# On the group of extensions for the bicrossed product construction for a locally compact group 

Yu. A. Chapovsky, A. A. Kalyuzhnyi, and G. B. Podkolzin

Communicated by L. Turowska


#### Abstract

For the cocycle bicrossed product construction applied to a locally compact group and its two subgroups, we give a simple description of the group of the corresponding extensions in terms of the second cohomology group of a certain complex of continuous functions on the group. Using this description, we find pairs of continuous cocycles for two subgroups of the Heisenberg group.


## Introduction

A method for constructing nontrivial examples of finite ring groups, now known as finite Kac algebras, was proposed in [1]. It consists in using two subgroups of a group satisfying certain conditions for constructing a commutative algebra of functions on one subgroup and then extending it to a nontrivial Kac algebra, via a pair of cocycles, with the group algebra of the other subgroup. This method is now called the bicrossed product construction and was generalized to bialgebras in [2] and to locally compact quantum groups in [3].

For fixed subgroups, the set of extensions forms a group whose elements are determined by equivalence classes of pairs of cocycles. This group formed by equivalence classes of pairs of measurable functions is

[^0]described in [4] for a locally compact group in terms of the second cohomology group of a certain complex constructed from a bicomplex.

The purpose of this paper is to consider the case where the extensions are obtained using continuous cocycles and to give a simple direct construction of a complex such that its second cohomology group is isomorphic to the group of such extensions. This is done in Section 1 after first making necessary definitions. In Section 2 we use this result and the ideas from [5] to construct pairs of cocycles for two subgroups of the Heisenberg group.

## 1. Definitions and the main result

Definition 1 ([6]). Let $K$ be a locally compact group, $G$, $H$ subgroups of $K$ satisfying the conditions

$$
G \cdot H=K \quad \text { and } \quad G \cap H=\{e\}
$$

Then $(G, H)$ is called a matched pair of locally compact groups.
Remark 1. For a more general definition of a matched pair of locally compact groups, see [3].

In what follows, $g, h, k$ with, possibly, subscripts denote elements of the groups $G, H, K$, respectively.

Let $(G, H)$ be a matched pair of locally compact groups. It is known [3] that there are right and left actions, $\triangleleft: H \times G \rightarrow H$ and $\triangleright: H \times G \rightarrow G$, given by

$$
h \cdot g=(h \triangleright g) \cdot(h \triangleleft g)
$$

and satisfying

$$
\begin{gather*}
\left(h_{1} h_{2}\right) \triangleleft g=\left(h_{1} \triangleleft\left(h_{2} \triangleright g\right)\right)\left(h_{2} \triangleleft g\right),  \tag{1}\\
h \triangleright\left(g_{1} g_{2}\right)=\left(h \triangleright g_{1}\right)\left(\left(h \triangleleft g_{1}\right) \triangleright g_{2}\right) .
\end{gather*}
$$

Denote $\mathbb{T}=\{z \in \mathbb{C}:|z|=1\}$ and let $\widetilde{\mathbb{T}}$ be the Abelian group $\mathbb{R} / 2 \pi \mathbb{Z}$.
Definition 2 ([3]). Let $(G, H)$ be a matched pair of locally compact groups. A pair of continuous maps $(u, v), u: H \times G \times G \rightarrow \mathbb{T}, v:$ $H \times H \times G \rightarrow \mathbb{T}$ is called a pair of cocycles for the pair $(G, H)$ if the following identities hold:

$$
\begin{align*}
u\left(h \triangleleft g_{1}, g_{2}, g_{3}\right) u\left(h, g_{1}, g_{2} g_{3}\right)= & u\left(h, g_{1}, g_{2}\right) u\left(h, g_{1} g_{2}, g_{3}\right),  \tag{2}\\
v\left(h_{1}, h_{2}, h_{3} \triangleright g\right) v\left(h_{1} h_{2}, h_{3}, g\right)= & v\left(h_{1}, h_{2} h_{3}, g\right) v\left(h_{2}, h_{3}, g\right),  \tag{3}\\
v\left(h_{1}, h_{2}, g_{1} g_{2}\right) u\left(h_{1} h_{2}, g_{1}, g_{2}\right)= & v\left(h_{1}, h_{2}, g_{1}\right) u\left(h_{2}, g_{1}, g_{2}\right) \\
& \cdot v\left(h_{1} \triangleleft\left(h_{2} \triangleright g_{1}\right), h_{2} \triangleleft g_{1}, g_{2}\right) \\
& \cdot u\left(h_{1}, h_{2} \triangleright g_{1},\left(h_{2} \triangleleft g_{1}\right) \triangleright g_{2}\right) . \tag{4}
\end{align*}
$$

