Some properties of primitive matrices over Bezout B-domain

V. P. Shchedryk

Communicated by M.Ya. Komarnytskyj

Abstract. The properties of primitive matrices (matrices for which the greatest common divisor of the minors of maximal order is equal to 1) over Bezout B - domain, i.e. commutative domain finitely generated principal ideal in which for all a, b, c with $(a, b, c)=1, c \neq 0$, there exists element $r \in R$, such that $(a+r b, c)=$ 1 is investigated. The results obtained enable to describe invariants transforming matrices, i.e. matrices which reduce the given matrix to its canonical diagonal form.

The notation of elementary divisor ring, as rings over which every matrix admits diagonal reduction were introduced by I. Kaplansky in 1949 [1]. Such concept has appeared rather effective at the decision of many tasks in different areas of modern algebra. The whole direction in the theory of rings was formed in which the properties of rings of elementary divisor are studied, new classes of rings were described which possess the property of a diagonal reduction [2-5]. With current of time the interest to such rings has not died away - a lot of publications regularly occur in mathematical journals [6-9]. One of examples of a class elementary divisor ring are the Bezout B-rings, i.e. commutative domain of finitely generated principal ideal in which for all a, b, c with $(a, b, c)=1, c \neq 0$, there exists an element $r \in R$, such that $(a+r b, c)=1$ [10]. This paper is devoted to study of Bezout B-domain from the point of view of research of properties of their elements, and also to describe the invariants of transformable matrices, i.e. invertible matrices which the given matrix reduces to its canonical diagonal form.

[^0]Let R be Bezout B-domain. A matrix is called primitive if the greatest common divisor of minors of the maximal order is equal to 1 . In the first part of this paper the properties of primitive rows and columns are studied.

Property 1. If $\left(a_{1}, \ldots, a_{n}\right)=1, a_{n} \neq 0, n \geq 3$, then there are elements u_{2}, \ldots, u_{n-1}, such that

$$
\left(a_{1}+u_{2} a_{2}+\ldots+u_{n-1} a_{n-1}, a_{n}\right)=1
$$

Proof. Let $\left(a_{2}, \ldots, a_{n-1}\right)=\gamma$. Then there are elements v_{2}, \ldots, v_{n-1}, such that

$$
v_{2} a_{2}+\ldots+v_{n-1} a_{n-1}=\gamma
$$

Since $\left(a_{1}, \gamma, a_{n}\right)=1$, there is an element $r \in R$, for which $\left(a_{1}+r \gamma, a_{n}\right)=$ 1. Thus

$$
\left(a_{1}+\left(r v_{2}\right) a_{2}+\ldots+\left(r v_{n-1}\right) a_{n-1}, a_{n}\right)=1
$$

Property 2. If $\left(a_{1}, \ldots, a_{n}\right)=1, a_{n} \neq 0, n \geq 3$, then there are invertible matrices of the form

$$
\begin{aligned}
& \left\|\begin{array}{cccccc}
a_{1} & v_{1} & v_{2} & \ldots & v_{n-2} & v_{n-1} \\
a_{2} & 1 & 0 & \ldots & 0 & 0 \\
a_{3} & 0 & 1 & & 0 & 0 \\
\ldots & \ldots & \ldots & \cdots & \ldots & \ldots \\
a_{n-1} & 0 & 0 & & 1 & 0 \\
a_{n} & 0 & 0 & \ldots & 0 & v_{n}
\end{array}\right\|=V, \\
& \left\|\begin{array}{cccccc}
u_{n} & 0 & \cdots & 0 & 0 & u_{n-1} \\
0 & 1 & & 0 & 0 & u_{n-2} \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & & 1 & 0 & u_{2} \\
0 & 0 & \ldots & 0 & 1 & u_{1} \\
a_{n} & a_{n-1} & \ldots & a_{3} & a_{2} & a_{1}
\end{array}\right\|=U .
\end{aligned}
$$

Proof. First we shall show, that the elements v_{1}, \ldots, v_{n} can be chosen such that the matrix V will be invertible. By property 1 there are elements v_{1}, \ldots, v_{n-2}, such that

$$
\left(a_{1}-v_{1} a_{2}-\ldots-v_{n-2} a_{n-1}, a_{n}\right)=1
$$

Since $\operatorname{det} V=v_{n} \gamma_{n-1}-v_{n-1} a_{n}$, where $\gamma_{n-1}=a_{1}-v_{1} a_{2}-\ldots-v_{n-2} a_{n-1}$, and taking into consideration $\left(\gamma_{n-1}, a_{1}\right)=1$ we can choose elements v_{n-1}, v_{n} so, that $\operatorname{det} V=1$. It is similarly shown, that there are u_{1}, \ldots, u_{n} for which $\operatorname{det} U=1$.

