Algebra and Discrete Mathematics Number 4. **(2004).** pp. 60 – 65 © Journal "Algebra and Discrete Mathematics"

Basic semigroups: theory and applications

J. S. Ponizovskii

ABSTRACT. A concept of basic matrix semigroups over fields (with some variations) is introduced and throughly investigated. Sections 1 and 2 contain main definitions, Section 3 treats some properties of basic semigroups, Section 4 is devoted to some application of basic semigroups: matrix representations (including faithful representations), finiteness theorems, the problem of Korjakov (when a matrix semigroup over field K is conjugate to a matrix semigroup over a proper subfield of K). The paper is a survey and contains no proofs (which may be found in papers from References).

1. Notions

In what follows n > 1, K is a fixed field; $M_n(K)$ denotes the multiplicative semigroup of all $n \times n$ -matrices over K. If S is a semigroup then $T \leq S$ ($T \leq S$) means that T is a subsemigroup (an ideal) of S. If $S \leq M_n(K)$ then $J(S) = \{x \in M_n(K) \mid xS \cup Sx \leq S\}$ is the idealizer of S in $M_n(K)$.

Let $S \leq M_n(K)$. Define H(S) as follows. If $S = \{0\}$ (0 is the zero matrix) then $H(S) = \{0\}$. If $S \neq \{0\}$ and r is the least natural such that $r = \operatorname{rank}(x)$ for some $x \in S$, then $H(S) = \{x \in S \mid \operatorname{rank}(x) \leq r\}$.

Clearly $H(S) \leq S$. H(S) is called the homogeneous ideal of S. A semigroup T with zero 0 is called 0-prime if and only if the following holds:

$$x, y \in T, \quad xTy = 0 \Longrightarrow [x = 0 \lor y = 0].$$

Let W denote an *n*-dimensional linear space over K consisting of all row-vectors of dimension n. Elements from $M_n(K)$ act on W as right operators. If V is a subspace of W then (V : K) stands for the dimension of V. If $A \subseteq M_n(K)$ then L(A) is the K-linear envelope of A.

2. Basic, strongly basic, weakly basic semigroups

Let $S \leq M_n(K)$. Denote by R(S) (C(S)) the row-space (the columnspace) of S: R(S) is a subspace of W spanned by all the rows of all matrices from S (C(S) is defined similarly).

Theorem 1. The followings conditions are equivalent for any $S \le M_n(K)$: (i) (R(S):K) = (C(S):K) = n;

(ii) $W \cdot L(S) = W$ and if $w \in W$ is such that $w \cdot S = 0$ then w = 0;

(iii) if $x \in M_n(K)$ is such that either xS = 0 or Sx = 0 then x = 0.

Definition. Let $S \leq M_n(K)$. Then:

S is basic \iff any of (i), (ii), (iii) from Theorem 1 holds;

S is strongly basic $\iff H(S)$ is basic 0-prime;

S is weakly basic \iff for any $x \in M_n(K)$, xS = Sx = 0 implies x = 0.

The class of all basic (strongly basic, weakly basic) subsemigroups of $M_n(K)$ is denoted by B(K) (SB(K), WB(K)). The following holds:

 $SB(K) \subset B(K) \subset WB(K)$ $(SB(K) \neq B(K) \neq WB(K)).$

Examples.

(i) Any irreducible $S \leq M_n(K)$ is strongly basic.

(ii) Any indecomposable inverse $S \leq M_n(K)$ is strongly basic.

(iii) Any nonzero indecomposable commutative $S = S^2 \leq M_n(K)$ is basic but not necessarily strongly basic.

(iv) Let S be a set of all matrices from $M_n(K)$ with nonzero entries in the last row only. Then S is a weakly basic subsemigroup of $M_n(K)$, but S is not basic.

(v) Any $S \leq M_n(K)$ containing the identity matrix is basic but not necessarily strongly basic.

3. Properties of basic (strongly basic, weakly basic) semigroups

3.1. Embedding theorem

For any abstract semigroup T, $\Omega(T)$ denotes the translational hull of T. Recall that a semigroup T is left weakly reductive if and only if following holds:

let $a, b \in T$; if xa = xb for all $x \in T$ then a = b.

