On the Tits alternative for some generalized triangle groups

Valery Beniash-Kryvets, Oxana Barkovich

Communicated by Komarnytskyj M.Ya.

Abstract. One says that the Tits alternative holds for a finitely generated group Γ if Γ contains either a non abelian free subgroup or a solvable subgroup of finite index. Rosenberger states the conjecture that the Tits alternative holds for generalized triangle groups $T(k, l, m, R)=\left\langle a, b ; a^{k}=b^{l}=R^{m}(a, b)=1\right\rangle$. In the paper Rosenberger's conjecture is proved for groups $T(2, l, 2, R)$ with $l=6,12,30,60$ and some special groups $T(3,4,2, R)$.

Introduction

J. Tits [15] proved that if G is a finitely generated linear group then G contains either a non abelian free subgroup or a solvable subgroup of finite index. Let Γ be an arbitrary finitely generated group. One says that the Tits alternative holds for Γ if Γ satisfies one of these conditions.

An one-relator free product of a family of groups $\left\{G_{i}\right\}, i \in I$, is called the group $G=\left(* G_{i}\right) / N(S)$, where S is a cyclically reduced word in the free product $* G_{i}, N(S)$ is its normal closure. S is called the relator. One-relator free products share many properties with one-relator groups [7]. We consider the case when G_{i} 's are cyclic groups.

Definition 1. A group Γ having a presentation

$$
\begin{equation*}
\Gamma=<a_{1}, \ldots, a_{n} ; a_{1}^{l_{1}}=\ldots=a_{n}^{l_{n}}=R^{m}\left(a_{1}, \ldots, a_{n}\right)=1> \tag{1}
\end{equation*}
$$

2000 Mathematics Subject Classification: 20E06, 20E07, 20 H 10.
Key words and phrases: Tits alternative, generalized triangle group, free subgroup.
where $n \geq 2, m \geq 1, l_{i}=0$ or $l_{i} \geq 2$ for all $i, R\left(a_{1}, \ldots, a_{n}\right)$ is a cyclically reduced word in the free group on a_{1}, \ldots, a_{n} which is not a proper power, is called an one-relator product of n cyclic groups.

One relator products of cyclic groups provide a natural algebraic generalization of Fuchsian groups which are one relator products of cyclics relative to the standard Poincare presentation (see [6])

$$
\begin{aligned}
& F=\left\langle a_{1}, \ldots, a_{p}, b_{1}, \ldots, b_{t}, c_{1}, d_{1}, \ldots, c_{g}, d_{g}\right. \\
& \left.\qquad a_{i}^{m_{i}}=a_{1} \ldots a_{p} b_{1} \ldots b_{t}\left[c_{1}, d_{1}\right] \ldots\left[c_{g}, d_{g}\right]=1\right\rangle
\end{aligned}
$$

If $n=2$ and $m \geq 2$ then we have so-called generalized triangle groups

$$
T(k, l, m, R)=\left\langle a, b ; a^{k}=b^{l}=R^{m}(a, b)=1\right\rangle
$$

If $R(a, b)=a b$ then we obtain an ordinary triangle group.
Let Γ be a group of the form (1) and $m \geq 2$. If either $n \geq 4$ or $n=3$ and $\left(l_{1}, l_{2}, l_{3}\right) \neq(2,2,2)$ then Γ contains a free subgroup of rank 2 [5]. If $n=3$ and $\left(l_{1}, l_{2}, l_{3}\right)=(2,2,2)$ then Γ either contains a free subgroup of rank 2 or a free abelian subgroup of rank 2 and index 2.

The case when Γ is a generalized triangle group is much more difficult. Rosenberger stated the following conjecture.

Conjecture 1 ([13]). The Tits alternative holds for generalized triangle groups.

Fine, Levin, and Rosenberger proved this conjecture in the following cases: 1) $l=0$ or $k=0 ; 2) m \geq 3[5]$. Now suppose that $k, l, m \geq 2$. Let $s(\Gamma)=1 / k+1 / l+1 / m$. If $s(\Gamma)<1$ then Baumslag, Morgan and Shalen [1] proved that the group Γ contains a non abelian free subgroup. Using some new methods, Howie [8] proved Conjecture 1 in the case $s(\Gamma)=1$ and up to equivalence $R \neq a b$. If $s(\Gamma)=1$ and $R=a b$ then Γ is an ordinary triangle group. The classical result says that Γ contains \mathbb{Z} as a subgroup of finite index.

Now consider groups of the form

$$
\begin{equation*}
\Gamma=T(2, l, 2, R)=\left\langle a, b ; a^{2}=b^{l}=R^{2}(a, b)=1\right\rangle \tag{2}
\end{equation*}
$$

where $l>2, R=a b^{v_{1}} \ldots a b^{v_{s}}, 0<v_{i}<l$. In the following cases Conjecture 1 holds for Γ : 1) $s \leq 4$ [13], [9]; 2) $l>5$ and $l \neq 6,10,12,15,20,30,60$ [2], [3]. In this paper we prove two theorems.

Theorem 1. Let Γ be a group of the form (2) with $s \geq 5$ and $l \in$ $\{6,12,30,60\}$. Then Γ contains a free subgroup of rank 2 .

Theorem 2. Let $\Gamma=\left\langle a, b ; a^{3}=b^{4}=R^{2}(a, b)=1\right\rangle$, where $R=$ $a^{u_{1}} b^{v_{1}} \ldots a^{u_{s}} b^{v_{s}}$ with $0<u_{i}<3$ and $0<v_{i}<4$. In the following cases Γ contains a non-abelian free subgroup: i) $V=\sum_{i=1}^{s} v_{i}$ is even; $\left.i i\right)$ s is even.

Thus, Conjecture 1 is still open for groups $T(2, l, 2, R)$ with $l=$ $3,4,5,10,15,20$ and groups $T(3, l, 2, R)$ with $l=3,4,5$.

1. Some auxiliary results

In this section we prove several auxiliary results used in the proofs of theorems 1 and 2. Throughout we shall denote the ring of algebraic integers in \mathbb{C} by \mathcal{O}, the group of units in \mathcal{O} by \mathcal{O}^{*}, the free group of a rank 2 with generators g and h by $F_{2}=<g, h>$, the greatest common divisor of integers a and b by (a, b). the image of a matrix $A \in \mathrm{SL}_{2}(\mathbb{C})$ in $\mathrm{PSL}_{2}(\mathbb{C})$ by $[A]$, the trace of a matrix A by $\operatorname{tr} A$, the identity matrix in $\mathrm{SL}_{2}(\mathbb{C})$ by E. The following lemma characterizes elements of finite order in $\mathrm{PSL}_{2}(\mathbb{C})$.

Lemma 1. Let $2 \leq m \in \mathbb{Z}$ and $\pm E \neq X \in \mathrm{SL}_{2}(\mathbb{C})$. Then $[X]^{m}=1$ in $\mathrm{PSL}_{2}(\mathbb{C})$ if and only if $\operatorname{tr} X=2 \cos \frac{r \pi}{m}$ for some $r \in\{1, \ldots, m-1\}$.

The proof easily follows from the fact that $\varepsilon, \varepsilon^{-1}$, where ε is a root of unity of degree m, are the eigenvalues of the matrix X.

We shall use standard facts from geometric representation theory (see $[4,10])$. Here we recall some notations. Let $F_{n}=\left\langle g_{1}, \ldots, g_{n}\right\rangle$ be a free group, $R\left(F_{n}\right)=\mathrm{SL}_{2}(\mathbb{C})^{n}$ be a representation variety of F_{n} in $\mathrm{SL}_{2}(\mathbb{C})$ The group $\mathrm{GL}_{2}(\mathbb{C})$ acts naturally on $R\left(F_{n}\right)$ (by simultaneous conjugation of components) and its orbits are in one-to-one correspondence with the equivalence classes of representations of F_{n}. Under this action orbits of $\mathrm{GL}_{2}(\mathbb{C})$ are not necessarily closed and so the variety of orbits (the geometric quotient) is not an algebraic variety. However one can consider the categorical quotient $R\left(F_{n}\right) / \mathrm{GL}_{2}(\mathbb{C})$ (see [12]), which we shall denote by $X\left(F_{n}\right)$ and call the variety of characters. By construction, its points parametrize closed $\mathrm{GL}_{2}(\mathbb{C})$-orbits. It is well known that an orbit of a representation is closed iff the corresponding representation is fully reducible and so the points of the variety $X\left(F_{n}\right)$ are in one-to-one correspondence with the equivalence classes of fully reducible representations of Γ in $\mathrm{SL}_{2}(\mathbb{C})$.

For an arbitrary element $g \in F_{n}$ one can consider the regular function

$$
\tau_{g}: R\left(F_{n}\right) \rightarrow \mathbb{C}, \quad \tau_{g}(\rho)=\operatorname{tr} \rho(g)
$$

Usually, τ_{g} is called a Fricke character of the element g. It is known that the \mathbb{C}-algebra $T\left(F_{n}\right)$ generated by all functions $\tau_{g}, g \in F_{n}$, is equal to $\mathbb{C}\left[X\left(F_{n}\right)\right]=\mathbb{C}\left[R\left(F_{n}\right)\right]^{\mathrm{GL}_{2}(\mathbb{C})}$. Combining results of $[4,14]$ it is easy to see that $T\left(F_{n}\right)$ is generated by Fricke characters $\tau_{g_{i}}=x_{i}, \tau_{g_{i} g_{j}}=y_{i j}$, $\tau_{g_{i} g_{j} g_{k}}=z_{i j k}$, where $1 \leq i<j<k \leq n$. Consider a morphism π : $R\left(F_{n}\right) \rightarrow \mathbb{A}^{t}$ defined by

$$
\begin{array}{r}
\pi(\rho)=\left(x_{1}(\rho), \ldots, x_{n}(\rho), y_{12}(\rho), \ldots, y_{n-1, n}(\rho)\right. \\
\left.z_{123}(\rho), \ldots, z_{n-2, n-1, n}(\rho)\right) \tag{3}
\end{array}
$$

where $t=n+n(n-1) / 2+n(n-1)(n-2) / 6$. The image $\pi\left(R\left(F_{n}\right)\right)$ is closed in $\mathbb{A}^{t}[4]$. Since $X\left(F_{n}\right)$ and $\pi\left(R\left(F_{n}\right)\right)$ are biregularly isomorphic, we shall identify $X\left(F_{n}\right)$ and $\pi\left(R\left(F_{n}\right)\right)$. Obviously, $\operatorname{dim} R\left(F_{n}\right)=3 n$, $\operatorname{dim} X\left(F_{n}\right)=3 n-3$. Set
$R^{s}\left(F_{n}\right)=\left\{\rho \in R\left(F_{n}\right) \mid \rho\right.$ is irreducible $\}, \quad X^{s}\left(F_{n}\right)=\pi\left(R^{s}\left(F_{n}\right)\right)$.
$R^{s}\left(F_{n}\right), X^{s}\left(F_{n}\right)$ are open in Zariski topology subsets of $R\left(F_{n}\right), X\left(F_{n}\right)$ respectively [4].