Since R is finitely generated principal ideal domain then for all finitely set of relatively prime elements $a_{1}, \ldots, a_{n}, n \geq 2$, there are elements u_{1}, \ldots, u_{n}, such that

$$
\begin{equation*}
u_{1} a_{1}+\ldots+u_{n} a_{n}=1 \tag{1}
\end{equation*}
$$

Write the elements u_{1}, \ldots, u_{n} as $\left\|u_{1} \ldots u_{n}\right\|$. We shall say that elements of the row $\| \begin{array}{lll}u_{1} & \ldots & u_{n} \|\end{array}$ satisfies equation (1). The following statement suggests a method of finding of such all rows with elements which satisfy the equation (1).
Property 3. Let $\left(a_{1}, \ldots, a_{n}\right)=1, n \geq 2$, and A be any invertible matrix for which $\left\|\begin{array}{lll}a_{1} & \ldots & a_{n}\end{array}\right\|^{T}$ is its first column. The set

$$
\mathbf{U}=\left\{\left\|1 \quad x_{2} \quad \ldots \quad x_{n}\right\| A^{-1} \mid x_{i} \in R, i=2, \ldots, n\right\}
$$

consist of all rows with elements which satisfy equation (1).
Proof. Let $\| \begin{array}{lll}v_{1} & \ldots & v_{n} \| \in \mathbf{U} \text {, i.e. }\end{array}$

$$
\left\|v_{1} \quad \ldots \quad v_{n}\right\|=\left\|1 \quad x_{2} \quad \ldots \quad x_{n}\right\| A^{-1}
$$

where $x_{i} \in R, i=2, \ldots, n$. Then

$$
\begin{gathered}
\left\|v_{1} \ldots v_{n}\right\| \| a_{1} \\
\ldots
\end{gathered} a_{n}\left\|^{T}=\right\| 1 \quad x_{2} \quad \ldots . x_{n}\left\|A^{-1}\right\| a_{1} \quad \ldots \quad a_{n} \|^{T}=,
$$

This means that elements of all rows from \mathbf{U} satisfy equation (1).
Let elements of the row $\left\|u_{1} \quad \cdots \quad u_{n}\right\|$ satisfy equation (1) and $A^{-1}=$ $\left\|b_{i j}\right\|_{1}^{n}$. Consider the matrix

$$
\left\lvert\, \begin{array}{cccc}
u_{1} & u_{2} & \ldots & u_{n} \\
b_{21} & b_{22} & \ldots & b_{2 n} \\
\cdots & \cdots & \ldots & \cdots \\
b_{n 1} & b_{n 2} & \ldots & b_{n n}
\end{array}\right. \|=U .
$$

Then

$$
U A=\left\|\begin{array}{cccc}
1 & x_{2} & \ldots & x_{n} \\
0 & 1 & \ldots & 0 \\
\vdots & & \ddots & \\
0 & 0 & \ldots & 1
\end{array}\right\|
$$

It follows from this that $\left\|u_{1} \quad \ldots \quad u_{n}\right\| \in \mathbf{U}$. This concludes the proof of our statement.

Property 4. If $\left(a_{1}, \ldots, a_{n}\right)=1, n \geq 2$, and $\varepsilon_{1}\left|\varepsilon_{2}\right| \ldots \mid \varepsilon_{k}, \varepsilon_{i} \neq 0, i=$ $1, \ldots, k, 1 \leq k<n$, then
$\left(a_{1} \varepsilon_{k}, a_{2} \varepsilon_{k-1}, \ldots, a_{k} \varepsilon_{1}, a_{k+1}, \ldots, a_{n}\right)=\left(\varepsilon_{k}, a_{2} \varepsilon_{k-1}, \ldots, a_{k} \varepsilon_{1}, a_{k+1}, \ldots, a_{n}\right)$.
Proof. Denote $\left(a_{1} \varepsilon_{k}, a_{2} \varepsilon_{k-1}, \ldots, a_{k} \varepsilon_{1}, a_{k+1}, \ldots, a_{n}\right)=\delta_{k}$. In order to prove this statement it suffices to show that $\delta_{k} \mid \varepsilon_{k}$. In the case where $k=1$ we have

$$
\delta_{1}=\left(a_{1} \varepsilon_{1}, a_{2}, \ldots, a_{n}\right)=\left(a_{1} \varepsilon_{1},\left(a_{2}, \ldots, a_{n}\right)\right)=\left(\varepsilon_{1},\left(a_{2}, \ldots, a_{n}\right)\right)
$$

So $\delta_{1} \mid \varepsilon_{1}$. Hence the results holds for $k=1$. Let $k \geq 2$ and suppose that the result is established for $m<k$. Then

$$
\begin{aligned}
& \delta_{k}=\left(a_{1} \varepsilon_{k}, a_{2} \varepsilon_{k-1}, \ldots, a_{k} \varepsilon_{1}, a_{k+1}, \ldots, a_{n}\right)= \\
& =\left(\varepsilon_{1}\left(a_{1} \frac{\varepsilon_{k}}{\varepsilon_{1}}, \ldots, a_{k-1} \frac{\varepsilon_{2}}{\varepsilon_{1}}, a_{k}\right), a_{k+1}, \ldots, a_{n}\right)
\end{aligned}
$$

