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Abstract. For the cocycle bicrossed product construction

applied to a locally compact group and its two subgroups, we give

a simple description of the group of the corresponding extensions

in terms of the second cohomology group of a certain complex of

continuous functions on the group. Using this description, we find

pairs of continuous cocycles for two subgroups of the Heisenberg

group.

Introduction

A method for constructing nontrivial examples of finite ring groups, now
known as finite Kac algebras, was proposed in [1]. It consists in using
two subgroups of a group satisfying certain conditions for constructing a
commutative algebra of functions on one subgroup and then extending it
to a nontrivial Kac algebra, via a pair of cocycles, with the group algebra
of the other subgroup. This method is now called the bicrossed prod-
uct construction and was generalized to bialgebras in [2] and to locally
compact quantum groups in [3].

For fixed subgroups, the set of extensions forms a group whose ele-
ments are determined by equivalence classes of pairs of cocycles. This
group formed by equivalence classes of pairs of measurable functions is
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described in [4] for a locally compact group in terms of the second coho-
mology group of a certain complex constructed from a bicomplex.

The purpose of this paper is to consider the case where the exten-
sions are obtained using continuous cocycles and to give a simple direct
construction of a complex such that its second cohomology group is iso-
morphic to the group of such extensions. This is done in Section 1 after
first making necessary definitions. In Section 2 we use this result and
the ideas from [5] to construct pairs of cocycles for two subgroups of the
Heisenberg group.

1. Definitions and the main result

Definition 1 ([6]). Let K be a locally compact group, G, H subgroups
of K satisfying the conditions

G · H = K and G ∩ H = {e}.
Then (G, H) is called a matched pair of locally compact groups.

Remark 1. For a more general definition of a matched pair of locally
compact groups, see [3].

In what follows, g, h, k with, possibly, subscripts denote elements of
the groups G, H, K, respectively.

Let (G, H) be a matched pair of locally compact groups. It is
known [3] that there are right and left actions, / : H × G → H and
. : H × G → G, given by

h · g = (h . g) · (h / g)

and satisfying

(h1h2) / g = (h1 / (h2 . g))(h2 / g),

h . (g1g2) = (h . g1)((h / g1) . g2).
(1)

Denote T = {z ∈ C : |z| = 1} and let T̃ be the Abelian group R/2πZ.

Definition 2 ([3]). Let (G, H) be a matched pair of locally compact
groups. A pair of continuous maps (u, v), u : H × G × G → T, v :
H × H × G → T is called a pair of cocycles for the pair (G, H) if the
following identities hold:

u(h / g1, g2, g3)u(h, g1, g2g3) = u(h, g1, g2)u(h, g1g2, g3), (2)

v(h1, h2, h3 . g)v(h1h2, h3, g) = v(h1, h2h3, g)v(h2, h3, g), (3)

v(h1, h2, g1g2)u(h1h2, g1, g2) = v(h1, h2, g1)u(h2, g1, g2)

· v(h1 / (h2 . g1), h2 / g1, g2)

· u(h1, h2 . g1, (h2 / g1) . g2). (4)
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Two pairs of cocycles (u1, v1) and (u2, v2) for (G, H) are called equiv-
alent if there exists a continuous function r : H × G → T such that

u1(h, g1, g2)u2(h, g1, g2)
−1 = r(h, g1)r(h / g1, g2)r(h, g1g2)

−1,

v1(h1, h2, g)v2(h1, h2, g)−1 = r(h1h2, g)r(h1, h2 . g)−1r(h2, g)−1.
(5)

We will denote the equivalence class of a pair (u, v) by [u, v]. It
is known [3] that the set of equivalence classes [u, v] forms a group
with respect to the operations [u1, v1] · [u2, v2] = [u1u2, v1v2], [u, v]−1 =
[u−1, v−1], and the identity element [1, 1]. We will consider the subgroup
of this group formed by the classes [u, v] such that u(h1, g2, g3) = 1 if
at least one of the elements h1, g2, g3 is the identity of the correspond-
ing group and the same holds for v. This subgroup will be denoted by
H2

0 (m.p., T).
Let (G, H) be a matched pair of locally compact groups. Denote by

G
C

H

n(Kn+1, T̃), or simply by
G
C

H

n(K), n = 0, 1, . . . , the set of continuous
functions cn : Kn+1 → T̃ such that

cn(gk1, k2, . . . , kn, kn+1h) = cn(k1, k2, . . . , kn, kn+1), (6)

cn(k1, . . . , kj−1, eK , kj+1, . . . , kn+1) = 0 (7)

for all g ∈ G, h ∈ H, kj ∈ K, j = 1, . . . , n + 1. Here eK denotes the
identity element in K.