Now, consider a free group $F_{2}=\langle g, h\rangle$. The ring $T\left(F_{2}\right)$ is generated by the functions $\tau_{g}, \tau_{h}, \tau_{g h}$.
Lemma 2. For all $\alpha, \beta, \Gamma \in \mathbb{C}$ there exist matrices $A, B \in \mathrm{SL}_{2}(\mathbb{C})$ such that $\tau_{g}(A, B)=\operatorname{tr} A=\alpha, \quad \tau_{h}(A, B)=\operatorname{tr} B=\beta, \quad \tau_{g h}(A, B)=\operatorname{tr} A B=$ Γ.

This lemma can be easily proved by straightforward computations.
Lemma 2 implies that $X\left(F_{2}\right)=\pi\left(R\left(F_{2}\right)\right)=\mathbb{A}^{3}$. Moreover, the functions $\tau_{g}, \tau_{h}, \tau_{g h}$ are algebraically independent over \mathbb{C} and for every $u \in F_{2}$ we have

$$
\tau_{u}=Q_{u}\left(\tau_{g}, \tau_{h}, \tau_{g h}\right)
$$

where $Q_{u} \in \mathbb{Z}[x, y, z]$ is a uniquely determined polynomial with integer coefficients [4]. The polynomial Q_{u} is usually called the Fricke polynomial of the element u.

Consider polynomials $P_{n}(\lambda)$ satisfying the initial conditions $P_{-1}(\lambda)=$ $0, P_{0}(\lambda)=1$ and the recurrence relation

$$
P_{n}(\lambda)=\lambda P_{n-1}(\lambda)-P_{n-2}(\lambda)
$$

If $n<0$ then we set $P_{n}(\lambda)=-P_{|n|-2}(\lambda)$. The degree of the polynomial $P_{n}(\lambda)$ is equal to n if $n>0$ and to $|n|-2$ if $n<0$. It is easy to verify by induction on n that

$$
\begin{equation*}
P_{n}(2 \cos \varphi)=\frac{\sin (n+1) \varphi}{\sin \varphi} \tag{4}
\end{equation*}
$$

It follows from (4) that the polynomial $P_{n}(\lambda), n \geq 1$, has n zeros described by the formula

$$
\begin{equation*}
\lambda_{n, k}=2 \cos \frac{k \pi}{n+1}, \quad k=1,2, \ldots, n \tag{5}
\end{equation*}
$$

Moreover, it is easy to verify by induction that for $n \geq 0$ we have

$$
\begin{align*}
& P_{2 n}(\lambda)=\lambda^{2 n}+\cdots+(-1)^{n} \\
& P_{2 n-1}(\lambda)=\lambda\left(\lambda^{2 n-2}+\cdots+(-1)^{n-1} n\right) \tag{6}
\end{align*}
$$

Lemma 3. Let $k, l \in \mathbb{Z},(k, l)=1$ and $l \geq 2$ is not a power of a prime. Then $2 \sin \frac{k \pi}{l} \in \mathcal{O}^{*}$.
Proof. Let $l=2^{t} u$, where u is odd. If $t=1$ then k is odd and $2 \sin \frac{k \pi}{l}=$ $2 \cos \frac{r \pi}{u}$ with $r=(u-k) / 2 \in \mathbb{Z}$ Since $u-1$ is even, it follows from (6) that $2 \cos \frac{r \pi}{u} \in \mathcal{O}^{*}$.

If $t>1$ then k is odd and $2 \sin \frac{k \pi}{l}=2 \cos \frac{r \pi}{2^{t} u}$ with $r=2^{t-1} u-k$.
If $t=0$ then $2 \sin \frac{k \pi}{l}=2 \cos \frac{r \pi}{2 u}$ with $r=u-2 k$.
Thus, it is sufficient to prove that $2 \cos \frac{r \pi}{2^{t} u} \in \mathcal{O}^{*}$, where $t \geq 1$, $\left(r, 2^{t} u\right)=1, u>1$ and u is not a power of a prime in the case $t=1$. Let $u=p_{1}^{\alpha_{1}} \ldots p_{s}^{\alpha_{s}}$, where p_{i} is a prime and $0<\alpha_{i} \in \mathbb{Z}$ for $i=1,2, \ldots, s$. By (5) numbers $\lambda_{i}=2 \cos \frac{i}{2^{t} u} \pi, i=1,2, \ldots, 2^{t} u-1$, are the roots of the polynomial $P_{2^{t} u-1}(\lambda)$, so that

$$
P_{2^{t} u-1}(\lambda)=\prod_{i=1}^{2^{t} u-1}\left(\lambda-\lambda_{i}\right)
$$

and the constant term of $P_{2^{t}} u-1$ is equal to $(-1)^{2^{t-1}-1} 2^{t-1} p_{1}^{\alpha_{1}} \ldots p_{s}^{\alpha_{s}}$. On the other hand, the polynomials $P_{2 p_{i}^{\alpha_{i}-1}}(\lambda), \mathrm{i}=1,2, \ldots, \mathrm{~s}$, and $P_{2^{t}-1}(\lambda)$ has the roots $2 \cos \frac{j \pi}{2 p_{i}^{\alpha_{i}}}, j=1,2, \ldots, 2 p_{i}^{\alpha_{i}}-1$, and $2 \cos \frac{j \pi}{2^{t}}, j=1,2, \ldots, 2^{t}-1$, respectively. Hence, all these polynomials divide $P_{2^{t} u-1}(\lambda)$ and any two of them have only one common root $\lambda=0$. Hence,

$$
P_{2^{t} u-1}(\lambda)=F(\lambda) F_{1}(\lambda)
$$

where

$$
F(\lambda)=\lambda^{-s} P_{2^{t}-1}(\lambda) \prod_{i=1}^{s} P_{2 p_{i}^{\alpha_{i}-1}}(\lambda)
$$

By (5) the constant term of $F(\lambda)$ is equal to $(-1)^{2^{t-1}-1} 2^{t-1} p_{1}^{\alpha_{1}} \ldots p_{s}^{\alpha_{s}}$. Consequently, the constant term and the leading coefficient of $F_{1}(\lambda)$ are equal to 1 . Since $2 \cos \frac{r \pi}{2^{t} u}$ is not a root of $F(\lambda)$, it is a root of $F_{1}(\lambda)$ and we obtain $2 \cos \frac{r \pi}{2^{t} u} \in \mathcal{O}^{*}$ as required.

Furthermore, we require the more detailed information on the Fricke polynomials. Let $w=g^{\alpha_{1}} h^{\beta_{1}} \ldots g^{\alpha_{s}} h^{\beta_{s}} \in F_{2}$ and let $x=\tau_{g}, y=\tau_{h}$, $z=\tau_{g h}$. Let us treat the Fricke polynomial $Q_{w}(x, y, z)$ as a polynomial in z. Set

$$
Q_{w}(x, y, z)=M_{n}(x, y) z^{n}+M_{n-1}(x, y) z^{n-1}+\ldots+M_{0}(x, y)
$$

Lemma 4 ([16]). The degree of the Fricke polynomial $Q_{w}(x, y, z)$ with respect to z is equal to s and its leading coefficient $M_{s}(x, y)$ has the form

$$
\begin{equation*}
\left.M_{s}(x, y)=\prod_{i=1}^{s} P_{\alpha_{i}-1}(x)\right) P_{\beta_{i}-1}(y) \tag{7}
\end{equation*}
$$

A subgroup $H \in \mathrm{PSL}_{2}(\mathbb{C})$ is called non-elementary if H is infinite, irreducible and non-isomorphic to a dihedral group.

Lemma 5 ([11]). Let $H \in \mathrm{PSL}_{2}(\mathbb{C})$ be a non-elementary subgroup. Then H contains a non-abelian free subgroup.