Right weakly reductive semigroups are defined similarly. A semigroup T is weakly reductive if the following holds:

let $a, b \in T$; if xa = xb and ax = ab for all $x \in T$ then a = b.

Clearly left (right) weakly reductive semigroup is weakly reductive but not vice versa.

It is well known that any weakly reductive semigroup has a standard embedding into $\Omega(T)$ as an ideal. So if T is a weakly reductive semigroup we put $T \triangleleft \Omega(T)$.

Theorem 2. Any weakly basic $S \leq M_n(K)$ is weakly reductive (hence we may take $S \leq \Omega(S)$).

Let $S \leq M_n(K)$ be weakly basic, $S \leq \Omega(S)$ as abstract semigroups. Define a mapping $\omega : J(S) \to \Omega(S)$ as follows:

if $a \in J(S)$ then $\omega(a)$ is defined by the rule: $\omega(a) \cdot x = ax$, $x \cdot \omega(a) = xa$ for all $x \in S$.

It is easy to show that ω is a homomorphism of semigroups. The following fact is very important:

Theorem 3 (Embedding Theorem). If $S \leq M_n(K)$ is weakly basic then ω is a monomorphism. If $S \leq M_n(K)$ is basic then ω is an isomorphism.

Remark. Theorem 3 shows that, for S basic, the pair $S \subset \Omega(S)$ may be included into $M_n(K)$. More exactly: there exists a commutative diagram

$$\begin{array}{cccc} S & \stackrel{f}{\longrightarrow} & \Omega(S) \\ \varepsilon \uparrow & & \uparrow \omega \\ S & \stackrel{g}{\longrightarrow} & J(S) \end{array}$$

where ε is an identity mapping, f and g are inclusions.

3.2. Closure theorem

Let $S \leq M_n(K)$ be homogeneous (i.e. S = H(S)). A semigroup $\overline{S} \leq M_n(K)$ is called the closure of S if the following holds:

(i) \overline{S} is completely 0-simple,

(iii) if $U \leq M_n(K)$ is completely 0-simple such that $S \subseteq U$ then $\overline{S} \leq U$.

⁽ii) $S \subseteq \overline{S}$,

Theorem 4 (Closure Theorem). For any strongly basic $S \leq M_n(K)$ there exists a closure \overline{S} ; moreover \overline{S} is unique and \overline{S} meets all \mathcal{H} -classes of S.

Examples show that the condition "S is basic" cannot be omitted. The meaning of closure is rather evident: it is a sort of completely 0-simple approximation of a homogeneous semigroup.

3.3. Heritability properties

Theorem 5 (Heritability Theorem). Let $S \leq M_n(K)$ be strongly basic, and let T, U be such that $T \leq S \leq U \leq M_n(K)$. Then T, U are strongly basic.

The following theorem shows that an extension of a field K does not change the idealizer of a basic semigroup.

Theorem 6. Let $K \subseteq F$ be fields, and let $S \leq M_n(K)$ be basic. Then the idealizer of S in $M_n(K)$ is equal to the idealizer of S in $M_n(F)$.

4. Applications

4.1. Matrix representations of semigroups

See [1].

4.2. Finiteness theorems

Let $S \leq M_n(K)$ be strongly basic. Since $H(S) \leq S$, then H(S) is strongly basic by Theorem 5. Now we formulate

Theorem 7. Let $S \leq M_n(K)$ be strongly basic. If a maximal nonzero subgroup of $\overline{H(S)}$ is finite then S is finite (note that $\overline{H(S)}$ exists by Theorem 3).

Theorem 8. Let $S \leq M_n(K)$ be periodic of bounded period. Assume that there exists a set of strongly basic representations of S (over some field F) which separates points of S. Then S is finite (a representation $f: S \to M(F)$ is strongly basic if f(S) is strongly basic).

This is a generalization of theorem of Y. Zalcstein [7].

Theorem 9. Let $S \leq M_n(K)$ be regular irreducible with finite subgroups. Then S is finite.