Since $\left.\frac{\varepsilon_{2}}{\varepsilon_{1}}\left|\frac{\varepsilon_{3}}{\varepsilon_{1}}\right| \ldots \right\rvert\, \frac{\varepsilon_{k}}{\varepsilon_{1}}$ we have by the induction hypothesis

$$
\left.\left(a_{1} \frac{\varepsilon_{k}}{\varepsilon_{1}}, \ldots, a_{k-1} \frac{\varepsilon_{2}}{\varepsilon_{1}}, a_{k}, a_{k+1}, \ldots, a_{n}\right)=d_{1} \right\rvert\, \frac{\varepsilon_{k}}{\varepsilon_{1}}
$$

Therefore

$$
\begin{gathered}
\delta_{k}=d_{1}\left(\varepsilon_{1} \frac{\left(a_{1} \frac{\varepsilon_{k}}{\varepsilon_{1}}, \ldots, a_{k-1} \frac{\varepsilon_{2}}{\varepsilon_{1}}, a_{k}\right)}{d_{1}},\left(\frac{a_{k+1}}{d_{1}}, \ldots, \frac{a_{n}}{d_{1}}\right)\right)= \\
=d_{1}\left(\varepsilon_{1},\left(\frac{a_{k+1}}{d_{1}}, \ldots, \frac{a_{n}}{d_{1}}\right)\right)=d_{1} d_{2}
\end{gathered}
$$

where $d_{2} \mid \varepsilon_{1}$. Thus $\delta_{k}=d_{1} d_{2} \left\lvert\, \frac{\varepsilon_{k}}{\varepsilon_{1}} \varepsilon_{1}=\varepsilon_{k}\right.$.
Property 5. Let $(a, b, \varphi)=\left(a_{1}, b_{1}, \varphi\right)=1, a b a_{1} b_{1} \varphi \neq 0$. If

$$
a b_{1} \equiv a_{1} b(\bmod \varphi)
$$

then

$$
(a x+b, \varphi)=\left(a_{1} x+b_{1}, \varphi\right)
$$

for all $x \in R$.

Proof. Set $(a, \varphi)=\alpha$. Then $(a, b)=1$. As $a b_{1}-a_{1} b=\varphi t$, we have $\alpha \mid a_{1} b$. By the property $4 \alpha \mid a_{1}$. Hence, $\alpha \mid\left(a_{1}, \varphi\right)=\alpha_{1}$. From similar reasons $\alpha_{1} \mid(a, \varphi)=\alpha$. Hence $\alpha=\alpha_{1}$. As

$$
\begin{gathered}
\left(a_{1}(a x+b), \varphi\right)=\left(a_{1} a x+a_{1} b, \varphi\right)=\left(a_{1} a x+\left(a_{1} b+\varphi t\right), \varphi\right)= \\
=\left(a_{1} a x+a_{1} b, \varphi\right)=\left(a\left(a_{1} x+b_{1}\right), \varphi\right)
\end{gathered}
$$

so

$$
\left(\frac{a_{1}}{\alpha}(a x+b), \frac{\varphi}{\alpha}\right)=\left(\frac{a}{\alpha}\left(a_{1} x+b_{1}\right), \frac{\varphi}{\alpha}\right) .
$$

Therefore

$$
\left(a x+b, \frac{\varphi}{\alpha}\right)=\left(a_{1} x+b_{1}, \frac{\varphi}{\alpha}\right)=\delta
$$

Since $\alpha \mid a$ and $\alpha \mid a_{1}$, and also $(\alpha, b)=\left(\alpha, b_{1}\right)=1$ then for all elements $x \in R$ the equality

$$
(a x+b, \alpha)=\left(a_{1} x+b_{1}, \alpha\right)=1
$$

holds. Hence

$$
\delta=\left(a x+b, \frac{\varphi}{\alpha}\right)=\left(a x+b, \frac{\varphi}{\alpha} \alpha\right)=(a x+b, \varphi) .
$$

Similarly $\delta=\left(a_{1} x+b_{1}, \varphi\right)$.
Property 6. Let $\left(a_{1}, \ldots, a_{n}\right)=1, n \geq 2$, and $\psi \in R$ be any fixed nonzero element, which is not unit. Then there are elements u_{1}, \ldots, u_{n}, which satisfy the following conditions simultaneously:
a) $u_{1} a_{1}+\ldots+u_{n} a_{n}=1$;
b) $\left(u_{1}, \ldots, u_{i}\right)=1$, for any fixed $2 \leq i \leq n$;
c) $\left(u_{i}, \psi\right)=1$, for any fixed $2 \leq i \leq n$.