Lemma 6 ([4]). Let $A, B \in \mathrm{SL}_{2}(\mathbb{C})$ and $\operatorname{tr} A=x, \operatorname{tr} B=y, \operatorname{tr} A B=z$. A subgroup $<A, B>$ is irreducible if and only if

$$
\operatorname{tr} A B A^{-1} B^{-1}=x^{2}+y^{2}+z^{2}-x y z-2 \neq 2
$$

2. Proof of Theorem 1.

Let Γ be a group from Theorem 1, that is,

$$
\begin{equation*}
\Gamma=T(2, l, 2, R)=\left\langle a, b ; a^{2}=b^{l}=R^{2}(a, b)=1\right\rangle \tag{8}
\end{equation*}
$$

where $R=a b^{v_{1}} \ldots a b^{v_{s}}, 0<v_{i}<l, s>4$. Set $V=\sum_{i=1}^{s} v_{i}$. If $(V, l) \neq 1$ then Γ contains a non-abelian free subgroup (see [2]). So we shall assume that $(V, l)=1$. To prove Theorem 1, we construct a representation $\rho: \Gamma \rightarrow \mathrm{PSL}_{2}(\mathbb{C})$ such that $\rho(\Gamma)$ contains a non-abelian free subgroup. Let k be an integer such that $\frac{k}{l}=\frac{k^{\prime}}{l^{\prime}}$ with $\left(k^{\prime}, l^{\prime}\right)=1$ and $l^{\prime}>5$. Set

$$
\begin{equation*}
\beta_{k}=2 \cos \frac{k \pi}{l}, \quad f_{R, k}(z)=Q_{R}\left(0, \beta_{k}, z\right) \tag{9}
\end{equation*}
$$

where Q_{R} is the Fricke polynomial of R.
Definition 2. Let z_{0} be a root of a polynomial $f_{R, k}(z)$ and $A, B \in \mathrm{SL}_{2}(\mathbb{C})$ be matrices such that $\operatorname{tr} A=0, \operatorname{tr} B=\beta_{k}, \operatorname{tr} A B=z_{0}$. We shall denote by $G\left(z_{0}\right)$ a subgroup of $\mathrm{PSL}_{2}(\mathbb{C})$, generated by $[A],[B]$.

The group $G\left(z_{0}\right)$ is an epimorphic image of Γ since by Lemma 1

$$
[A]^{2}=[B]^{l}=R^{2}([A],[B])=1
$$

Lemma 7. Numbers $\pm 2 \sin \frac{k \pi}{l}$ are not roots of the polynomial $f_{R, k}(z)$.
Proof. Suppose that $f_{R, k}\left(-2 \sin \frac{k \pi}{l}\right)=0$. Let ε be a primitive root of unity of degree $2 l$. Consider a representation $\rho_{k}: F_{2} \rightarrow \mathrm{SL}_{2}(\mathbb{C})$ defined by

$$
\rho_{k}(g)=A=\left(\begin{array}{cc}
\varepsilon^{l / 2} & 0 \tag{10}\\
1 & \varepsilon^{-l / 2}
\end{array}\right), \quad \rho_{k}(h)=B_{k}=\left(\begin{array}{cc}
\varepsilon^{k} & x \\
0 & \varepsilon^{-k}
\end{array}\right)
$$

Then we have $\operatorname{tr} A=0, \operatorname{tr} B_{k}=\beta_{k}, \operatorname{tr} A B_{k}=x-2 \sin \frac{k \pi}{l}$. So we obtain

$$
f_{R, k}(z)\left(\rho_{k}\right)=f_{R, k}\left(x-2 \sin \frac{k \pi}{l}\right)=g_{k}(x)=\operatorname{tr} R\left(A, B_{k}\right)
$$

Since $-2 \sin \frac{k \pi}{l}$ is a root of $f_{R, k}(z), 0$ is a root of $g_{k}(x)$. This means that a constant term of $g_{k}(x)$ is equal to 0 . On the other hand, a constant term of $\operatorname{tr} R\left(A, B_{-k}\right)$ is equal to

$$
\varepsilon^{l s / 2+k V}+\varepsilon^{-l s / 2-k V}=2 \cos \left(\frac{l s / 2+k V}{l} \pi\right) \neq 0
$$

since $(V, l)=1$ by assumption. This contradiction proves that $2 \sin \frac{k \pi}{l}$ is not a root of $f_{R, k}(z)$. Analogously, considering a matrix B_{-k} instead the matrix B_{k}, we obtain that $2 \sin \frac{k \pi}{l}$ is not a root of $f_{R, k}(z)$.

Lemma 8. Assume that the polynomial $f_{R, k}(z)$ has a root $z_{0} \neq 0$. Then Γ contains a non-abelian free subgroup.

Proof. By Lemma 7 we have $z_{0} \neq \pm 2 \sin \frac{k \pi}{l}$. Let us show that $G\left(z_{0}\right)$ is a non-elementary subgroup of $\mathrm{PSL}_{2}(\mathbb{C})$. First, $G\left(z_{0}\right)$ is irreducible by Lemma 6 since

$$
\operatorname{tr} A B A^{-1} B^{-1}-2=z_{0}^{2}-4 \sin ^{2} \frac{k \pi}{l} \neq 0
$$

Second, $G\left(z_{0}\right)$ is not a dihedral group since two of three numbers $\operatorname{tr} A$, $\operatorname{tr} B, \operatorname{tr} A B$ are not equal to 0 (see [11]). Third, it follows from classification of finite subgroups of $S L C$ [11] that $G\left(z_{0}\right)$ is infinite since it is irreducible and contains an element $[B]$ of order >5. Thus, $G\left(z_{0}\right)$ (and consequently Γ) contains a non-abelian free subgroup.

Bearing in mind Lemmas 7 and 8, we shall assume in what follows that

$$
\begin{equation*}
f_{R, k}(z)=M_{R, k} z^{s} \tag{11}
\end{equation*}
$$

where by lemma 4

$$
\begin{equation*}
M_{R, k}=\prod_{i=1}^{s} P_{v_{i}-1}\left(2 \cos \frac{k \pi}{l}\right)=\left(2 \sin \frac{k \pi}{l}\right)^{-s} \prod_{i=1}^{s} 2 \sin \frac{v_{i} k \pi}{l} \tag{12}
\end{equation*}
$$

Lemma 9. In the following cases Γ contains a non-abelian free subgroup:

1) $l=6, s$ is odd and there exists i such that $v_{i} \in\{2,3,4\}$;
2) $l=6, s$ is even and either there exists i such that $v_{i}=3$ or there exist i, j such that $i \neq j$ and $v_{i}, v_{j} \in\{2,4\}$;
3) $l>6$ and there exists i such that 6 divides v_{i}.

Proof. Let $f_{R, k}(z)=M_{R, k} z^{s}$ and ρ_{-k} be a representation defined by (10). Then

$$
\begin{equation*}
g_{k}(x)=f_{R, k}\left(x+2 \sin \frac{k \pi}{l}\right)=M_{R, k}\left(x+2 \sin \frac{k \pi}{l}\right)=\operatorname{tr} R\left(A, B_{-k}\right) \tag{13}
\end{equation*}
$$

Comparing constant terms in (13), we obtain

$$
\begin{equation*}
\prod_{i=1}^{s} 2 \sin \frac{v_{i} k \pi}{l}=2 \cos \frac{l s / 2-k V}{l} \pi \tag{14}
\end{equation*}
$$

1) If $l=6, s=2 s_{1}+1$ then we set $k=1$ and obtain $2 \cos \frac{6 s_{1}+3-V}{6} \pi=$ ± 1 since $(V, 6)=1$. Suppose that there exists i such that $v_{i} \in\{2,3,4\}$. Then

$$
\delta=P_{v_{i}-1}\left(2 \cos \frac{\pi}{6}\right)=\frac{2 \sin v_{i} \pi / 6}{2 \sin \pi / 6} \in\{\sqrt{3}, 2\}
$$

and we have from (14)

$$
\begin{equation*}
\prod_{j=1}^{s} P_{v_{j}-1}\left(2 \cos \frac{\pi}{6}\right)=\delta \prod_{j \neq i} P_{v_{j}-1}\left(2 \cos \frac{\pi}{6}\right)= \pm 1 \tag{15}
\end{equation*}
$$

It follows from (15) that $1 / \delta \in \mathcal{O}$ which is a contradiction.
2) If $l=6$ and $s=2 s_{1}$ then we set $k=1$ and obtain $2 \cos \frac{6 s_{1}-V}{6} \pi=$ $\pm \sqrt{3}$ since $(V, 6)=1$. First, suppose that there exists i such that $v_{i}=3$. Then

$$
P_{v_{i}-1}\left(2 \cos \frac{\pi}{6}\right)=\frac{2 \sin v_{i} \pi / 6}{2 \sin \pi / 6}=2
$$

and we have from (14)

$$
\begin{equation*}
\prod_{j=1}^{s} P_{v_{j}-1}\left(2 \cos \left(\frac{\pi}{6}\right)\right)=2 \prod_{j \neq i} P_{v_{j}-1}\left(2 \cos \left(\frac{\pi}{6}\right)\right)= \pm \sqrt{3} \tag{16}
\end{equation*}
$$

It follows from (16) that $\sqrt{3} / 2 \in \mathcal{O}$ which is a contradiction.
Now, suppose that there exists i, j such that $v_{i}, v_{j} \in\{2,4\}$. For $r \in\{i, j\}$ we have

$$
P_{v_{r}-1}\left(2 \cos \frac{\pi}{6}\right)=\frac{2 \sin v_{r} \pi / 6}{2 \sin \pi / 6}=\sqrt{3}
$$

Hence by (14)

$$
\begin{equation*}
\prod_{k=1}^{s} P_{v_{k}-1}\left(2 \cos \frac{\pi}{6}\right)=3 \prod_{k \neq i, k \neq j} P_{v_{k}-1}\left(2 \cos \frac{\pi}{6}\right)= \pm \sqrt{3} \tag{17}
\end{equation*}
$$

It follows from (17) that $\sqrt{3} / 3 \in \mathcal{O}$ which is a contradiction.
3) If $l \in\{12,30\}$ then by assumptions of the lemma there exists i such that $v_{i}=6$. Set $k=1$. Then

$$
2 \sin \frac{v_{i} \pi}{l}= \begin{cases}2, & \text { if } l=12 \\ 2 \sin \frac{\pi}{5}=\frac{\sqrt{2} \sqrt{5-\sqrt{5}}}{2}, & \text { if } l=30\end{cases}
$$

In both cases $2 \sin \frac{v_{i} \pi}{l} \notin \mathcal{O}^{*}$. On the other hand, $2 \cos \frac{l s / 2-V}{l} \pi \in \mathcal{O}^{*}$ by lemma (3) and (14) implies

$$
\frac{1}{2 \sin \frac{v_{i} \pi}{l}}=\frac{1}{2 \cos \frac{l_{s / 2-V}^{l}}{l} \pi} \prod_{j \neq i} 2 \sin \frac{v_{j} \pi}{l} \in \mathcal{O}
$$

which is a contradiction.
If $l=60$ and there exists i such that $v_{i}=30$ then we set $k=$ 1. As before we obtain from (14) that $2 \sin \frac{v_{i} \pi}{60}=2 \in \mathcal{O}^{*}$ which is a contradiction. If for any i we have $v_{i} \neq 30$ then we set $k=2$ and obtain a contradiction in the same way as in the case $l=30$.