Applying the well known theorem by Shur we get

Theorem 10. Let $S \leq M_n(K)$ be irreducible, periodic and regular. Then S is finite.

Theorem 8 is in [3]. Theorem 9 is published in [2].

4.3. Reduction to smaller fields

Results concern the problem:

Let $F \subset K$ be a field extension, and let $S \leq M_n(K)$; when S is conjugate to a subsemigroup of $M_n(F)$?

Some sufficient conditions are given in the following

Theorem 11. Let $F \subset K$ be fields. Let $S \leq M_n(K)$ be strongly basic and G be a maximal nonzero subgroup of $\overline{H(S)}$. Then S is conjugate to a subsemigroup of $M_n(F)$ provided G has this property.

This theorem is a generalization of a result from [4].

Theorem 11 gives a positive answer to the question 3.39 of Korjakov [6].

5. Faithful matrix representations of semigroups

Let S be a semigroup having a faithful matrix representation $f: S \to M_n(K)$. Assume that T is a semigroup such that $S \leq T \leq \Omega(S)$. When f may be extended to a faithful representation $F: S \to M_n(K)$?

It is always possible if f(S) is basic since then one can take $F = \omega$ (see Theorem 3). But it is not so in general if f(S) is only weakly basic because in this case ω maps J(S) into $M_n(K)$ (more exactly into J(f(S))), a part of $\Omega(S)$ only. The following theorem shows that sometimes such F may be constructed in parts.

Theorem 12 ([5]). Let S be a weakly reductive semigroup (so that we put $S \triangleleft \Omega(S)$). Let $\{S_i \mid i \in I\}$ be a family of subsemigroups of $\Omega(S)$ such that the following holds:

(i) S is an ideal of S_i for all $i \in I$;

(ii) there exists a faithful representation $f : S \to M_n(K)$ such that f(S) is weakly basic;

(iii) for any $i \in I$, there exists a faithful representation $f_i : S_i \to M_n(K)$ such that

$$x \in S \Longrightarrow f_i(x) = f(x)$$

 $x \in S, y \in S_i \Longrightarrow f(xy) = f(x)f_i(y), f(yx) = f_i(y)f(x).$

Let T be a subsemigroup of $\Omega(S)$ generated by all S_i $(i \in I)$. Then there exists a faithful representation $F: T \to M_n(K)$ such that F extends f and all f_i $(i \in I)$, i.e.

 $F(x) = f(x) \text{ for all } x \in S,$ $F(y) = f_i(y) \text{ for arbitrary } i \in I \text{ and for all } y \in S_i.$

References

- J. Okninski and J. S. Ponisovskii, A New Matrix representation Theorem for Semigroups. Semigroup Forum, 52(1996), no.3, 293-305.
- [2] J. S. Ponisovskii, On matrix semigroups, Sovremennaja Algebra, Semigroups with additional structures. Leningrad, 1986, 64-71 (in Russian).
- J.S. Ponisovskii, On a theorem by Y. Zalcstein, Semigroups, Automata and Languages, Proc. Conf. University of Porto 1994, World Sci. Singapore New Jersey London Hong Kong, 225-231.
- [4] J. S. Ponisovskii. On Matrix Semigroups over a Field K conjugate to Matrix semigroups over a proper subfield of K. Proc. Conf. "Semigroups with Applications", Oberwolfach, 1991, 1-5.
- [5] J. S. Ponisovskii, On faithful representations of semigroups, Sovremennaja Algebra 3(23). Leningrad, 1998, 103-106 (in Russian).
- [6] Sverdlovskaja tetrad III.Sverdlovsk, 1989, Problem 3.39 (in Russian).
- [7] Y. Zalcstein. A finiteness theorem for linear semigroups, Proc. Amer. Math. Soc. 103(1988), no.2, 399-400.

CONTACT INFORMATION

J. S. Ponizovskii Russian State Hydrometeororlogical University, Department of Mathematics, Malookhtinsky pr. 98, 195196 St-Peterburg, Russia *E-Mail:* JP@JP4518.spb.edu

Received by the editors: 21.05.2004 and final form in 06.12.2004.