Proof. Consider the invertible matrix A with first column $\left\|a_{1} \ldots a_{n}\right\|^{T}$. Let's show, that matrix A can be chosen in such a way that the elements of the matrix $A^{-1}=\left\|b_{i j}\right\|_{1}^{n}$ satisfy $b_{3 i}=\ldots=b_{n i}=0$. Indeed, let A_{1} be any invertible matrix with first column $\left\|a_{1} \quad \ldots \quad a_{n}\right\|^{T}, A^{-1}=\left\|\bar{b}_{i j}\right\|_{1}^{n}$ and among elements $\bar{b}_{2 i}, \ldots, \bar{b}_{n i}$ there is at least one not zero. Then there is such a matrix $D \in G L_{n-1}(R)$, that

$$
D\left\|b_{2 i} \quad \ldots \quad b_{n i}\right\|^{T}=\|\gamma \quad 0 \quad \ldots \quad 0\|^{T} .
$$

Thus, the matrix

$$
\left((1 \oplus D) A_{1}^{-1}\right)^{-1}=A_{1}\left(1 \oplus D^{-1}\right)=A
$$

will be found.
Let the matrix consisting of the first i columns of the matrix A^{-1} has the form

$$
\left\|\begin{array}{cccc}
b_{11} & \ldots & b_{1, i-1} & b_{1 i} \\
b_{21} & \ldots & b_{2, i-1} & \gamma \\
b_{31} & \ldots & b_{3, i-1} & 0 \\
\ldots & \ldots & \ldots & \ldots \\
b_{i 1} & \ldots & b_{i, i-1} & 0 \\
- \\
b_{i+1,1} & \ldots & b_{i+1, i-1} & 0 \\
\ldots & \ldots & \ldots & \ldots \\
b_{n 1} & \ldots & b_{n, i-1} & 0
\end{array}\right\|=\|M /\| .
$$

By property 3 every set of elements u_{1}, \ldots, u_{n} satisfying condition a) can be presented as follows:

$$
\left\|u_{1} \quad \ldots \quad u_{n}\right\|=\left\|1 \quad x_{2} \quad \ldots \quad x_{n}\right\| A^{-1}
$$

where $x_{i} \in R, i=2, \ldots, n$. In order that the our statement be valid it is sufficient, that there are elements $x_{2} \ldots x_{n}$, such that

$$
\left\|1 \begin{array}{llll}
1 & x_{2} & \ldots & x_{n}
\end{array}\right\|\left\|\begin{array}{l}
M \\
N
\end{array}\right\|=\| \begin{array}{lll}
\| q_{1} & \ldots & q_{i} \|,
\end{array}
$$

where $\left(q_{1}, \ldots, q_{i}\right)=\left(q_{i}, \psi\right)=1$.
Let $\gamma=0$. Since the matrix $\left\|\begin{array}{c}M \\ N\end{array}\right\|$ is primitive, we conclude that $b_{1 i} \in U(R)$. Therefore $b_{11}, \ldots, b_{1 i}$ will be found elements.

Let $\gamma \neq 0$ and $b_{t j} \neq 0, i+1 \leq t \leq n, 1 \leq j \leq i-1$. As $\left(b_{1 i}, \gamma\right)=1$ then $\left(b_{1 i}, \gamma, \psi b_{t j}\right)=1$. Therefore there is element l, such that $\left(b_{1 i}+\gamma l, \psi b_{t j}\right)=$ 1. This equality implies
i) $\left(d_{1 i}, \psi\right)=1$;
ii) $\left(d_{1 i}, b_{t j}\right)=1$,
where $d_{1 i}=b_{1 i}+\gamma l \neq 0$. Then $\left(d_{1 j}, b_{t j}, d_{1 i}\right)=1$, where $d_{1 j}=b_{1 j}+b_{2 j} l$. Therefore, there is m, such that $\left(d_{1 j}+b_{t j} m, d_{1 i}\right)=1$. Taking into account equality (2), we are convinced, that elements of the first row of the matrix

$$
\left(\left\|\begin{array}{cccccc}
1 & l & 0 & \ldots & 0 & m \\
0 & 1 & 0 & \ldots & 0 & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & 0 & 1
\end{array}\right\| \oplus E_{n-t}\right)\left\|\begin{array}{c}
M \\
N
\end{array}\right\|
$$

where E_{n-t} is identity $(n-t) \times(n-t)$ matrix, will satisfy to all the requirements of our statement.

If $N=\mathbf{0}$, or $i=n$ (in this case matrix N is empty) it follows from invertibility of a matrix A_{1}, that $M \in G L_{i}(R)$. Therefore $\left(b_{1 i}, \gamma\right)=$ 1 , so $\left(b_{1 i}, \gamma, \psi\right)=1$. As well as in the previous cases there is r, that $\left(b_{1 i}+\gamma r, \psi\right)=1$. Hence, the elements of the first row of the matrix

$$
\left(\left\|\begin{array}{ll}
1 & r \\
0 & 1
\end{array}\right\| \oplus E_{i-2}\right) M
$$

also will be found elements. The statement is proved.
By the theorem 5.2 of [1] R is elementary divisor domain. Therefore for every nonsingular $n \times n$ matrix A over R exist invertible matrices P and Q (further we shall call them as transformable matrices), such that

$$
\begin{equation*}
P A Q=\operatorname{diag}\left(\varphi_{1}, \ldots, \varphi_{n}\right)=\Phi, \varphi_{i} \mid \varphi_{i+1}, i=1, \ldots, n-1 \tag{3}
\end{equation*}
$$