Two pairs of cocycles $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ for $(G, H)$ are called equivalent if there exists a continuous function $r: H \times G \rightarrow \mathbb{T}$ such that

$$
\begin{align*}
& u_{1}\left(h, g_{1}, g_{2}\right) u_{2}\left(h, g_{1}, g_{2}\right)^{-1}=r\left(h, g_{1}\right) r\left(h \triangleleft g_{1}, g_{2}\right) r\left(h, g_{1} g_{2}\right)^{-1} \\
& v_{1}\left(h_{1}, h_{2}, g\right) v_{2}\left(h_{1}, h_{2}, g\right)^{-1}=r\left(h_{1} h_{2}, g\right) r\left(h_{1}, h_{2} \triangleright g\right)^{-1} r\left(h_{2}, g\right)^{-1} . \tag{5}
\end{align*}
$$

We will denote the equivalence class of a pair $(u, v)$ by $[u, v]$. It is known [3] that the set of equivalence classes $[u, v]$ forms a group with respect to the operations $\left[u_{1}, v_{1}\right] \cdot\left[u_{2}, v_{2}\right]=\left[u_{1} u_{2}, v_{1} v_{2}\right],[u, v]^{-1}=$ $\left[u^{-1}, v^{-1}\right]$, and the identity element $[1,1]$. We will consider the subgroup of this group formed by the classes $[u, v]$ such that $u\left(h_{1}, g_{2}, g_{3}\right)=1$ if at least one of the elements $h_{1}, g_{2}, g_{3}$ is the identity of the corresponding group and the same holds for $v$. This subgroup will be denoted by $H_{0}^{2}($ m.p., $\mathbb{T})$.

Let $(G, \underset{\sim}{H})$ be a matched pair of locally compact groups. Denote by ${ }_{G} \mathrm{C}_{H}^{n}\left(K^{n+1}, \widetilde{\mathbb{T}}\right)$, or simply by ${ }_{G} \mathrm{C}_{H}^{n}(K), n=0,1, \ldots$, the set of continuous functions $c^{n}: K^{n+1} \rightarrow \widetilde{\mathbb{T}}$ such that

$$
\begin{gather*}
c^{n}\left(g k_{1}, k_{2}, \ldots, k_{n}, k_{n+1} h\right)=c^{n}\left(k_{1}, k_{2}, \ldots, k_{n}, k_{n+1}\right)  \tag{6}\\
c^{n}\left(k_{1}, \ldots, k_{j-1}, e_{K}, k_{j+1}, \ldots, k_{n+1}\right)=0 \tag{7}
\end{gather*}
$$

for all $g \in G, h \in H, k_{j} \in K, j=1, \ldots, n+1$. Here $e_{K}$ denotes the identity element in $K .{ }_{G} \mathrm{C}_{H}^{n}$ is an Abelian group with respect to the pointwise addition. As usual [7], define

$$
\begin{align*}
& \left(d^{n} c^{n}\right)\left(k_{1}, \ldots, k_{n+2}\right)=c^{n}\left(k_{2}, \ldots, k_{n+2}\right) \\
& +\sum_{j=1}^{n+1}(-1)^{j} c^{n}\left(k_{1}, \ldots, k_{j} k_{j+1}, \ldots, k_{n+2}\right) \\
& +(-1)^{n+2} c^{n}\left(k_{1}, \ldots, k_{n+1}\right) \tag{8}
\end{align*}
$$

and thus obtain the following complex:

$$
\begin{equation*}
{ }_{G} \mathrm{C}_{H}^{0}(K) \xrightarrow{d^{0}}{ }_{G} \mathrm{C}_{H}^{1}(K) \xrightarrow{d^{1}}{ }_{G} \mathrm{C}_{H}^{2}(K) \xrightarrow{d^{2}}{ }_{G} \mathrm{C}_{H}^{3}(K) \xrightarrow{d^{3}} \ldots, \tag{9}
\end{equation*}
$$

where, as easily seen, ${ }_{G} \mathrm{C}_{H}^{0}(K)$ can be identified with the group that has the only element 0 and ${ }_{G} \mathrm{C}_{H}^{1}(K)$ with the group of all continuous functions $c^{1}$ on $K$ satisfying $c^{1} \upharpoonright_{G}=c^{1} \upharpoonright_{H}=0$.

