly, each ball B

′
(x, α) is a cell. By (i), the

identity mapping of X is a ≺-mapping of B
′

onto B. If B is connected,
then B

′
is connected by (ii).
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Example 5. Let G be a group and let Fine(G) be a family of all finite
subsets of G containing the identity e. Given any g ∈ G, F ∈ Fine(G),
put B(g, F ) = Fg. A ball structure B(G) = (G,Fine(G), B) is denoted
by B(G). It is easy to show, that B(G) is directed connected symmetric
and multiplicative.

Now we apply the above results to the ball structures of groups.

Theorem 6. Let G be a group. Then a ball structure B(G) is metrizable
if and only if |G| ≤ ℵ0.

Proof. Apply Theorem 1.

Theorem 7. For every group G, the following statements are equivalent
(i) G is finitely generated;
(ii) B(G) is isomorphic to B(Gr) for some connected graph Gr

Proof. (i)⇒(ii). Let S be a finite set of generators of G. Consider a
Cayley graph Gr = (G,E) of G determined by S. By definition, (x, y) ∈
E if and only if x 6= y and x = ty for some t ∈ S

⋃
S−1. Clearly, the

identity mapping of G is an isomorphism between B(G) and B(Gr).
(ii)⇒(i). By Theorem 2, there exists F ∈ Fin such that B(G) is

F -path connected. In particular, for every g ∈ G, there exists a F -path
between e and g. Hence, F generates G.

A group G is called locally finite if every finite subset of G generates
a finite subgroup.

Theorem 8. Let G be a group. Then a ball structure B(G) is cellular if
and only if G is locally finite.

Proof. Let G be locally finite. Denote by Fins the family of all finite
subgroups of G. Then Fins is cofinal in Fin and each ball B(g, F ),
F ∈ Fins is a cell. Hence, B(G) is cellular.

Assume that B(G) is cellular. Note that Bc(e, F ) = gpF for every
F ∈ Fin, where gpF is a subgroup of G generated by F . Since B is
isomorphic to Bc, then each ball Bc(g, F ) is finite. In particular, gpF is
finite for every F ∈ Fin.

Remark 4. Let G1, G2 be countable locally finite group. By [2, Theorem
4], B(G1) ≻ B(G2) and B(G1) ≺ B(G2). By [2, Theorem 5], B(G1) and
B(G2) are isomorphic if and only if, for every finite subgroup F of G1,
there exists a finite subgroup H of G2 such that |F | is a divisor of |H|,
and vice versa. A problem of classification up to an isomorphism of ball
structures of uncountable locally finite groups is open.
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Theorem 9. For every countable group G, there exists a non-Archime-
dian metric d on G with the following property

(i) for each n ∈ ω, there exists F ∈ Fin such that d(x, y) ≤ n implies
x ∈ Fy.

Proof. Apply Theorem 6 and Theorem 4.

Theorem 10. For every group G, there exists a cellular ball structure
B

′
= (G,Fin,B

′
) such that the identity mapping of G is a ≺-mapping

of B
′
onto B(G).

Proof. Apply Theorem 5.

Question 3. Characterize the ball structures isomorphic to the ball
structures of groups.

M.Zarichnyi has pointed out that Theorem 1 has a counterpart in
the asymptotic topology [3]. This theorem answers the Open Question
1 from [4]. The results of this paper was announced in [5].
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