Denote \mathbf{P}_{A} the set of invertible matrices P, which satisfy equality (3). In a final part of this paper the properties of set of transformable matrices \mathbf{P}_{A} will be studied. It was shown in papers [11-13], that $\mathbf{P}_{A}=\mathbf{G}_{\Phi} P$, where P be any fixed matrix from equality (3), and \mathbf{G}_{Φ} is multiplicative group, which consists of all invertible matrices of the form

$$
\left\|\begin{array}{lllll}
h_{11} & h_{12} & \ldots & h_{1, n-1} & h_{1 n} \\
\frac{\varphi_{2}}{\varphi_{1}} h_{21} & h_{22} & \ldots & h_{2, n-1} & h_{2 n} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
\frac{\varphi_{n}}{\varphi_{1}} h_{n 1} & \frac{\varphi_{n}}{\varphi_{2}} h_{22} & \ldots & \frac{\varphi_{n}}{\varphi_{n-1}} h_{n, n-1} & h_{n n}
\end{array}\right\| .
$$

In $[12,14]$ it is proved that the group \mathbf{G}_{Φ} and the set of left transformable matrices \mathbf{P}_{A} play the main role in the description of the associated matrices, which have the given canonical diagonal form Φ.

Proposition ([12, 14]). Let $A=P_{A}^{-1} \Phi Q_{A}^{-1}, B=P_{B}^{-1} \Phi Q_{B}^{-1}$. The following are equivalent:
a) A and B are right associates $\left(B=A U, U \in G L_{n}(R)\right)$;
b) $P_{B}=H P_{A}$, where $H \in \mathbf{G}_{\Phi}$;
c) $\mathbf{P}_{B}=\mathbf{P}_{A}$.

We apply the obtained results to describe the properties of transformable matrices. Denote

$$
\Phi_{1}=E_{n}, \Phi_{i}=\operatorname{diag}(\frac{\varphi_{i}}{\varphi_{1}}, \ldots, \frac{\varphi_{i}}{\varphi_{i-1}}, \underbrace{1, \ldots, 1}_{n-i+1}), i=2, \ldots, n .
$$

Definition 1. Let $\left\|a_{1} \ldots a_{n}\right\|^{T}$ be primitive column and

$$
\Phi_{i}\left\|\begin{array}{lll}
\| a_{1} & \ldots & a_{n}
\end{array}\right\|^{T} \sim\left\|\delta_{i} \quad 0 \quad \ldots \quad 0\right\|^{T}
$$

$i=1, \ldots, n$. The column $\left\|\delta_{1} \ldots \delta_{n}\right\|^{T}$ is called $\Phi-\operatorname{rod}$ of the column $\left\|\begin{array}{lll}\| a_{1} & \ldots & a_{n}\end{array}\right\|^{T}$.
Theorem 1. If $H \in \mathbf{G}_{\Phi}$, then Φ-rods of columns $\left\|a_{1} \ldots a_{n}\right\|^{T}$, $H\left\|a_{1} \quad \ldots \quad a_{n}\right\|^{T}$ coincide.

Proof. Since j column of the matrix H has the form

$$
\left\|h_{1 j} \quad \ldots \quad h_{j j} \quad \frac{\varphi_{j+1}}{\varphi_{j}} h_{j+1, j} \not \ldots \cdot \frac{\varphi_{n}}{\varphi_{j}} h_{n j}\right\|^{T}, 1 \leq j \leq n-1
$$

then $\Phi_{i} h_{j}=$

$$
\begin{aligned}
& =\left\|\frac{\varphi_{i}}{\varphi_{1}} h_{1 j} \ldots \frac{\varphi_{i}}{\varphi_{j-1}} h_{j-1, j} \quad \frac{\varphi_{i}}{\varphi_{j}} h_{j j} \quad \frac{\varphi_{i}}{\varphi_{j}} h_{j+1, j} \ldots \frac{\varphi_{i}}{\varphi_{j}} h_{i j} \quad \frac{\varphi_{i+1}}{\varphi_{j}} h_{i+1, j} \ldots \frac{\varphi_{n}}{\varphi_{j}} h_{n j}\right\|^{T} \\
& =\frac{\varphi_{i}}{\varphi_{j}} \| \frac{\varphi_{j}}{\varphi_{1}} h_{1 j} \ldots \frac{\varphi_{j}}{\varphi_{j-1}} h_{j-1, j} \quad h_{j j} \\
& \ldots \\
& h_{i j}
\end{aligned} \frac{\varphi_{i+1}}{\varphi_{i}} h_{i+1, j} \quad \ldots \quad \frac{\varphi_{n}}{\varphi_{i}} h_{n j} \|^{T} .
$$