Theorem. Let ${ }_{G} H_{H}^{2}(K)=\operatorname{Ker} d^{2} / \operatorname{Im} d^{1}$ denote the second cohomology group of complex (9). Then the map $\theta: H_{0}^{2}(\mathrm{~m} . \mathrm{p} ., \mathbb{T}) \rightarrow{ }_{G} H_{H}^{2}(K)$ defined by

$$
\begin{equation*}
\theta([u, v])\left(k_{1}, k_{2}, k_{3}\right)=\frac{1}{i} \ln u\left(h_{1}, g_{2}, h_{2} \triangleright g_{3}\right)+\frac{1}{i} \ln v\left(h_{1} \triangleleft g_{2}, h_{2}, g_{3}\right), \tag{10}
\end{equation*}
$$

is a group isomorphism. Here $\ln : \mathbb{T} \rightarrow i \widetilde{\mathbb{T}}$ is the principle branch of the logarithm, $k_{j}=g_{j} h_{j}, j=1,2,3$, and $i=\sqrt{-1}$.

The proof of the theorem will be divided into several lemmas. But before, let us denote $\tilde{u}=\frac{1}{i} \ln u, \tilde{v}=\frac{1}{i} \ln v$, and $\tilde{r}=\frac{1}{i} \ln r$. With these notations, the map (10) becomes

$$
\begin{equation*}
\theta([u, v])\left(k_{1}, k_{2}, k_{3}\right)=\tilde{u}\left(h_{1}, g_{2}, h_{2} \triangleright g_{3}\right)+\tilde{v}\left(h_{1} \triangleleft g_{2}, h_{2}, g_{3}\right) \tag{11}
\end{equation*}
$$

the defining relations $(2),(3),(4)$ will read

$$
\begin{gather*}
\tilde{u}\left(h \triangleleft g_{1}, g_{2}, g_{3}\right)-\tilde{u}\left(h, g_{1} g_{2}, g_{3}\right)+\tilde{u}\left(h, g_{1}, g_{2} g_{3}\right)-\tilde{u}\left(h, g_{1}, g_{2}\right)=0,  \tag{12}\\
\tilde{v}\left(h_{2}, h_{3}, g\right)-\tilde{v}\left(h_{1} h_{2}, h_{3}, g\right)+\tilde{v}\left(h_{1}, h_{2} h_{3}, g\right)-\tilde{v}\left(h_{1}, h_{2}, h_{3} \triangleright g\right)=0, \tag{13}
\end{gather*}
$$

$$
\begin{array}{r}
\tilde{v}\left(h_{1}, h_{2}, g_{1} g_{2}\right)+\tilde{u}\left(h_{1} h_{2}, g_{1}, g_{2}\right)=\tilde{v}\left(h_{1}, h_{2}, g_{1}\right)+\tilde{v}\left(h_{1} \triangleleft\left(h_{2} \triangleright g_{1}\right), h_{2} \triangleleft g_{1}, g_{2}\right) \\
+\tilde{u}\left(h_{2}, g_{1}, g_{2}\right)+\tilde{u}\left(h_{1}, h_{2} \triangleright g_{1},\left(h_{2} \triangleleft g_{1}\right) \triangleright g_{2}\right), \tag{14}
\end{array}
$$

and the equivalence relations (5) are

$$
\begin{align*}
& \tilde{u}_{1}\left(h, g_{1}, g_{2}\right)-\tilde{u}_{2}\left(h, g_{1}, g_{2}\right)=\tilde{r}\left(h, g_{1}\right)+\tilde{r}\left(h \triangleleft g_{1}, g_{2}\right)-\tilde{r}\left(h, g_{1} g_{2}\right), \\
& \tilde{v}_{1}\left(h_{1}, h_{2}, g\right)-\tilde{v}_{2}\left(h_{1}, h_{2}, g\right)=\tilde{r}\left(h_{1} h_{2}, g\right)-\tilde{r}\left(h_{1}, h_{2} \triangleright g\right)-\tilde{r}\left(h_{2}, g\right) . \tag{15}
\end{align*}
$$

Lemma 1. Let a pair ( $\tilde{u}, \tilde{v})$ satisfy (12), (13), (14), and

$$
\begin{equation*}
f\left(k_{1}, k_{2}, k_{3}\right)=\tilde{u}\left(h_{1}, g_{2}, h_{2} \triangleright g_{3}\right)+\tilde{v}\left(h_{1} \triangleleft g_{2}, h_{2}, g_{3}\right) \tag{16}
\end{equation*}
$$