Let A, B_{k} be matrices defined in (10), $W\left(A, B_{k}\right)=A B_{k}^{u_{1}} \ldots A B_{k}^{u_{s}}$, where $0<u_{i}<l$. A set $\left(u_{1}, \ldots, u_{s}\right)$ will be considered as cyclically ordered. Let

$$
\begin{equation*}
l_{i}=\left|\left\{j \mid u_{j}=i\right\}\right|, \quad f_{i, j}=\left|\left\{r \mid u_{r}=i, u_{r+1}=j\right\}\right| . \tag{18}
\end{equation*}
$$

We have following equations:

$$
\begin{equation*}
\sum_{i=1}^{l-1} l_{i}=s, \quad \sum_{i=1}^{l-1} f_{i j}=l_{j}, \quad \sum_{j=1}^{l-1} f_{i j}=l_{i}, \quad i, j=1, \ldots, l-1 \tag{19}
\end{equation*}
$$

Lemma 10. Let $g(x)=\operatorname{tr} W\left(A, B_{t}\right)=a_{0} x^{s}+\cdots+a_{s}, h_{i}=P_{i-1}\left(\varepsilon^{k}+\right.$ $\left.\varepsilon^{-k}\right)$. Then we have $a_{0}=\prod_{j=1}^{s} h_{u_{j}}$ and

$$
\begin{align*}
a_{2}= & a_{0} \sum_{j=1}^{l-1} \frac{f_{i i}}{h_{i}}\left(\frac{l_{i}-2}{h_{i}}+\sum_{j \neq i} \frac{l_{j} \varepsilon^{t i-t j}}{h_{j}}\right)+ \\
& a_{0} \sum_{i \neq j} \frac{f_{i j}}{h_{i}}\left(\frac{l_{i}-1}{h_{i}}+\frac{\left(l_{j}-1\right) \varepsilon^{t i-t j}}{h_{j}}+\sum_{k \neq i, k \neq j} \frac{l_{k} \varepsilon^{t i-t k}}{h_{k}}\right) \tag{20}\\
& a_{0}\left(\sum_{i=1}^{l-1} \frac{l_{i}\left(l_{i}-1\right)}{2 h_{i}^{2}}\left(\varepsilon^{2 t i}+\varepsilon^{-2 t i}\right)+\sum_{i \neq j} \frac{l_{i} l_{j}}{h_{i} h_{j}}\left(\varepsilon^{t i+t j}+\varepsilon^{-t i-t j}\right)\right) .
\end{align*}
$$

This lemma can be proved by direct computations.

2.1. The case $l=6, s$ is odd.

Bearing in mind Lemma 9, we have $v_{i} \in\{1,5\}$ for every i. Set $k=1$ and $M_{R}=M_{R, 1}$. Then $M_{R}=\prod_{i=1}^{s} P_{v_{i}-1}\left(2 \cos \frac{\pi}{6}\right)=1$ since $P_{0}=1$ and $P_{4}\left(2 \cos \frac{\pi}{6}\right)=\frac{2 \sin 5 \pi / 6}{2 \sin \pi / 6}=1$. Consequently,

$$
\begin{equation*}
f_{R}(z)=z^{s} \tag{21}
\end{equation*}
$$

Consider a representation $\rho: F_{2} \rightarrow \mathrm{PSL}_{2}(\mathbb{C}), \rho(g)=A, \rho(h)=B_{1}$, where A, B_{1} are defined in (10). Then we have

$$
\begin{equation*}
f_{1}(x)=\operatorname{tr} R\left(A, B_{1}\right)=(x-1)^{s} . \tag{22}
\end{equation*}
$$

Further, the equations (19) have the form

$$
\begin{array}{lll}
f_{11}+f_{15}=l_{1}, & f_{11}+f_{51}=l_{1}, & l_{1}+l_{5}=s, \\
f_{55}+f_{15}=l_{5}, & f_{55}+f_{51}=l_{5} . & \tag{23}
\end{array}
$$

It follows from (23) that $f_{15}=f_{51}$. Taking into account Lemma 10, we obtain that the coefficient by x^{s-2} of the polynomial $f_{1}(x)$ is equal to

$$
\begin{align*}
& a_{2}=f_{11}\left(l_{1}-2+l_{5} \varepsilon^{-4}\right)+f_{15}\left(l_{1}-1+\left(l_{5}-1\right) \varepsilon^{-4}\right)+ \\
& f_{51}\left(\left(l_{1}-1\right) \varepsilon^{4}+l_{5}-1\right)+f_{55}\left(l_{1} \varepsilon^{4}+l_{5}-2\right)- \\
& \quad \frac{l_{1}\left(l_{1}-1\right)}{2}-\frac{l_{5}\left(l_{5}-1\right)}{2}+2 l_{1} l_{5}=3 f_{15}+\frac{s^{2}}{2}-\frac{3}{2} s . \tag{24}
\end{align*}
$$

On the other hand, $a_{2}=s(s-1) / 2$ by (22). Thus, we obtain

$$
\begin{equation*}
s=3 f_{15} \tag{25}
\end{equation*}
$$

Now, consider an epimorphic image $\Gamma_{1}=\left\langle c, d ; c^{2}=d^{3}=R^{2}(c, d)=\right.$ 1) of the group Γ, where $R(c, d)=c d^{v_{1}} \ldots c d^{v_{s}}$. We can write the word $R(c, d)$ from the free product $\left\langle c ; c^{2}=1\right\rangle *\left\langle d ; d^{3}=1\right\rangle$ in the form $R_{1}(c, d)=$ $c d^{u_{1}} \ldots c d^{u_{s}}$, where $u_{i}=\left\{\begin{array}{ll}1, & \text { if } v_{i}=1, \\ 2, & \text { if } v_{i}=5 .\end{array}\right.$ Let $U=\sum_{i=1}^{s} u_{i}$. . Since $(V, 6)=$ 1 , we have $(U, 3)=1$. Set

$$
P(z)=Q_{R_{1}}(0,1, z)
$$

where $Q_{R_{1}}$ is a Fricke polynomial of R_{1}.
Lemma 11. If the polynomial $P(z)$ has a root z_{0} which is not equal to 0 , $\pm 1, \pm \sqrt{2}, \frac{ \pm 1 \pm \sqrt{5}}{2}, \pm \sqrt{3}$ then the group Γ_{1} (and, consequently, Γ) contains a non-abelian free subgroup.

Proof. Let $X, Y \in \mathrm{SL}_{2}(\mathbb{C})$ be matrices such that $\operatorname{tr} X=0, \operatorname{tr} Y=1$, $\operatorname{tr} X Y=z_{0}$. Let $H=\langle[X],[Y]\rangle \subset \mathrm{PSL}_{2}(\mathbb{C})$. First, H is infinite (see [17]). Second, H is not dihedral group since $[Y]$ has order 3. Third, H is irreducible since $\operatorname{tr} X Y X^{-1} Y^{-1}-2=z_{0}^{2}-3 \neq 0$. Thus, H is a non-elementary subgroup of $\mathrm{PSL}_{2}(\mathbb{C})$. Consequently, H contains a nonabelian free subgroup.

Since the polynomial $P(z)$ has integer coefficients and bearing in mind Lemma 11, we may assume that $P(z)$ has the form

$$
\begin{equation*}
P(z)=z^{\alpha_{1}}\left(z^{2}-1\right)^{\alpha_{2}}\left(z^{2}-2\right)^{\alpha_{3}}\left(z^{2}-z-1\right)^{\alpha_{4}}\left(z^{2}+z-1\right)^{\alpha_{5}}\left(z^{2}-3\right)^{\alpha_{6}} \tag{26}
\end{equation*}
$$

Consider a representation $\delta: F_{2} \rightarrow \mathrm{SL}_{2}(\mathbb{C}), g \mapsto A, h \mapsto B_{2}$, where A, B_{2} are defined in (10). We have $\operatorname{tr} A=0, \operatorname{tr} B_{2}=1, \operatorname{tr} A B_{2}=x-\sqrt{3}$. Consequently,

$$
\begin{align*}
& P_{1}(x)= \tau_{R_{1}}(0,1, z)(\delta)=P(x-\sqrt{3})=(x-\sqrt{3})^{\alpha_{1}}\left(x^{2}-2 \sqrt{3} x+2\right)^{\alpha_{2}} \\
& \cdot\left(x^{2}-2 \sqrt{3} x+1\right)^{\alpha_{3}}\left(x^{2}-(2 \sqrt{3}+1) x+2+\sqrt{3}\right)^{\alpha_{4}} \\
& \cdot\left(x^{2}-(2 \sqrt{3}-1) x+2-\sqrt{3}\right)^{\alpha_{5}}(x-2 \sqrt{3})^{\alpha_{6}} x^{\alpha_{6}}=\operatorname{tr} R_{1}\left(A, B_{2}\right) . \tag{27}
\end{align*}
$$

The constant term of the polynomial $\operatorname{tr} R_{1}\left(A, B_{2}\right)$ is equal to

$$
\varepsilon^{3 s+2 U}+\varepsilon^{-3 s-2 U}=2 \cos \frac{3 s+2 U}{6} \pi= \pm \sqrt{3}
$$

since s is odd and $(U, 3)=1$. Comparing constant terms in (27), we obtain $\alpha_{6}=0$ and

$$
\begin{equation*}
(-\sqrt{3})^{\alpha_{1}} 2^{\alpha_{2}}(2+\sqrt{3})^{\alpha_{4}}(2-\sqrt{3})^{\alpha_{5}}= \pm \sqrt{3} \tag{28}
\end{equation*}
$$