Hence, $\left.\frac{\varphi_{i}}{\varphi_{j}} \right\rvert\, \Phi_{i} h_{j}, i=2, \ldots, n, j=1, \ldots, n-1, i>j$. It means that the equalities

$$
\begin{equation*}
\Phi_{i} H=K_{i} \Phi_{i} \tag{4}
\end{equation*}
$$

$i=2, \ldots, n$, holds. As all the matrices Φ_{i} are nonsingular, and the matrix H is invertible, then from equality (4) follows $K_{i} \in G L_{n}(R)$. Therefore

$$
\begin{aligned}
& \Phi_{i} H\left\|a_{1} \quad \ldots \quad a_{n}\right\|^{T}=K_{i} \Phi_{i} \| \begin{array}{lll}
a_{1} & \ldots & a_{n} \|^{T} \sim
\end{array} \\
& \sim \Phi_{i}\left\|\begin{array}{lll}
\| & \ldots & a_{n}\left\|^{T} \sim\right\| \delta_{i} \\
0 & \ldots & 0
\end{array}\right\|^{T},
\end{aligned}
$$

$i=2, \ldots, n$. It remains to note that $\delta_{1}=1$ which concludes the proof of the theorem.

Theorem 2. Let $\left\|\delta_{1} \ldots \delta_{n}\right\|^{T}$ be Φ-rod of the primitive column $\left\|\begin{array}{lll}\| & \ldots & a_{n}\end{array}\right\|^{T}$. Then there is a matrix $H \in \mathbf{G}_{\Phi}$ for which

$$
H\left\|\begin{array}{lll}
\| a_{1} & \ldots & a_{n}
\end{array}\right\|^{T}=\left\|b \quad \delta_{2} \quad \ldots \quad \delta_{n}\right\|^{T}
$$

Proof. Property 6 implies that there are elements u_{1}, \ldots, u_{n}, such that

$$
\frac{\varphi_{n}}{\varphi_{1}} u_{1} a_{1}+\ldots+\frac{\varphi_{n}}{\varphi_{n-1}} u_{n-1} a_{n-1}+u_{n} a_{n}=\delta_{n}
$$

where $\left(u_{n}, \frac{\varphi_{n}}{\varphi_{1}}\right)=1$. Since $\left.\frac{\varphi_{n}}{\varphi_{n-1}}\left|\frac{\varphi_{n}}{\varphi_{n-2}}\right| \ldots \right\rvert\, \frac{\varphi_{n}}{\varphi_{1}}$, taking in account the property 4

$$
\begin{gathered}
\left(\frac{\varphi_{n}}{\varphi_{1}} u_{1}, \ldots, \frac{\varphi_{n}}{\varphi_{n-1}} u_{n-1}, u_{n}\right)=\left(\frac{\varphi_{n}}{\varphi_{1}}, \frac{\varphi_{n}}{\varphi_{2}} u_{2}, \ldots, \frac{\varphi_{n}}{\varphi_{n-1}} u_{n-1}, u_{n}\right)= \\
=\left(\frac{\varphi_{n}}{\varphi_{2}} u_{2}, \ldots, \frac{\varphi_{n}}{\varphi_{n-1}} u_{n-1},\left(u_{n}, \frac{\varphi_{n}}{\varphi_{1}}\right)\right)=1
\end{gathered}
$$

By property 2 we shall complete a primitive row $\left\|\frac{\varphi_{n}}{\varphi_{1}} u_{1} \ldots{ }^{\frac{\varphi_{n}}{\varphi_{n-1}} u_{n-1}} \quad u_{n}\right\|$ to an invertible matrix H_{n} in which this row will be last, and other elements of this matrix, which lies under the main diagonal will be zero. Then $H_{n} \in \mathbf{G}_{\Phi}$ and

$$
H_{n}\left\|a_{1} \quad \ldots \quad a_{n}\right\|^{T}=\left\|b_{1} \cap \ldots \quad b_{n-1} \quad \delta_{n}\right\|^{T}
$$

By theorem 1 this column will have again Φ-rod $\left\|\delta_{1} \ldots \delta_{n}\right\|^{T}$. Therefore

$$
\Phi_{n-1} H_{n}\left\|a_{1} \quad \ldots a_{n}\right\|^{T} \sim\left\|\delta_{n-1} \quad 0 \quad \ldots \quad 0\right\|^{T}
$$

Hence, there are elements v_{1}, \ldots, v_{n}, such that

$$
\frac{\varphi_{n-1}}{\varphi_{1}} v_{1} b_{1}+\ldots+\frac{\varphi_{n-1}}{\varphi_{n-2}} v_{n-2} b_{n-2}+v_{n-1} b_{n-1}+v_{n} \delta_{n}=\delta_{n-1}
$$

Moreover, as it follows from property 6, these elements can be chosen in such a manner that $\left(v_{1}, \ldots, v_{n-1}\right)=1$ and $\left(v_{n-1}, \frac{\varphi_{n-1}}{\varphi_{1}}\right)=1$. Thus we have

$$
\left(\frac{\varphi_{n-1}}{\varphi_{1}} v_{1}, \ldots, \frac{\varphi_{n-1}}{\varphi_{n-2}} v_{n-2}, v_{n-1}\right)=1
$$