$k_{j}=g_{j} h_{j}, j=1,2,3$. Then $f$ is a 2-cocycle for the complex (9).
Proof. Indeed, by the definition of $f$, for $k_{j}=g_{j} h_{j}, j=1, \ldots, 4$, we have

$$
\begin{aligned}
&\left(d^{2} f\right)\left(k_{1},\right.\left.k_{2}, k_{3}, k_{4}\right) \\
&=f\left(k_{2}, k_{3}, k_{4}\right)-f\left(k_{1} k_{2}, k_{3}, k_{4}\right)+f\left(k_{1}, k_{2} k_{3}, k_{4}\right) \\
& \quad-f\left(k_{1}, k_{2}, k_{3} k_{4}\right)+f\left(k_{1}, k_{2}, k_{3}\right) \\
&=f\left(g_{2} h_{2}, g_{3} h_{3}, g_{4} h_{4}\right)-f\left(g_{1}\left(h_{1} \triangleright g_{2}\right)\left(h_{1} \triangleleft g_{2}\right) h_{2}, g_{3} h_{3}, g_{4} h_{4}\right) \\
&+f\left(g_{1} h_{1}, g_{2}\left(h_{2} \triangleright g_{3}\right)\left(h_{2} \triangleleft g_{3}\right) h_{3}, g_{4} h_{4}\right) \\
& \quad-f\left(g_{1} h_{1}, g_{2} h_{2}, g_{3}\left(h_{3} \triangleright g_{4}\right)\left(h_{3} \triangleleft g_{4}\right) h_{4}\right)+f\left(g_{1} h_{1}, g_{2} h_{2}, g_{3} h_{3}\right) \\
&=\tilde{u}\left(h_{2}, g_{3}, h_{3} \triangleright g_{4}\right)+\tilde{v}\left(h_{2} \triangleleft g_{3}, h_{3}, g_{4}\right)-\tilde{u}\left(\left(h_{1} \triangleleft g_{2}\right) h_{2}, g_{3}, h_{3} \triangleright g_{4}\right) \\
& \quad-\tilde{v}\left(\left(\left(h_{1} \triangleleft g_{2}\right) h_{2}\right) \triangleleft g_{3}, h_{3}, g_{4}\right)+\tilde{u}\left(h_{1}, g_{2}\left(h_{2} \triangleright g_{3}\right),\left(\left(h_{2} \triangleleft g_{3}\right) h_{3}\right) \triangleright g_{4}\right) \\
&+\tilde{v}\left(h_{1} \triangleleft\left(g_{2}\left(h_{2} \triangleright g_{3}\right)\right),\left(h_{2} \triangleleft g_{3}\right) h_{3}, g_{4}\right)-\tilde{u}\left(h_{1}, g_{2}, h_{2} \triangleright\left(g_{3}\left(h_{3} \triangleright g_{4}\right)\right)\right) \\
& \quad-\tilde{v}\left(h_{1} \triangleleft g_{2}, h_{2}, g_{3}\left(h_{3} \triangleright g_{4}\right)\right)+\tilde{u}\left(h_{1}, g_{2}, h_{2} \triangleright g_{3}\right)+\tilde{v}\left(h_{1} \triangleleft g_{2}, h_{2}, g_{3}\right) .
\end{aligned}
$$

Replacing $h_{1}, g_{1}$, and $g_{2}$ in (14) with $h_{1} \triangleleft g_{2}, g_{3}$, and $h_{3} \triangleright g_{4}$, respectively, we get that

$$
\begin{aligned}
& \tilde{u}\left(\left(h_{1} \triangleleft g_{2}\right) h_{2}, g_{3}, h_{3} \triangleright g_{4}\right)+\tilde{v}\left(h_{1} \triangleleft g_{2}, h_{2}, g_{3}\left(h_{3} \triangleright g_{4}\right)\right) \\
& =\tilde{u}\left(h_{2}, g_{3}, h_{3} \triangleright g_{4}\right)+\tilde{u}\left(h_{1} \triangleleft g_{2}, h_{2} \triangleright g_{3},\left(h_{2} \triangleleft g_{3}\right) \triangleright\left(h_{3} \triangleright g_{4}\right)\right) \\
& \quad+\tilde{v}\left(\left(h_{1} \triangleleft g_{2}\right) \triangleleft\left(h_{2} \triangleright g_{3}\right), h_{2} \triangleleft g_{3}, h_{3} \triangleright g_{4}\right)+\tilde{v}\left(h_{1} \triangleleft g_{2}, h_{2}, g_{3}\right) .
\end{aligned}
$$

Use the above to replace the sum of the 3rd and 8th terms in the previous expression, collect the terms with $\tilde{u}$ and $\tilde{v}$, and apply (12) and (13) to get 0 .