It follows from (28) that $\alpha_{1}=1, \alpha_{2}=0, \alpha_{4}=\alpha_{5}$. Thus, the polynomial $P_{1}(x)$ has the form:

$$
\begin{equation*}
P_{1}(x)=(x-\sqrt{3})\left(x^{2}-2 \sqrt{3} x+1\right)^{\alpha_{3}}\left(x^{4}-4 \sqrt{3} x^{3}+15 x^{2}-6 \sqrt{3} x+1\right)^{\alpha_{4}} . \tag{29}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
2 \alpha_{3}+4 \alpha_{4}+1=s \tag{30}
\end{equation*}
$$

It follows from (29) that the coefficient of $P_{1}(x)$ by x^{s-2} is equal to

$$
\begin{equation*}
a_{2}=\frac{3}{2} s^{2}-\frac{5}{2} s+1+\alpha_{4} \tag{31}
\end{equation*}
$$

On the other hand, we have by Lemma 10

$$
\begin{align*}
& a_{2}=f_{11}^{\prime}\left(l_{1}^{\prime}-2+l_{2}^{\prime} \varepsilon^{-2}\right)+f_{12}^{\prime}\left(l_{1}^{\prime}-1+\left(l_{2}^{\prime}-1\right) \varepsilon^{-2}\right)+ \\
& f_{21}^{\prime}\left(\left(l_{1}^{\prime}-1\right) \varepsilon^{2}+l_{2}^{\prime}-1\right)+f_{22}^{\prime}\left(l_{1}^{\prime} \varepsilon^{2}+l_{2}^{\prime}-2\right)+ \\
& \frac{l_{1}^{\prime}\left(l_{1}^{\prime}-1\right)}{2}+\frac{l_{2}^{\prime}\left(l_{2}^{\prime}-1\right)}{2}+2 l_{1}^{\prime} l_{2}^{\prime}=f_{12}^{\prime}+\frac{3}{2} s^{2}-\frac{5}{2} s \tag{32}
\end{align*}
$$

where $f_{11}^{\prime}=f_{11}, f_{12}^{\prime}=f_{15}, f_{21}^{\prime}=f_{51}, f_{22}^{\prime}=f_{55}, l_{1}^{\prime}=l_{1}, l_{2}^{\prime}=l_{5}$. It follows from (31), (32) that

$$
\begin{equation*}
f_{15}=1+\alpha_{4} \tag{33}
\end{equation*}
$$

Equations (25), (30), and (33) imply

$$
\begin{equation*}
2 \alpha_{3}+\frac{s}{3}-3=0 \tag{34}
\end{equation*}
$$

Since $\alpha_{3} \geq 0$, it follows from (34) that $\frac{s}{3}-3 \leq 0$, that is, $s \leq 9$. Thus, if $s>9$ then either $f_{R}(z)$ is not of the form (21) or $P(z)$ is not of the form (26). Bearing in mind lemmas 8 and 11 , we obtain that if $l=6, s$ is odd and $s>9$ then Γ contains a non-abelian free subgroup.

Now, let $s \leq 9$. Since $s>4, s$ is odd and $s=3 f_{15}$ by (25), we must have $s=9, f_{15}=3$. Furthermore, without loss of generality we can assume $l_{1}>l_{5}$. Moreover, one can cyclically shift the sequence $\left(v_{1}, \ldots, v_{s}\right)$. This transformation replaces the relation $R^{2}(a, b)$ with an equivalent one. It is easy to see that there exists only 9 words R under these conditions:

$$
\begin{array}{ll}
R_{1}=a b a b a b a b a b^{5} a b a b^{5} a b a b^{5}, & R_{2}=a b a b a b a b^{5} a b a b a b^{5} a b a b^{5}, \\
R_{3}=a b a b a b a b^{5} a b a b^{5} a b a b a b^{5}, & R_{4}=a b a b a b a b^{5} a b^{5} a b a b^{5} a b a b^{5}, \\
R_{5}=a b a b a b a b^{5} a b a b^{5} a b a b^{5} a b^{5}, & R_{6}=a b a b a b a b^{5} a b a b^{5} a b^{5} a b a b^{5}, \tag{35}\\
R_{7}=a b a b a b^{5} a b^{5} a b a b a b^{5} a b a b^{5}, & R_{8}=a b a b a b^{5} a b^{5} a b a b^{5} a b a b a b^{5}, \\
R_{9}=a b a b a b^{5} a b a b a b^{5} a b a b^{5} a b^{5} . &
\end{array}
$$

Direct computations show that $f_{R_{i}}(z) \neq z^{9}$ for $i=1, \ldots, 7$. But

$$
f_{R_{8}}(z)=f_{R_{9}}(z)=z^{9}
$$

Since $R_{9}(a, b)$ is conjugate to $R_{8}\left(a^{-1}, b^{-1}\right)^{-1}$, it is sufficient to consider only the group $\Gamma=\left\langle a, b ; a^{2}=b^{6}=R_{8}^{2}(a, b)=1\right\rangle$.

Lemma 12. The group Γ contains a non-abelian free subgroup.
Proof. Consider a dihedral group $D_{3}=\left\langle c, d ; c^{2}=d^{2}=(c d)^{3}=1\right\rangle$ of order 6 and a homomorphism

$$
\psi: \Gamma \rightarrow D_{3}, \quad a \mapsto c, b \mapsto d
$$

Obviously, $\psi\left(R_{8}\right)=1$, that is, ψ is well defined and ψ is an epimorphism. Let $\Gamma_{1}=\operatorname{ker} \psi \subset \Gamma$. Then $\left[\Gamma: \Gamma_{1}\right]=6$. Using Reidemeister-Schreier rewriting process, we obtain that Γ_{1} has a presentation of the form

$$
\begin{align*}
& \Gamma_{1}=\left\langle g_{1}, g_{2}, g_{3}, g_{4} ; g_{1}^{3}=g_{2}^{3}=\left(g_{3} g_{4}\right)^{3}=\left(g_{3}^{2} g_{4}^{-1}\right)^{2}=\right. \\
& \left(g_{3}^{-1} g_{4}^{2}\right)^{2}=W_{1}^{2}\left(g_{1}, g_{2}, g_{4}\right)=W_{1}^{2}\left(g_{2}, g_{1}, g_{3}\right)= \\
& \left.\quad W_{2}^{2}\left(g_{1}, g_{2}, g_{3}\right)=W_{2}^{2}\left(g_{2}, g_{4}, g_{1}\right)=1\right\rangle \tag{36}
\end{align*}
$$

where $W_{1}(g, h, t)=t g h^{2} t g h^{2} t h^{2}, W_{2}(g, h, t)=t^{-1} g t^{-1} g t^{-1} g h^{2}$.
To prove Lemma 12, it is sufficient to construct a representation δ : $\Gamma_{1} \rightarrow \mathrm{PSL}_{2}(\mathbb{C})$ such that the group $\delta\left(\Gamma_{1}\right)$ is a non-elementary subgroup of $\mathrm{PSL}_{2}(\mathbb{C})$. Let us consider matrices

$$
\begin{array}{ll}
A_{1}=\left(\begin{array}{cc}
x_{1} & \frac{-x_{1}^{2}+x_{1}-1}{y_{1}} \\
y_{1} & 1-x_{1}
\end{array}\right), & A_{3}=\left(\begin{array}{cc}
i & -1 \\
0 & -i
\end{array}\right) \\
A_{2}=\left(\begin{array}{cc}
x_{2} & \frac{-x_{2}^{2}+x_{2}-1}{y_{2}} \\
y_{2} & 1-x_{2}
\end{array}\right), & A_{4}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
\end{array}
$$

Then we have $\operatorname{tr} A_{1}=\operatorname{tr} A_{2}=\operatorname{tr} A_{3} A_{4}=1, \operatorname{tr} A_{3}^{2} A_{4}^{-1}=\operatorname{tr} A_{3}^{-1} A_{4}^{2}=0$. Therefore,

$$
\left[A_{1}\right]^{3}=\left[A_{2}\right]^{3}=\left(\left[A_{3}\right]\left[A_{4}\right]\right)^{3}=\left(\left[A_{3}\right]^{2}\left[A_{4}\right]^{-1}\right)^{2}=\left(\left[A_{3}\right]^{-1}\left[A_{4}\right]\right)^{2}=1
$$

by Lemma 1. Let us suppose that the following conditions hold:

$$
\begin{equation*}
\operatorname{tr} A_{1} A_{3}=\operatorname{tr} A_{2} A_{4}=\sqrt{2}, \quad \operatorname{tr} A_{2} A_{3}=\operatorname{tr} A_{1} A_{4} \tag{37}
\end{equation*}
$$

$$
\begin{align*}
\operatorname{tr} W_{1}\left(A_{1}, A_{2}, A_{4}\right)= & \operatorname{tr} W_{1}\left(A_{2}, A_{1}, A_{3}\right)= \\
& \operatorname{tr} W_{2}\left(A_{1}, A_{2}, A_{3}\right)=\operatorname{tr} W_{2}\left(A_{2}, A_{4}, A_{1}\right)=0 \tag{38}
\end{align*}
$$

It follows from (37) that

$$
\begin{align*}
& x_{2}=\frac{3 x_{1}^{2}+(-2+3 i \sqrt{2}) x_{1}-i \sqrt{2}-4 / 3}{2 x_{1}+i \sqrt{2}-1}, \quad y_{1}=2 i x_{1}-\sqrt{2}-i \\
& y_{2}=\frac{3 i x_{1}^{2}-(2 \sqrt{2}+3 i) x_{1}+\sqrt{2}+i / 3}{2 x_{1}+i \sqrt{2}-1} \tag{39}
\end{align*}
$$