It means, that in the group \mathbf{G}_{Φ} there is a matrix H_{n-1} with the following two last rows:

$$
\left\|\begin{array}{ccccc}
\frac{\varphi_{n-1}}{\varphi_{1}} v_{1} & \ldots & \frac{\varphi_{n-1}}{\varphi_{n-2}} v_{n-2} & v_{n-1} & v_{n} \\
0 & \ldots & 0 & 0 & 1
\end{array}\right\| .
$$

Consequently,

$$
H_{n-1} H_{n}\left\|a_{1} \quad \ldots \quad a_{n}\right\|^{T}=\left\|\begin{array}{lllll}
d_{1} & \ldots & d_{n-2} & \delta_{n-1} & \delta_{n}
\end{array}\right\|^{T}
$$

Continuing the described process, on (n-1) step we shall receive the matrix $H=H_{2} \cdots H_{n} \in \mathbf{G}_{\Phi}$, such that $H A=\left\|b \begin{array}{llll}\| & \delta_{2} & \ldots & \delta_{n}\end{array}\right\|^{T}$. The theorem is proved.

Denote

$$
\begin{equation*}
\Delta_{i}=\left(\frac{\varphi_{i}}{\varphi_{i-1}}, \frac{a_{i}}{\delta_{i-1}}, \ldots, \frac{a_{n}}{\delta_{i-1}}\right), i=2, \ldots, n . \tag{5}
\end{equation*}
$$

Theorem 3. Let $\left\|\delta_{1} \ldots \delta_{n}\right\|^{T}$ be Φ-rod of the primitive column $\left\|a_{1} \quad \ldots \quad a_{n}\right\|^{T}$. Then the elements δ_{i} satisfy the following conditions:
a) $\delta_{i}=\Delta_{2} \cdots \Delta_{i}, i=2, \ldots, n$;
b) $\delta_{i} \left\lvert\, \frac{\varphi_{i}}{\varphi_{1}}\right., i=2, \ldots, n$.

Proof. Since $\delta_{1}=1$, we obtain from property 4

$$
\begin{gathered}
\delta_{2}=\left(\frac{\varphi_{2}}{\varphi_{1}} a_{1}, a_{2}, \ldots, a_{n}\right)=\Delta_{2} \\
\delta_{3}=\left(\frac{\varphi_{3}}{\varphi_{1}} a_{1}, \frac{\varphi_{3}}{\varphi_{2}} a_{2}, a_{3}, \ldots, a_{n}\right)=\left(\frac{\varphi_{3}}{\varphi_{2}}\left(\frac{\varphi_{2}}{\varphi_{1}}, a_{2}\right), a_{3}, \ldots, a_{n}\right)= \\
=\delta_{2}\left(\frac{\varphi_{3}}{\varphi_{2}} \frac{\left(\frac{\varphi_{2}}{\varphi_{1}}, a_{2}\right)}{\delta_{2}}, \frac{a_{3}}{\delta_{2}}, \ldots, \frac{a_{n}}{\delta_{2}}\right)=\Delta_{2}\left(\frac{\varphi_{3}}{\varphi_{2}}, \frac{a_{3}}{\delta_{2}}, \ldots, \frac{a_{n}}{\delta_{2}}\right)=\Delta_{2} \Delta_{3} .
\end{gathered}
$$

Having continued on analogy our reasons, we obtain $\delta_{i}=\Delta_{2} \cdots \Delta_{i}, i=$ $2, \ldots, n$.

By (5) $\Delta_{i} \left\lvert\, \frac{\varphi_{i}}{\varphi_{i-1}}\right., i=2, \ldots, n$. Hence

$$
\delta_{i}=\Delta_{2} \Delta_{3} \cdots \Delta_{i-1} \Delta_{i} \left\lvert\, \frac{\varphi_{2}}{\varphi_{1}} \frac{\varphi_{3}}{\varphi_{2}} \cdots \frac{\varphi_{i-1}}{\varphi_{i-2}} \frac{\varphi_{i}}{\varphi_{i-1}}=\frac{\varphi_{i}}{\varphi_{1}}\right., i=2, \ldots, n
$$

The following corollary follows from the theorems 2 and 3 .
Corollary 1. If $\left\|\delta_{1} \ldots \delta_{n}\right\|^{T}$ be Φ-rod of the primitive column $\left\|\begin{array}{lll}\| & \ldots & a_{n}\end{array}\right\|^{T}$, then there is a matrix $H \in \mathbf{G}_{\Phi}$, such that

$$
H\left\|a_{1} \quad \ldots \quad a_{n}\right\|^{T}=\left\|\begin{array}{c}
b \\
\Delta_{2} \\
\Delta_{2} \Delta_{3} \\
\cdots \\
\Delta_{2} \Delta_{3} \cdots \Delta_{n}
\end{array}\right\|,
$$

where $\Delta_{i} \left\lvert\, \frac{\varphi_{i}}{\varphi_{i-1}}\right., i=2, \ldots, n$.
Definition 2. Let $P \in G L_{n}(R)$ and $\bar{p}_{1}, \ldots, \bar{p}_{n}$ be its columns, $\left\|\delta_{i 1} \quad \ldots \quad \delta_{i n}\right\|^{T}$ is $\Phi-\operatorname{rod}$ of column $\bar{p}_{i}, i=1, \ldots, n$. The matrix $\left\|\delta_{i j}\right\|_{1}^{n}$ is called $\Phi-$ rod of the matrix P.