Lemma 2. Let a pair $\left(\tilde{u}_{1}, \tilde{v}_{1}\right)$ satisfy (15) with $\tilde{u}_{2}=\tilde{v}_{2}=0$. Then $f_{1}$ defined by (16) for $\left(\tilde{u}_{1}, \tilde{v}_{1}\right)$ is a 1-coboundary.

Proof. With the notations as before, we have

$$
\begin{aligned}
f_{1}\left(k_{1}, k_{2}, k_{3}\right)= & \tilde{u}_{1}\left(h_{1}, g_{2}, h_{2} \triangleright g_{3}\right)+\tilde{v}_{1}\left(h_{1} \triangleleft g_{2}, h_{2}, g_{3}\right) \\
= & \tilde{r}\left(h_{1}, g_{2}\right)+\tilde{r}\left(h_{1} \triangleleft g_{2}, h_{2} \triangleright g_{3}\right)-\tilde{r}\left(h_{1}, g_{2}\left(h_{2} \triangleright g_{3}\right)\right) \\
& +\tilde{r}\left(\left(h_{1} \triangleleft g_{2}\right) h_{2}, g_{3}\right)-\tilde{r}\left(h_{1} \triangleleft g_{2}, h_{2} \triangleright g_{3}\right)-\tilde{r}\left(h_{2}, g_{3}\right) .
\end{aligned}
$$

On the other hand, extending $\tilde{r}$ from $H \times G \rightarrow \widetilde{\mathbb{T}}$ to $K \times K \rightarrow \widetilde{\mathbb{T}}$ by setting $\tilde{r}\left(g_{1} h_{1}, g_{2} h_{2}\right)=\tilde{r}\left(h_{1}, g_{2}\right)$, we have

$$
\begin{aligned}
& \left(d^{1} \tilde{r}\right)\left(k_{1}, k_{2}, k_{3}\right)=\tilde{r}\left(k_{2}, k_{3}\right)-\tilde{r}\left(k_{1} k_{2}, k_{3}\right)+\tilde{r}\left(k_{1}, k_{2} k_{3}\right)-\tilde{r}\left(k_{1}, k_{2}\right) \\
& \quad=\tilde{r}\left(h_{2}, g_{3}\right)-\tilde{r}\left(\left(h_{1} \triangleleft g_{2}\right) h_{2}, g_{3}\right)+\tilde{r}\left(h_{1}, g_{2}\left(h_{2} \triangleright g_{3}\right)\right)-\tilde{r}\left(h_{1}, g_{2}\right)
\end{aligned}
$$

Comparing the above, we see that $f_{1}=d^{1}(-r)$.
Corollary 1. The map $\theta$ is well-defined.
Lemma 3. Let $f \in{ }_{G} H_{H}^{2}$. Then $f$ satisfies the following:

$$
f\left(k_{1}, k_{2}, k_{3}\right)=f\left(h_{1}, g_{2}, h_{2} \triangleright g_{3}\right)+f\left(h_{1} \triangleleft g_{2}, h_{2}, g_{3}\right)
$$

Proof. Since $f$ is a 2-cocycle,

$$
\begin{aligned}
0=\left(d^{2} f\right)\left(h_{1}, g_{2}, h_{2}, g_{3}\right)=f & \left(g_{2}, h_{2}, g_{3}\right)-f\left(h_{1} g_{2}, h_{2}, g_{3}\right)+f\left(h_{1}, g_{2} h_{2}, g_{3}\right) \\
& -f\left(h_{1}, g_{2}, h_{2} g_{3}\right)+f\left(h_{1}, g_{2}, h_{2}\right) .
\end{aligned}
$$

But $f\left(g_{2}, h_{2}, g_{3}\right)=f\left(e_{K}, h_{2}, g_{3}\right)=0, f\left(h_{1} g_{2}, h_{2}, g_{3}\right)=f\left(h_{1} \triangleleft g_{2}, h_{2}, g_{3}\right)$, $f\left(h_{1}, g_{2}, h_{2} g_{3}\right)=f\left(h_{1}, g_{2}, h_{2} \triangleright g_{3}\right)$, and $f\left(h_{1}, g_{2}, h_{2}\right)=f\left(h_{1}, g_{2}, e_{K}\right)=$ 0 .