Substituting (39) in (38), one obtains

$$
\begin{align*}
& \operatorname{tr} W_{1}\left(A_{1}, A_{2}, A_{4}\right)=\operatorname{tr} W_{1}\left(A_{2}, A_{1}, A_{3}\right)=\frac{h_{1}\left(x_{1}\right)}{\left(2 x_{1}+i \sqrt{2}-1\right)^{4}} \\
& \operatorname{tr} W_{2}\left(A_{1}, A_{2}, A_{3}\right)=\operatorname{tr} W_{2}\left(A_{2}, A_{4}, A_{1}\right)=\frac{h_{2}\left(x_{1}\right)}{\left(2 x_{1}+i \sqrt{2}-1\right)^{2}} \tag{40}
\end{align*}
$$

where

$$
\begin{gathered}
\begin{array}{r}
h_{1}\left(x_{1}\right)=-24 i+\frac{137 \sqrt{2}}{9}-\left(\frac{184 i}{3}+\frac{424 \sqrt{2}}{3}\right) x_{1}+\left(\frac{1790 i}{3}+22 \sqrt{2}\right) x_{1}^{2}+ \\
(-329 i+683 \sqrt{2}) x_{1}^{3}-(975 i+446 \sqrt{2}) x_{1}^{4}+(648 i-420 \sqrt{2}) x_{1}^{5}+ \\
(198 i+261 \sqrt{2}) x_{1}^{6}+(-108 i+18 \sqrt{2}) x_{1}^{7}-9 \sqrt{2} x_{1}^{8}
\end{array} \\
\begin{array}{r}
h_{2}\left(x_{1}\right)=3 \sqrt{2}+4 i / 3+(4 \sqrt{2}-16 i) x_{1}+(-10 \sqrt{2}+18 i) x_{1}^{2}+ \\
(-9 \sqrt{2}+3 i) x_{1}^{3}-3 i x_{1}^{4} .
\end{array}
\end{gathered}
$$

One can check that h_{2} devides h_{1}. Let x_{1}^{\prime} be a roort of the equation $h_{2}\left(x_{1}\right)=0$ and let $x_{2}^{\prime}, y_{1}^{\prime}, y_{2}^{\prime}$ be defined by (39). Then the set $\left\{x_{1}^{\prime}, x_{2}^{\prime}, y_{1}^{\prime}, y_{2}^{\prime}\right\}$ is a solution of equations (37), (38). Hence, matrices $A_{1}, A_{2}, A_{3}, A_{4}$ define a required representation

$$
\delta: \Gamma_{1} \rightarrow \mathrm{PSL}_{2}(\mathbb{C}), \quad \delta\left(g_{i}\right)=\left[A_{i}\right], i=1,2,3,4
$$

Let us show that $\delta\left(\Gamma_{1}\right)$ is a non-elementary subgroup of $\mathrm{PSL}_{2}(\mathbb{C})$. Consider a subgroup $G=\left\langle\left[A_{1} A_{3}\right],\left[A_{2} A_{4}\right]\right\rangle \subset \delta\left(\Gamma_{1}\right)$. By construction, we have $\operatorname{tr} A_{1} A_{3}=\operatorname{tr} A_{2} A_{4}=\sqrt{2}$. Next,

$$
\operatorname{tr} A_{1} A_{3} A_{2} A_{4}=\frac{h_{3}\left(x_{1}^{\prime}\right)}{\left(2 x_{1}^{\prime}+i \sqrt{2}-1\right)^{2}}=\Delta
$$

where

$$
\begin{array}{r}
h_{3}\left(x_{1}^{\prime}\right)=-3 x_{1}^{\prime 4}+(6-6 \sqrt{2} i) x_{1}^{\prime 3}+(11-9 \sqrt{2} i) x_{1}^{\prime 2}+(-14+5 \sqrt{2} i) x_{1}^{\prime}- \\
4 \sqrt{2} i-1 / 3
\end{array}
$$

Direct computations show that $\Delta \notin\{0,1,2\}$. By Lemma 6, G is irreducible and infinite (see [17]). Obviously, G is not a dihedral group. Therefore, G (and consequently Γ_{1}) is a non-elementary subgroup of $\mathrm{PSL}_{2}(\mathbb{C})$.

2.2. The case $l=6, s$ is even.

Since $(6, u)=1$ and bearing in mind Lemma 9, we can assume without loss of generality that

$$
R=a b^{v_{1}} \ldots a b^{v_{s}}
$$

where $v_{1} \in\{2,4\}, v_{i} \in\{1,5\}$ for $i=2, \ldots, s$. Moreover, we can assume that $v_{1}=2$ applying otherwise to the word R an automorphism $b \mapsto b^{-1}$ of a cyclic group $\left\langle b ; b^{2}=1\right\rangle$. Thus, $M_{R}=\prod_{i=1}^{s} P_{v_{i}-1}\left(2 \cos \frac{\pi}{6}\right)=\sqrt{3}$ since $P_{0}=1, P_{4}\left(2 \cos \frac{\pi}{6}\right)=\frac{2 \sin (5 \pi / 6)}{2 \sin (\pi / 6)}=1$, and $P_{1}\left(2 \cos \frac{\pi}{6}\right)=2 \cos \left(\frac{\pi}{6}\right)=\sqrt{3}$. Taking into account Lemma 8, we shall assume that

$$
f_{R}(z)=\sqrt{3} z^{s}
$$

Further, the equations (19) have the form

$$
\begin{align*}
f_{11}+f_{12}+f_{15} & =l_{1}, & f_{15}+f_{25}+f_{55}=l_{5}, & f_{12}+f_{52}=1 \\
f_{11}+f_{21}+f_{51} & =l_{1}, & f_{51}+f_{52}+f_{55}=l_{5}, & f_{21}+f_{25}=1 \tag{41}\\
l_{1}+l_{5} & =s-1 . & &
\end{align*}
$$

It follows from (41) that

$$
\begin{array}{ll}
f_{11}=l_{1}-f_{12}-f_{15}, & f_{55}=s-l_{1}-2-f_{15}+f_{21}, \\
f_{51}=f_{12}+f_{15}-f_{21}, & l_{5}=s-l_{1}-1, \quad f_{52}=1-f_{12} \tag{42}
\end{array}
$$

Consider a representation $\rho: F_{2} \rightarrow \mathrm{PSL}_{2}(\mathbb{C}), \rho(g)=A, \rho(h)=B_{1}$, where A and B_{1} are defined by (10). Then we have

$$
\begin{equation*}
f_{1}(x)=\operatorname{tr} R\left(A, B_{1}\right)=\sqrt{3}(x-1)^{s} \tag{43}
\end{equation*}
$$

Bearing in mind Lemma 10 and (42), we obtain that the coefficient by x^{s-2} of the polynomial $f_{1}(x)$ is equal to

$$
\begin{equation*}
a_{2}=\sqrt{3}\left(\frac{1}{2} s^{2}+\frac{1}{2} s+2-2 f_{21}+f_{12}+3 f_{15}\right) \tag{44}
\end{equation*}
$$

On the other hand, $a_{2}=\sqrt{3} s(s-1) / 2$. Thus, we obtain

$$
\begin{equation*}
s+2 f_{21}-f_{12}-3 f_{15}-2=0 \tag{45}
\end{equation*}
$$

Now, consider an epimorphic image Γ_{1} of the group Γ :

$$
\Gamma_{1}=\left\langle c, d ; c^{2}=d^{3}=R^{2}(c, d)=1\right\rangle
$$

where $R(c, d)=c d^{v_{1}} \ldots c d^{v_{s}}$. We can write the word $R(c, d)$ from the free product $\left\langle c ; c^{2}=1\right\rangle *\left\langle d ; d^{3}=1\right\rangle$ in the form $R_{1}(c, d)=c d^{u_{1}} \ldots c d^{u_{s}}$, where $u_{i}=\left\{\begin{array}{ll}1, & \text { if } v_{i}=1, \\ 2, & \text { if } v_{i}=5 \text { or } v_{i}=2 .\end{array}\right.$ Let $U=\sum_{i=1}^{s} u_{i}$. Since $(V, 6)=1$, we have $(U, 3)=1$. Set

$$
P(z)=Q_{R_{1}}(0,1, z)
$$

where $Q_{R_{1}}$ is a Fricke polynomial of R_{1}. Since the polynomial $P(z)$ has integer coefficients and bearing in mind Lemma 11, we can assume that $P(z)$ has the form

$$
\begin{equation*}
P(z)=\sqrt{3} z^{\alpha_{1}}\left(z^{2}-1\right)^{\alpha_{2}}\left(z^{2}-2\right)^{\alpha_{3}}\left(z^{2}-z-1\right)^{\alpha_{4}}\left(z^{2}+z-1\right)^{\alpha_{5}}\left(z^{2}-3\right)^{\alpha_{6}} \tag{46}
\end{equation*}
$$

Consider a representation $\delta: F_{2} \rightarrow \mathrm{SL}_{2}(\mathbb{C}), g \mapsto A, h \mapsto B_{2}$. We have $\operatorname{tr} A=0, \operatorname{tr} B_{2}=1, \operatorname{tr} A B_{2}=x-\sqrt{3}$. Consequently,

$$
\begin{align*}
& P_{1}(x)= Q_{R_{1}}(0,1, z)(\delta)=P(x-\sqrt{3})=(x-\sqrt{3})^{\alpha_{1}}\left(x^{2}-2 \sqrt{3} x+2\right)^{\alpha_{2}} \\
& \cdot\left(x^{2}-2 \sqrt{3} x+1\right)^{\alpha_{3}}\left(x^{2}-(2 \sqrt{3}+1) x+2+\sqrt{3}\right)^{\alpha_{4}} \\
& \cdot\left(x^{2}-(2 \sqrt{3}-1) x+2-\sqrt{3}\right)^{\alpha_{5}}(x-2 \sqrt{3})^{\alpha_{6}} x^{\alpha_{6}}=\operatorname{tr} R_{1}\left(A, B_{2}\right) \tag{47}
\end{align*}
$$