G
C

H

n is an Abelian group with respect to the
pointwise addition. As usual [7], define

(dncn)(k1, . . . , kn+2) = cn(k2, . . . , kn+2)

+
n+1∑

j=1

(−1)jcn(k1, . . . , kjkj+1, . . . , kn+2)

+ (−1)n+2cn(k1, . . . , kn+1) (8)

and thus obtain the following complex:

G
C

H

0(K)
d0

−→
G
C

H

1(K)
d1

−→
G
C

H

2(K)
d2

−→
G
C

H

3(K)
d3

−→ . . . , (9)

where, as easily seen,
G
C

H

0(K) can be identified with the group that has
the only element 0 and

G
C

H

1(K) with the group of all continuous functions
c1 on K satisfying c1 �G= c1 �H= 0.

Theorem. Let
G
H

H

2(K) = Ker d2/Im d1 denote the second cohomology
group of complex (9). Then the map θ : H2

0 (m.p., T) →
G
H

H

2(K) defined
by

θ([u, v])(k1, k2, k3) =
1

i
lnu(h1, g2, h2 . g3) +

1

i
ln v(h1 / g2, h2, g3), (10)
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is a group isomorphism. Here ln : T → i T̃ is the principle branch of the
logarithm, kj = gjhj, j = 1, 2, 3, and i =

√
−1.

The proof of the theorem will be divided into several lemmas. But
before, let us denote ũ = 1

i
lnu, ṽ = 1

i
ln v, and r̃ = 1

i
ln r. With these

notations, the map (10) becomes

θ([u, v])(k1, k2, k3) = ũ(h1, g2, h2 . g3) + ṽ(h1 / g2, h2, g3), (11)

the defining relations (2), (3), (4) will read

ũ(h / g1, g2, g3) − ũ(h, g1g2, g3) + ũ(h, g1, g2g3) − ũ(h, g1, g2) = 0, (12)

ṽ(h2, h3, g) − ṽ(h1h2, h3, g) + ṽ(h1, h2h3, g) − ṽ(h1, h2, h3 . g) = 0, (13)

ṽ(h1, h2, g1g2)+ũ(h1h2, g1, g2) = ṽ(h1, h2, g1)+ṽ(h1/(h2.g1), h2/g1, g2)

+ ũ(h2, g1, g2) + ũ(h1, h2 . g1, (h2 / g1) . g2), (14)

and the equivalence relations (5) are

ũ1(h, g1, g2) − ũ2(h, g1, g2) = r̃(h, g1) + r̃(h / g1, g2) − r̃(h, g1g2),

ṽ1(h1, h2, g) − ṽ2(h1, h2, g) = r̃(h1h2, g) − r̃(h1, h2 . g) − r̃(h2, g).
(15)

Lemma 1. Let a pair (ũ, ṽ) satisfy (12), (13), (14), and

f(k1, k2, k3) = ũ(h1, g2, h2 . g3) + ṽ(h1 / g2, h2, g3), (16)

kj = gjhj, j = 1, 2, 3. Then f is a 2-cocycle for the complex (9).

Proof. Indeed, by the definition of f , for kj = gjhj , j = 1, . . . , 4, we have

(d2f)(k1, k2, k3, k4)

= f(k2, k3, k4) − f(k1k2, k3, k4) + f(k1, k2k3, k4)

− f(k1, k2, k3k4) + f(k1, k2, k3)

= f(g2h2, g3h3, g4h4) − f(g1(h1 . g2)(h1 / g2)h2, g3h3, g4h4)

+ f(g1h1, g2(h2 . g3)(h2 / g3)h3, g4h4)

− f(g1h1, g2h2, g3(h3 . g4)(h3 / g4)h4) + f(g1h1, g2h2, g3h3)

= ũ(h2, g3, h3 . g4) + ṽ(h2 / g3, h3, g4) − ũ((h1 / g2)h2, g3, h3 . g4)

− ṽ
(
((h1 / g2)h2) / g3, h3, g4

)
+ ũ(h1, g2(h2 . g3), ((h2 / g3)h3) . g4)

+ ṽ(h1 / (g2(h2 . g3)), (h2 / g3)h3, g4) − ũ
(
h1, g2, h2 . (g3(h3 . g4))

)

− ṽ(h1 / g2, h2, g3(h3 . g4)) + ũ(h1, g2, h2 . g3) + ṽ(h1 / g2, h2, g3).
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Replacing h1, g1, and g2 in (14) with h1 / g2, g3, and h3 . g4, respectively,
we get that

ũ((h1 / g2)h2, g3, h3 . g4) + ṽ(h1 / g2, h2, g3(h3 . g4))

= ũ(h2, g3, h3 . g4) + ũ(h1 / g2, h2 . g3, (h2 / g3) . (h3 . g4))

+ ṽ((h1 / g2) / (h2 . g3), h2 / g3, h3 . g4) + ṽ(h1 / g2, h2, g3).