Corollary 2. The map $\theta$ is a surjection.

Proof. For $f \in{ }_{G} \mathrm{H}_{H}^{2}$, define $\tilde{u}\left(h_{1}, g_{2}, g_{3}\right)=f\left(h_{1}, g_{2}, g_{3}\right)$ and $\tilde{v}\left(h_{1}, h_{2}, g_{3}\right)=$ $f\left(h_{1}, h_{2}, g_{3}\right)$. Then $\tilde{u}$ and $\tilde{v}$ satisfy (12), (13), and (14).

Lemma 4. The map $\theta$ is an injection.
Proof. Indeed, let $\theta([u, v])\left(k_{1}, k_{2}, k_{3}\right)=\left(d^{1} \tilde{r}\right)\left(k_{1}, k_{2}, k_{3}\right)$, that is,

$$
\begin{aligned}
& \tilde{u}\left(h_{1}, g_{2}, h_{2} \triangleright g_{3}\right)+\tilde{v}\left(h_{1} \triangleleft g_{2}, h_{2}, g_{3}\right) \\
& \quad=\tilde{r}\left(k_{2}, k_{3}\right)-\tilde{r}\left(k_{1} k_{2}, k_{3}\right)+\tilde{r}\left(k_{1}, k_{2} k_{3}\right)-\tilde{r}\left(k_{1}, k_{2}\right) \\
& \quad=\tilde{r}\left(h_{2}, g_{3}\right)-\tilde{r}\left(\left(h_{1} \triangleleft g_{2}\right) h_{2}, g_{3}\right)+\tilde{r}\left(h_{1}, g_{2}\left(h_{2} \triangleright g_{3}\right)\right)-\tilde{r}\left(h_{1}, g_{2}\right) .
\end{aligned}
$$

By setting $h_{2}=e_{H}$ and then $g_{2}=e_{G}$, we obtain

$$
\begin{aligned}
& \tilde{u}\left(h_{1}, g_{2}, g_{3}\right)=-\tilde{r}\left(h_{1} \triangleleft g_{2}, g_{3}\right)+\tilde{r}\left(h_{1}, g_{2} g_{3}\right)-\tilde{r}\left(h_{1}, g_{2}\right) \\
& \tilde{v}\left(h_{1}, h_{2}, g_{3}\right)=\tilde{r}\left(h_{2}, g_{3}\right)-\tilde{r}\left(h_{1} h_{2}, g_{3}\right)+\tilde{r}\left(h_{1}, h_{2} \triangleright g_{3}\right),
\end{aligned}
$$

that is $[u, v]=[1,1]$.
Now, Corollaries 1, 2 and Lemma 4 prove the theorem.

## 2. An example for the Heisenberg group

As follows from (16), to find the functions $\tilde{u}$, $\tilde{v}$, we need to construct a 2 -cocycle $f$ of the complex (9). Note that $f$ is, actually, a 3-cocycle of the group $K[7]$ satisfying the additional relations (6), (7).

Thus we construct a 3-cocycle $F$ for the corresponding matched pair of the Lie algebras, $(\mathfrak{g}, \mathfrak{h})$, by using Proposition 1 in [5], find nonequivalent 3cocycles in terms of Proposition 2 in [5], and consider the corresponding left-invariant form $\omega_{F}$ on $K$. Following the procedure of finding a 3cocycle on a Lie group from a 3-cocycle on the Lie algebra [7], we consider the 3 -simplex $\sigma$ given by

$$
\begin{align*}
& \sigma\left(h_{1}, g_{2} h_{2}, g_{3}\right)=\left(h_{1} \triangleright\left(g_{2} \cdot\left(h_{2} \triangleright g_{3}^{p_{3}}\right)\right)^{p_{2}}\right) \\
& \cdot\left(\left(h_{1} \triangleleft\left(g_{2}\left(h_{2} \triangleright g_{3}^{p_{3}}\right)\right)\right)^{p_{2}}\left(h_{2} \triangleleft g_{3}^{p_{3}}\right)^{q_{2}}\right)^{q_{1}}, \tag{17}
\end{align*}
$$

where $p_{j}, q_{j}: \Delta_{3} \rightarrow \mathbb{R}$ are some differentiable functions on the standard 3 -simplex $\Delta_{3}=\left\{\left(t_{1}, t_{2}, t_{3}\right) \in \mathbb{R}^{3}: t_{1}, t_{2}, t_{3} \geq 0, t_{1}+t_{2}+t_{3} \leq 1\right\}$. Then the 2-cocycle $f$ can be found in the form

$$
\begin{equation*}
f\left(h_{1}, g_{2} h_{2}, g_{3}\right)=\int_{\sigma\left(h_{1}, g_{2} h_{2}, g_{3}\right)} \omega_{F} \tag{18}
\end{equation*}
$$