The constant term of the polynomial $\operatorname{tr} R_{1}\left(A, B_{2}\right)$ is equal to

$$
\varepsilon^{3 s+2 U}+\varepsilon^{-3 s-2 U}=2 \sin \left(\frac{3 s+2 U}{6} \pi\right)= \pm 1
$$

since s is even and $(U, 3)=1$. Comparing constant terms in (47), we obtain $\alpha_{6}=0$ and

$$
\begin{equation*}
(-\sqrt{3})^{\alpha_{1}} 2^{\alpha_{2}}(2+\sqrt{3})^{\alpha_{4}}(2-\sqrt{3})^{\alpha_{5}}= \pm 1 \tag{48}
\end{equation*}
$$

It follows from (48) that $\alpha_{1}=\alpha_{2}=0, \alpha_{4}=\alpha_{5}$. Thus, the polynomial $P_{1}(x)$ has the form:

$$
\begin{equation*}
P_{1}(x)=\left(x^{2}-2 \sqrt{3} x+1\right)^{\alpha_{3}}\left(x^{4}-4 \sqrt{3} x^{3}+15 x^{2}-6 \sqrt{3} x+1\right)^{\alpha_{4}} \tag{49}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
2 \alpha_{3}+4 \alpha_{4}=s \tag{50}
\end{equation*}
$$

By (49), the coefficient of $P_{1}(x)$ by x^{s-2} is equal to

$$
\begin{equation*}
a_{2}=\frac{3}{2} s^{2}-\frac{5}{2} s+\alpha_{4} . \tag{51}
\end{equation*}
$$

On the other hand, we have by Lemma 10

$$
\begin{array}{r}
a_{2}=f_{11}^{\prime}\left(l_{1}^{\prime}-2+l_{2}^{\prime} \varepsilon^{-2}\right)+f_{12}^{\prime}\left(l_{1}^{\prime}-1+\left(l_{2}^{\prime}-1\right) \varepsilon^{-2}\right)+f_{21}^{\prime}\left(\left(l_{1}^{\prime}-1\right) \varepsilon^{2}+l_{2}^{\prime}-1\right)+ \\
f_{22}^{\prime}\left(l_{1}^{\prime} \varepsilon^{2}+l_{2}^{\prime}-2\right)+\frac{l_{1}^{\prime}\left(l_{1}^{\prime}-1\right)}{2}+\frac{l_{2}^{\prime}\left(l_{2}^{\prime}-1\right)}{2}+2 l_{1}^{\prime} l_{2}^{\prime} \tag{52}
\end{array}
$$

where $f_{11}^{\prime}=f_{11}, f_{12}^{\prime}=f_{15}+f_{12}, f_{21}^{\prime}=f_{51}+f_{21}, f_{22}^{\prime}=f_{55}+f_{25}, l_{1}^{\prime}=l_{1}$, $l_{2}^{\prime}=l_{5}+1$. It follows from (52) that

$$
\begin{equation*}
a_{2}=\frac{3}{2} s^{2}-\frac{5}{2} s+f_{12}+f_{15} \tag{53}
\end{equation*}
$$

We obtain from (51), (53) that

$$
\begin{equation*}
f_{12}+f_{15}-\alpha_{4}=0 \tag{54}
\end{equation*}
$$

Now, equations (45), (50), (54) implies that

$$
\begin{equation*}
f_{21}=1-\alpha_{3}-\frac{1}{2} f_{15}-\frac{3}{2} f_{12} \tag{55}
\end{equation*}
$$

Since $f_{21} \geq 0$, it follows from (55) that there exist only three possibilities.

1. $a_{3}=1, f_{15}=f_{12}=0$. Then $a_{4}=0$ and $s=2$ which is a contradiction.
2. $a_{3}=0, f_{15}=f_{12}=0$. Hence, $a_{4}=0$ and $s=0$. This is a contradiction.
3. $a_{3}=0, f_{15}=2, f_{12}=f_{21}=0$, so that $a_{4}=2$ and $s=8$. Direct computations show that there are no words $R(a, b)$ under our conditions such that $f_{R}(z)=\sqrt{3} z^{8}$. Thus Theorem 1 is proved in the case $l=6$ and s is even.

2.3. The case $l>6$

Let Γ be a group defined by (8). Taking into account Lemma 9, we can assume that 6 do not divide v_{i} for any i. Let us consider the epimorphic image Γ_{1} of Γ :

$$
\Gamma_{1}=\left\langle c, d ; c^{2}=d^{6}=R^{2}(c, d)=1\right\rangle
$$

where $R(c, d)=c d^{v_{1}} \ldots c d^{v_{s}}$. Since $6 \nmid v_{i}$ for any i, the word $R(c, d)$ from the free product $\left\langle c ; c^{2}=1\right\rangle *\left\langle d ; d^{6}=1\right\rangle$ can be written in the form $R(c, d)=c d^{u_{1}} \ldots c d^{u_{s}}$ with $0<u_{i}<6$ and $\left.u_{i} \equiv v_{i} \bmod 6\right)$. We have already proved that Γ_{1} contains a non-abelian free subgroup. Theorem 1 is proved.

3. Proof of Theorem 2

3.1. The case V is even.

Let us consider an epimorphism

$$
\varphi: \Gamma \rightarrow\left\langle c ; c^{2}=1\right\rangle, \quad \varphi(a)=1, \varphi(b)=c
$$

Since $\varphi(R(a, b))=1$, we obtain using Reidemeister-Schreier rewriting process that $\operatorname{ker} \varphi$ has a representation of the form

$$
\operatorname{ker} \varphi=\left\langle g_{1}, g_{2}, g_{3} ; g_{1}^{3}=g_{2}^{3}=g_{3}^{2}=R_{1}^{2}\left(g_{1}, g_{2}, g_{3}\right)=R_{2}^{2}\left(g_{1}, g_{2}, g_{3}\right)=1\right\rangle
$$

where R_{1} and R_{2} is a rewriting of R. Let $F_{3}=\langle g, h, t\rangle$ be a free group and $X\left(F_{3}\right)$ be the corresponding character variety. Consider a subvariety $W \subset X\left(F_{3}\right)$ defined by equations

$$
\tau_{g}=\tau_{h}=1, \quad \tau_{t}=\tau_{R_{1}(g, h, t)}=\tau_{R_{2}(g, h, t)}=0
$$

It is easy to see that $W \neq \varnothing$. Indeed, by [1] for any generalized triangle group $T(n, m, l, R)$ there exists a special representation ρ of $T(n, m, l, R)$ into $\mathrm{PSL}_{2}(\mathbb{C})$, that is, a representation such that elements $\rho(a), \rho(b)$ and $\rho(R)$ have orders n, m, l respectively. Let ρ be a special representation of Γ into $\mathrm{PSL}_{2}(\mathbb{C})$ and $\rho\left(g_{1}\right)=[A], \rho\left(g_{2}\right)=[B], \rho\left(g_{3}\right)=[C]$. We can choose matrices A, B such that $\operatorname{tr} A=\operatorname{tr} B=1$. Then we shall have $\pi(A, B, C) \in W$, where π is defined by (3), so that $W \neq \varnothing$.

Let W_{1}, \ldots, W_{r} be irreducible components of W. Since $\operatorname{dim} X\left(F_{3}\right)=$ 6 and the subvariety $\varnothing \neq W \subset X\left(F_{3}\right)$ is defined by five equations, for any component W_{i} we must have $\operatorname{dim} W_{i} \geq 1$.

Lemma 13. $U_{i}=W_{i} \cap X^{s}\left(F_{3}\right) \neq \varnothing$.
Proof. Suppose that $U_{i}=\varnothing$ for some i. Then for any point $\rho=$ $(A, B, C) \in \pi^{-1}\left(W_{i}\right)$ a group $\langle A, B, C\rangle$ is reducible. Without loss of generality we may assume that A, B, C are upper triangular matrices. Since A, B, C have finite orders, for any $S \in F_{3}$ the $\operatorname{trace} \operatorname{tr} S(A, B, C)=\tau_{S}(\rho)$ can take only finite set of values, when $\rho \in \pi^{-1}\left(W_{i}\right)$. Hence, $\operatorname{dim} W_{i}=0$ which is a contradiction.

Let $\alpha_{i}: W_{1} \rightarrow \mathbb{A}^{1}$ be a projection to the i-th coordinate. Since $\operatorname{dim} W_{i} \geq 1$, there exists i such that α_{i} is dominant. Let, for example, the projection α on the coordinate $\tau_{g h}$ is dominant, so that $\alpha\left(U_{1}\right)$ is dense in \mathbb{A}^{1} in Zarisski topology. Hence, we can choose a transcendental number $\beta \in \mathbb{C}$ such that $\beta \in \alpha\left(U_{1}\right)$. Let $u \in \alpha^{-1}(\beta) \cap U_{1}$ and $(A, B, C) \in \pi^{-1}(u)$. By construction, we have $\operatorname{tr} A=\operatorname{tr} B=1, \operatorname{tr} C=\operatorname{tr} R_{1}(A, B, C)=$ $\operatorname{tr} R_{2}(A, B, C)=0$.

Let $G=\langle[A],[B],[C]\rangle$. Let us show that G is a non-elementary subgroup of $\mathrm{PSL}_{2}(\mathbb{C})$. First, G is irreducible by construction. Second, G is infinite since $\operatorname{tr} A B=\beta$ is a transcendental number, so that a matrix $A B$ has infinite order. Third, G is not a dihedral group since $[A]$ has order 3.

Next, we have by construction

$$
[A]^{3}=[B]^{3}=[C]^{2}=R_{1}^{2}([A],[B],[C])=R_{2}^{2}([A],[B],[C])=1
$$

Hence, G is an epimorphic image of $\operatorname{ker} \varphi$. Thus, $\operatorname{ker} \varphi$ contains a nonabelian free subgroup as required.