Use the above to replace the sum of the 3rd and 8th terms in the previous
expression, collect the terms with ũ and ṽ, and apply (12) and (13) to
get 0.

Lemma 2. Let a pair (ũ1, ṽ1) satisfy (15) with ũ2 = ṽ2 = 0. Then f1

defined by (16) for (ũ1, ṽ1) is a 1-coboundary.

Proof. With the notations as before, we have

f1(k1, k2, k3) = ũ1(h1, g2, h2 . g3) + ṽ1(h1 / g2, h2, g3)

= r̃(h1, g2) + r̃(h1 / g2, h2 . g3) − r̃(h1, g2(h2 . g3))

+ r̃((h1 / g2)h2, g3) − r̃(h1 / g2, h2 . g3) − r̃(h2, g3).

On the other hand, extending r̃ from H × G → T̃ to K × K → T̃ by
setting r̃(g1h1, g2h2) = r̃(h1, g2), we have

(d1r̃)(k1, k2, k3) = r̃(k2, k3) − r̃(k1k2, k3) + r̃(k1, k2k3) − r̃(k1, k2)

= r̃(h2, g3) − r̃((h1 / g2)h2, g3) + r̃(h1, g2(h2 . g3)) − r̃(h1, g2).

Comparing the above, we see that f1 = d1(−r).

Corollary 1. The map θ is well-defined.

Lemma 3. Let f ∈
G
H

H

2. Then f satisfies the following:

f(k1, k2, k3) = f(h1, g2, h2 . g3) + f(h1 / g2, h2, g3).

Proof. Since f is a 2-cocycle,

0 = (d2f)(h1, g2, h2, g3) = f(g2, h2, g3) − f(h1g2, h2, g3) + f(h1, g2h2, g3)

− f(h1, g2, h2g3) + f(h1, g2, h2).

But f(g2, h2, g3) = f(eK , h2, g3) = 0, f(h1g2, h2, g3) = f(h1 / g2, h2, g3),
f(h1, g2, h2g3) = f(h1, g2, h2 . g3), and f(h1, g2, h2) = f(h1, g2, eK) =
0.

Corollary 2. The map θ is a surjection.
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Proof. For f ∈
G
H

H

2, define ũ(h1, g2, g3) = f(h1, g2, g3) and ṽ(h1, h2, g3) =
f(h1, h2, g3). Then ũ and ṽ satisfy (12), (13), and (14).

Lemma 4. The map θ is an injection.

Proof. Indeed, let θ([u, v])(k1, k2, k3) = (d1r̃)(k1, k2, k3), that is,

ũ(h1, g2, h2 . g3) + ṽ(h1 / g2, h2, g3)

= r̃(k2, k3) − r̃(k1k2, k3) + r̃(k1, k2k3) − r̃(k1, k2)

= r̃(h2, g3) − r̃((h1 / g2)h2, g3) + r̃(h1, g2(h2 . g3)) − r̃(h1, g2).

By setting h2 = eH and then g2 = eG, we obtain

ũ(h1, g2, g3) = −r̃(h1 / g2, g3) + r̃(h1, g2g3) − r̃(h1, g2)

ṽ(h1, h2, g3) = r̃(h2, g3) − r̃(h1h2, g3) + r̃(h1, h2 . g3),

that is [u, v] = [1, 1].

Now, Corollaries 1, 2 and Lemma 4 prove the theorem.

2. An example for the Heisenberg group

As follows from (16), to find the functions ũ, ṽ, we need to construct a
2-cocycle f of the complex (9). Note that f is, actually, a 3-cocycle of
the group K [7] satisfying the additional relations (6), (7).