Using the above procedure, we now construct pairs of continuous cocycles $(\tilde{u}, \tilde{v})$ for the matched pair of Lie groups $(G, H)$ associated with the Heisenberg group. Denote

$$
g(\vec{a})=\left(\begin{array}{ccc}
1 & \overrightarrow{0}^{t} & 0 \\
\overrightarrow{0} & 1_{n} & \vec{a} \\
0 & \overrightarrow{0}^{t} & 1
\end{array}\right), \quad h(\vec{x}, y)=\left(\begin{array}{ccc}
1 & \vec{x}^{t} & y \\
\overrightarrow{0} & 1_{n} & \overrightarrow{0} \\
0 & \overrightarrow{0}^{t} & 1
\end{array}\right)
$$

where $\vec{a}, \vec{x} \in \mathbb{R}^{n}, y \in \mathbb{R}, \vec{x}^{t}$ is the transpose of $\vec{x}$, and $1_{n}$ denotes the unit matrix on $\mathbb{R}^{n}$. The groups $G=\left\{g(\vec{a}): \vec{a} \in \mathbb{R}^{n}\right\}$ and $H=\{h(\vec{x}, y): \vec{x} \in$ $\left.\mathbb{R}^{n}, y \in \mathbb{R}\right\}$ form a matched pair of Abelian Lie groups with the mutual actions

$$
h(\vec{x}, y) \triangleright g(\vec{a})=g(\vec{a}), \quad h(\vec{x}, y) \triangleleft g(\vec{a})=h(\vec{x}, y+\vec{a} \cdot \vec{x})
$$

where $\vec{a} \cdot \vec{x}$ is the scalar product of $\vec{a}, \vec{x} \in \mathbb{R}^{n}$.
Thus the group $K=G H$ is the Heisenberg group, that is, the group of matrices of the form

$$
\left(\begin{array}{ccc}
1 & \vec{x}^{t} & y \\
\overrightarrow{0} & 1_{n} & \vec{a} \\
0 & \overrightarrow{0}^{t} & 1
\end{array}\right)
$$

Consider the corresponding matched pair of the Abelian Lie algebras $(\mathfrak{g}, \mathfrak{h})$. The Lie algebras $\mathfrak{g}$ and $\mathfrak{h}$ consist of the matrices

$$
\left(\begin{array}{ccc}
0 & \overrightarrow{0}^{t} & 0 \\
\overrightarrow{0} & 0_{n} & \vec{a} \\
0 & \overrightarrow{0}^{t} & 0
\end{array}\right), \quad\left(\begin{array}{ccc}
0 & \vec{x}^{t} & y \\
\overrightarrow{0} & 0_{n} & \overrightarrow{0} \\
0 & \overrightarrow{0}^{t} & 0
\end{array}\right)
$$

respectively. Let $A_{j} \in \mathfrak{g}, j=1, \ldots, n$, denote the matrix with $\vec{a}$ having 1 at the $j$ th place and the rest 0 . The matrices $X_{j}$ and $Y$ are defined similarly. Then $A_{j}, X_{j}, Y$ form a basis in the Lie algebra $\mathfrak{k}$ of the Lie group $K$. The mutual actions are given by

$$
X_{j} \triangleleft A_{k}=\delta_{j k} Y, \quad Y \triangleleft A_{j}=X_{j} \triangleright A_{k}=Y \triangleright A_{k}=0
$$

where $\delta_{j k}$ denotes Kronecker's symbol.
Using Propositions 1, 2 in [5] we find that the functionals $F_{j k l}^{1}$ and $F_{j k l}^{2}$, defined on the basis of the Lie algebra $\mathfrak{k}$ by

$$
\begin{equation*}
F_{j k l}^{1}\left(X_{j}, X_{k}, A_{l}\right)=1, \quad 1 \leq j<k \leq n, l=1, \ldots, n \tag{19}
\end{equation*}
$$

and zero on other basis elements, and

$$
\begin{equation*}
F_{j k l}^{2}\left(X_{j}, A_{k}, A_{l}\right)=1, \quad j=1, \ldots, n, 1 \leq k<l \leq n, j \neq k, j \neq l \tag{20}
\end{equation*}
$$

and zero otherwise, make a basis in the space of equivalence classes of 3 -cocycles for the matched pair of Lie algebras $(\mathfrak{g}, \mathfrak{h})$. Thus the dimension of the corresponding cohomology group of the matched pair of the Lie algebras is $n(n-1)^{2}$.