3.2. The case s is even.

Without loss of generality we can assume that V is odd. Set

$$
f_{R}(z)=Q_{R}(1, \sqrt{2}, z)
$$

where Q_{R} is the Fricke polynomial of the word $R=g^{u_{1}} h^{v_{1}} \ldots g^{u_{s}} h^{v_{s}} \in F_{2}$. The leading coefficient of $F_{R}(z)$ is equal to

$$
M_{s}=\prod_{i=1}^{s} P_{u_{i}-1}(1) P_{v_{i}-1}(\sqrt{2})=(\sqrt{2})^{t}
$$

where t is a number of i such that $v_{i}=2$.
Lemma 14. Let us suppose that the polynomial $f_{R}(z)$ has a root $z_{0} \notin$ $\left\{0, \sqrt{2}, \frac{\sqrt{2} \pm \sqrt{6}}{2}\right\}$. Then Γ contains a non-abelian free subgroup.

Lemma 14 can be proved in the same way as Lemma 8.
Bearing in mind Lemma 14, we may assume that the polynomial $f_{R}(z)$ has the form

$$
\begin{equation*}
f_{R}(z)=M_{s} z^{a_{1}}(z-\sqrt{2})^{a_{2}}\left(z-\frac{\sqrt{2}+\sqrt{6}}{2}\right)^{a_{3}}\left(z-\frac{\sqrt{2}-\sqrt{6}}{2}\right)^{a_{4}} \tag{56}
\end{equation*}
$$

Let ε be a primitive root of unity of degree $24, F_{2}=\langle g, h\rangle$ be a free group. Consider a representation $\rho: F_{2} \rightarrow \mathrm{SL}_{2}(\mathbb{C})$ defined by

$$
\rho(g)=A=\left(\begin{array}{cc}
\varepsilon^{4} & 0 \\
1 & \varepsilon^{-4}
\end{array}\right), \quad \rho(h)=B=\left(\begin{array}{cc}
\varepsilon^{3} & x \\
0 & \varepsilon^{-3}
\end{array}\right)
$$

Then $\operatorname{tr} A=1, \operatorname{tr} B=\sqrt{2}, \operatorname{tr} A B=x+2 \cos \left(\frac{7 \pi}{12}\right)=x-\frac{\sqrt{6}-\sqrt{2}}{2}$ and we have from (56)

$$
\begin{align*}
f_{1}(x)= & f_{R}(z)(\rho)=\operatorname{tr} R(A, B)=f_{R}\left(x-\frac{\sqrt{6}-\sqrt{2}}{2}\right)= \\
& (\sqrt{2})^{t}\left(x-\frac{\sqrt{6}-\sqrt{2}}{2}\right)^{a_{1}}\left(x-\frac{\sqrt{6}+\sqrt{2}}{2}\right)^{a_{2}}(x-\sqrt{6})^{a_{3}} x^{a_{4}} \tag{57}
\end{align*}
$$

The free coefficient of $\operatorname{tr} R(A, B)$ is equal to

$$
\begin{equation*}
\varepsilon^{4 U+3 V}+\varepsilon^{-4 U-3 V}=2 \cos \left(\frac{4 U+3 V}{12} \pi\right) \tag{58}
\end{equation*}
$$

where $U=\sum_{i=1}^{s} u_{i}$. Bearing in mind our assumptions, $2 \cos \left(\frac{4 U+3 V}{12} \pi\right)$ can take only the following values:

$$
\begin{equation*}
\pm\left(\frac{\sqrt{6}-\sqrt{2}}{2}\right)^{ \pm 1}, \pm \sqrt{2} \tag{59}
\end{equation*}
$$

Then it follows from (57) that $a_{4}=0$.
Analogously, considering a representation $\rho_{1}: F_{2} \rightarrow \mathrm{SL}_{2}(\mathbb{C})$ defined by

$$
\rho(g)=A=\left(\begin{array}{cc}
\varepsilon^{4} & 0 \\
1 & \varepsilon^{-4}
\end{array}\right), \quad \rho(h)=B_{1}=\left(\begin{array}{cc}
\varepsilon^{-3} & x \\
0 & \varepsilon^{3}
\end{array}\right)
$$

we obtain $a_{3}=0$. Thus,

$$
\begin{equation*}
f_{1}(x)=(\sqrt{2})^{t}\left(x-\frac{\sqrt{6}-\sqrt{2}}{2}\right)^{a_{1}}\left(x-\frac{\sqrt{6}+\sqrt{2}}{2}\right)^{a_{2}} \tag{60}
\end{equation*}
$$

where $a_{1}+a_{2}=s$. Comparing constant terms of $f_{1}(x)$ and $\operatorname{tr} R\left(A, B_{1}\right)$, we obtain from (58), (60)

$$
\begin{equation*}
(\sqrt{2})^{t}\left(\frac{\sqrt{6}-\sqrt{2}}{2}\right)^{a_{1}}\left(\frac{\sqrt{6}+\sqrt{2}}{2}\right)^{a_{2}}=2 \cos \left(\frac{4 U+3 V}{12} \pi\right) \tag{61}
\end{equation*}
$$

Since $\frac{\sqrt{6}-\sqrt{2}}{2} \frac{\sqrt{6}+\sqrt{2}}{2}=1$ and s is even, it follows from (61) that $t=1$, $2 a_{1}-s=0$, that is, $a_{1}=a_{2}=s / 2$. Hence,

$$
2 \cos \left(\frac{4 U+3 V}{12} \pi\right)=\sqrt{2}
$$

Thus, we must have $U \equiv(\bmod 3)$. But in this case there exists a well defined epimorphism

$$
\lambda: \Gamma \rightarrow\left\langle d ; d^{3}=1\right\rangle, \quad \lambda(a)=d, \lambda(b)=1 .
$$

Using Reidemeister-Schreier rewriting process, we obtain that $\operatorname{ker} \lambda$ has a representation of the form

$$
\begin{aligned}
& \operatorname{ker} \lambda=\left\langle g_{1}, g_{2}, g_{3} ; g_{1}^{4}=g_{2}^{4}=g_{3}^{4}=\right. \\
& \\
& \left.\quad R_{1}^{2}\left(g_{1}, g_{2}, g_{3}\right)=R_{2}^{2}\left(g_{1}, g_{2}, g_{3}\right)=R_{3}^{2}\left(g_{1}, g_{2}, g_{3}\right)=1\right\rangle
\end{aligned}
$$

where R_{1}, R_{2}, R_{3} are rewrites of R. One can check that $R_{j}\left(g_{1}, g_{2}, g_{3}\right)=$ $g_{i_{1}}^{p_{1}} \ldots g_{i_{r}}^{p_{r}}$, where $\sum_{i=1}^{r} p_{i}$ is even. By Theorem 1 from [3], ker λ (and consequently Γ) contains a non-abelian free subgroup. Theorem 2 is proved.

References

[1] G. Baumslag, J. W. Morgan, P.B. Shalen, Generalized triangle groups, Math. Proc. Cambridge Philos. Soc., N.102, 1987, pp.25-31.
[2] V. Beniash-Kryvets, On free subgroups of some generalized triangle groups, Dokl. Akad. Nauk Belarus, N.47:2, 2003, pp.29-32.
[3] V. Beniash-Kryvets, On the Tits alternative for some finitely generated groups, Dokl. Akad. Nauk Belarus, N.47:3, 2003, pp.14-17.
[4] M. Culler, P. Shalen, Varieties of group representations and splittings of 3 manifolds, Ann. of Math., N.117, 1983, pp.109-147.
[5] B. Fine, F. Levin, G. Rosenberger G., Free subgroups and decompositions of onerelator products of cyclics. Part I: the Tits alternative, Arch. Math. N.50, 1988, pp.97-109.
[6] B. Fine B., G. Rosenberger, Algebraic generalizations of discrete groups. A path to combinatorial group theory through one-relator products, Marcel Dekker, 1999.
[7] J. Howie, One-relator products of groups, Proceedings of groups St. Andrews, Cambridge University Press, 1985, pp.216-220.
[8] J. Howie, Free subgroups in groups of small deficiency, J. of Group Theory, N.1, 1998, pp.95-112.
[9] F. Levin, G. Rosenberger, On free subgroups of generalized triangle groups, Part II, Proceedings of the Ohio State-Denison Conference on Group Theory, (ed. S. Sehgal et al), World Scientific, 1993, pp.206-222.
[10] A. Lubotzky, A. Magid, Varieties of representations of finitely generated groups, Memoirs AMS, N.58, 1985, pp.1-116.
[11] A. Majeed, A.W. Mason, Solvable-by-finite subgroups of GL $(2, F)$, Glasgow Math. J., N.19, 1978, pp.45-48.
[12] D. Mumford, Geometric invariant theory, Springer-Verlag, 1965.
[13] G. Rosenberger, On free subgroups of generalized triangle groups, Algebra i Logika, N.28, 1989, pp.227-240.
[14] K.S. Sibirskij, Algebraic invariants for a set of matrices, Sib. Math. J., N.9:1, 1968, pp.115-124.
[15] J. Tits, Free subgroups in linear groups, J. Algebra, N.20, 1972, pp.250-270.
[16] C. Traina, Trace polynomial for two generated subgroups of $\mathrm{SL}_{2}(\mathbb{C})$, Proc. Amer. Math. Soc., N.79, 1980, pp.369-372.
[17] E. Vinberg, Y. Kaplinsky, Pseudo-finite generalized triangle groups, Preprint 00003, Universitát Bielefeld, 2000.

Contact information

V. Beniash-Kryvets Department of Algebra, Byelorussian State University, 4, F. Skaryny Ave., 220050, Minsk, Belarus E-Mail: benyash@bsu.by

O. Barkovich
Department of Algebra and Geometry, Byelorussian State Pedagogical University, 18, Sovetskaya Str. 220809, Minsk, Belarus E-Mail: barkovich@bspu.unibel.by

Received by the editors: 24.02 .2004 and final form in 01.06.2004.