Thus we construct a 3-cocycle F for the corresponding matched pair of
the Lie algebras, (g, h), by using Proposition 1 in [5], find nonequivalent 3-
cocycles in terms of Proposition 2 in [5], and consider the corresponding
left-invariant form ωF on K. Following the procedure of finding a 3-
cocycle on a Lie group from a 3-cocycle on the Lie algebra [7], we consider
the 3-simplex σ given by

σ(h1, g2h2, g3) =
(
h1 .

(
g2 · (h2 . gp3

3 )
)p2

)

·
((

h1 /
(
g2(h2 . gp3

3 )
))p2(h2 / gp3

3 )q2

)q1

, (17)

where pj , qj : ∆3 → R are some differentiable functions on the standard
3-simplex ∆3 = {(t1, t2, t3) ∈ R

3 : t1, t2, t3 ≥ 0, t1 + t2 + t3 ≤ 1}. Then
the 2-cocycle f can be found in the form

f(h1, g2h2, g3) =

∫

σ(h1,g2h2,g3)
ωF . (18)
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Using the above procedure, we now construct pairs of continuous co-
cycles (ũ, ṽ) for the matched pair of Lie groups (G, H) associated with
the Heisenberg group. Denote

g(~a) =




1 ~0 t 0
~0 1n ~a

0 ~0 t 1


 , h(~x, y) =




1 ~x t y
~0 1n

~0

0 ~0 t 1


 ,

where ~a, ~x ∈ R
n, y ∈ R, ~x t is the transpose of ~x, and 1n denotes the unit

matrix on R
n. The groups G = {g(~a) : ~a ∈ R

n} and H = {h(~x, y) : ~x ∈
R

n, y ∈ R} form a matched pair of Abelian Lie groups with the mutual
actions

h(~x, y) . g(~a) = g(~a), h(~x, y) / g(~a) = h(~x, y + ~a · ~x),

where ~a · ~x is the scalar product of ~a, ~x ∈ R
n.

Thus the group K = GH is the Heisenberg group, that is, the group
of matrices of the form 


1 ~x t y
~0 1n ~a

0 ~0 t 1


 .

Consider the corresponding matched pair of the Abelian Lie algebras
(g, h). The Lie algebras g and h consist of the matrices




0 ~0 t 0
~0 0n ~a

0 ~0 t 0


 ,




0 ~x t y
~0 0n

~0

0 ~0 t 0


 ,

respectively. Let Aj ∈ g, j = 1, . . . , n, denote the matrix with ~a having
1 at the jth place and the rest 0. The matrices Xj and Y are defined
similarly. Then Aj , Xj , Y form a basis in the Lie algebra k of the Lie
group K. The mutual actions are given by

Xj / Ak = δjkY, Y / Aj = Xj . Ak = Y . Ak = 0,

where δjk denotes Kronecker’s symbol.
Using Propositions 1, 2 in [5] we find that the functionals F 1

jkl and

F 2
jkl, defined on the basis of the Lie algebra k by

F 1
jkl(Xj , Xk, Al) = 1, 1 ≤ j < k ≤ n, l = 1, . . . , n, (19)

and zero on other basis elements, and

F 2
jkl(Xj , Ak, Al) = 1, j = 1, . . . , n, 1 ≤ k < l ≤ n, j 6= k, j 6= l, (20)
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and zero otherwise, make a basis in the space of equivalence classes of
3-cocycles for the matched pair of Lie algebras (g, h). Thus the dimension
of the corresponding cohomology group of the matched pair of the Lie
algebras is n(n − 1)2.

The left-invariant 3-forms on K that correspond to F 1
jkl and F 2

jkl are

ω1
jkl = dxj ∧ dxk ∧ dal, ω2

jkl = dxj ∧ dak ∧ dal,

where xj denotes the j-th coordinates of ~x ∈ R
n.

Using (16), (17) and (18), we obtain the corresponding pairs of cocy-
cles ũ, ṽ for the matched pair (G, H),

ũ1
jkl

(
h(~x, y), g(~a1), g(~a2)

)
= 0,

ṽ1
jkl

(
h(~x1, y1), h(~x2, y2), g(~a)

)
= al

∣∣∣∣∣
xj

1 xj
2

xk
1 xk

2

∣∣∣∣∣ ,
(21)

where j < k, l = 1, . . . , n, and

ũ2
jkl

(
h(~x, y), g(~a1), g(~a2)

)
= xj

∣∣∣∣∣
ak

1 ak
2

al
1 al

2

∣∣∣∣∣ ,

ṽ2
jkl

(
h(~x1, y1), h(~x2, y2), g(~a)

)
= 0,

(22)

for j < k, j 6= k, j 6= l.
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