The left-invariant 3 -forms on $K$ that correspond to $F_{j k l}^{1}$ and $F_{j k l}^{2}$ are

$$
\omega_{j k l}^{1}=d x^{j} \wedge d x^{k} \wedge d a^{l}, \quad \omega_{j k l}^{2}=d x^{j} \wedge d a^{k} \wedge d a^{l}
$$

where $x^{j}$ denotes the $j$-th coordinates of $\vec{x} \in \mathbb{R}^{n}$.
Using (16), (17) and (18), we obtain the corresponding pairs of cocycles $\tilde{u}, \tilde{v}$ for the matched pair $(G, H)$,

$$
\begin{align*}
& \tilde{u}_{j k l}^{1}\left(h(\vec{x}, y), g\left(\vec{a}_{1}\right), g\left(\vec{a}_{2}\right)\right)=0, \\
& \tilde{v}_{j k l}^{1}\left(h\left(\vec{x}_{1}, y_{1}\right), h\left(\vec{x}_{2}, y_{2}\right), g(\vec{a})\right)=a^{l}\left|\begin{array}{cc}
x_{1}^{j} & x_{2}^{j} \\
x_{1}^{k} & x_{2}^{k}
\end{array}\right|, \tag{21}
\end{align*}
$$

where $j<k, l=1, \ldots, n$, and

$$
\begin{align*}
& \tilde{u}_{j k l}^{2}\left(h(\vec{x}, y), g\left(\vec{a}_{1}\right), g\left(\vec{a}_{2}\right)\right)=x^{j}\left|\begin{array}{cc}
a_{1}^{k} & a_{2}^{k} \\
a_{1}^{l} & a_{2}^{l}
\end{array}\right|,  \tag{22}\\
& \tilde{v}_{j k l}^{2}\left(h\left(\vec{x}_{1}, y_{1}\right), h\left(\vec{x}_{2}, y_{2}\right), g(\vec{a})\right)=0
\end{align*}
$$

for $j<k, j \neq k, j \neq l$.

## References

[1] G. I. Kac. Extensions of groups to ring groups. Math. USSR Sbornik, 5:451-474, 1968.
[2] S. Majid. Foundations of quantum group theory. Cambridge University Press, 1995.
[3] S. Vaes and L. Vainerman. Extensions of locally compact quantum groups and the bicrossed product construction. Adv. in Math., 174(1):1-101, 2003.
[4] S. Baaj, G. Skandalis, and S. Vaes. Topological Kac cohomology for bicrossed products. math.QA/0307172.
[5] Yu. A. Chapovsky, A. A. Kalyuzhnyi, and G. B. Podkolzin. On $2+2$ locally compact quantum groups. Proceedings of Institute of Mathematics of NAS of Ukraine, Volume 50, Part 3, Kyiv, Institute of Mathematics, pages 1064-1070, 2004.
[6] M. Takeuchi. Matched pairs of groups and bismash products of Hopf algebras. Comm. Algebra, 9:841-882, 1981.
[7] A. Guichardet. Cohomologie des groupes topologiques et des algèbres de Lie. Cedic/Fernand Nathan, Paris, 1980.

## Contact information

Yu. A. Chapovsky Institute of Mathematics, Ukrainian National Academy of Sciences, 3 Tereshchenkivs'ka, Kyiv, 01601, Ukraine E-Mail: yc@imath.kiev.ua

A. A. Kalyuzhnyi Institute of Mathematics, Ukrainian National Academy of Sciences, 3 Tereshchenkivs' ${ }^{\prime}$ a, Kyiv, 01601, Ukraine E-Mail: kalyuz@imath.kiev.ua URL: none

G. B. Podkolzin Kyiv Technical University, Kyiv 01033, Ukraine E-Mail: mathkiev@imat.gluk.apc.org

Received by the editors: 26.04.2004 and final form in 06.10.2004.


[^0]:    This work has been supported in part by the Ukrainian State Foundation for Fundamental Studied, the first author through Grant N 01.07/027, the second and the third authors through Grant N 01.07/071.

    2000 Mathematics Subject Classification: 17B37; 20G42, $17 B 55$.
    Key words and phrases: quantum group, bicrossed product construction, group of extensions, group cohomology.