Theorem 4. Φ-rods of matrices from \mathbf{P}_{A} coincide.
Proof. Let P_{1} be any matrix from \mathbf{P}_{A}. Since $\mathbf{P}_{A}=\mathbf{G}_{\Phi} P$ then there exists a matrix $H \in \mathbf{G}_{\Phi}$, such that $P_{1}=H P$. According to the theorem 1Φ rods correspond columns of matrices P and P_{1} coincide. Therefore will be Φ-rods of these matrices coincide.

Since all matrices of the set \mathbf{P}_{A} have identical Φ-rods, it is possible to speak about Φ-rod of set of transformable matrices \mathbf{P}_{A}, having identified it with Φ-rod of any matrix of this set. Using the theorem 2, we obtain.

Corollary 2. Let $\left\|\delta_{i j}\right\|_{1}^{n}$ be Φ-rod of the set \mathbf{P}_{A}. Then there is matrix $P_{i} \in \mathbf{P}_{A}$, which have i column of the form $\left\|* \quad \delta_{i 1} \quad \ldots \quad \delta_{i n}\right\|^{T}, 1 \leq i \leq n$. Corollary 3. If the matrices A and B have the canonical diagonal form Φ and are right associates, then Φ-rods of sets \mathbf{P}_{A} and \mathbf{P}_{B} coincide.

Proof. By proposition $\mathbf{P}_{A}=\mathbf{P}_{B}$, so that Φ-rods of these sets coincide.

References

[1] Kaplansky I. Elementary divisor ring and modules, Trans. Amer. Math. Soc.Vol. 66.-1949.-464-491.
[2] Gillman L., Henriksen M. Some remarks about elementary divisor rings, Trans. Amer. Math. Soc. Vol. 82.- 1956.- 362-365.
[3] Henriksen M. On a class of regular rings that are elementary divisor rings, Arch. Math. Vol. 42 . 1973 . 133-141
[4] Larsen M., Lewis W., Shores T. Elementary divisor rings and finitely presented modules, Trans. Amer. Math. Soc.Vol. 187 . 1974 . 231-248
[5] Menal P., Moncasi I. On regular rings with stable range 2, J. Pure Appl. AlgebraVol. 24. 1982. 25-40
[6] Komarnitskij N.Ya. Commutative adequate Bezout domain and elementary divisor ring, Algebr. Issled., Collection of papers, Institute of mathematics NAN of Ukraine, Kiev.Vol. 24.1996.97-113, in Russian
[7] Ara P., Goodearl K.R., O’Meara K.C., Pardo E. Diagonalization of matrices over regular rings, Linear Algebra Appl. Vol. 265 . 1997. 147-163
[8] Zabavskij B.V., Romaniv O.M. Noncommutative rings with elementary reduction of matrices, Visn. L'viv. Univ., Ser. Mekh.-Mat.Vol. 49 . 1998 . 16-20, in Ukrainian
[9] Zabavskij B.V. A reduction of matrices over the right Bezout rings of a finite stable rank, Mat. StudiiVol. 16:2. 2001 . 115-116, in Ukrainian
[10] Moore M., Steger A. Some results on completability in commutative rings, Pasific Journal of MathematicsVol. 37 . 1971.453-459
[11] Zelisko V. R. On the structure of some class of invertible matrices, Mat. Metody Phys.-Mech. PolyaVol. 12. 1980. 14-21, in Russian
[12] Shchedryk V. P., The structure and properties of divisors of matrices over commutative domain elementary divisors ring, Mat. StudiiVol. 10:2. 1998. 115-120, in Ukrainian
[13] Kazimirs'kij P. S., A solution to the problem of separating a regular factor from a matrix polynomial, Ukr. Mat. ZhVol. 32:4. 1980. 483-498, in Russian
[14] Mel'nik O.M. On invariants of transforming matrices Methods for the investigations of differential and integral operators, Collect. Sci. Works, Kiev. yr 1989. 160-164, in Russian

Contact information

V. P. Shchedryk Department of Algebra Pidsryhach Institute for Applied Problems of Mechanics and Mathematics
 National Academy of Sciences of Ukraine
 3b Naukova Str.
 Lviv, 79060, UKRAINE

Received by the editors: 11.05 .2004
and final form in 08.05.2005.

[^0]: 2000 Mathematics Subject Classification: 15A21.
 Key words and phrases: elementary divisor ring, Bezout B-domain, canonical diagonal form, transformable matrices, invariants, primitive matrices.

