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Abstract. One says that the Tits alternative holds for a

finitely generated group Γ if Γ contains either a non abelian free

subgroup or a solvable subgroup of finite index. Rosenberger states

the conjecture that the Tits alternative holds for generalized tri-

angle groups T (k, l,m,R) = 〈a, b; ak = bl = Rm(a, b) = 1〉. In the

paper Rosenberger’s conjecture is proved for groups T (2, l, 2, R)
with l = 6, 12, 30, 60 and some special groups T (3, 4, 2, R).

Introduction

J. Tits [15] proved that if G is a finitely generated linear group then G
contains either a non abelian free subgroup or a solvable subgroup of
finite index. Let Γ be an arbitrary finitely generated group. One says
that the Tits alternative holds for Γ if Γ satisfies one of these conditions.

An one-relator free product of a family of groups {Gi}, i ∈ I, is called
the group G = (∗Gi)/N(S), where S is a cyclically reduced word in the
free product ∗Gi, N(S) is its normal closure. S is called the relator.
One-relator free products share many properties with one-relator groups
[7]. We consider the case when Gi’s are cyclic groups.

Definition 1. A group Γ having a presentation

Γ =< a1, . . . , an; al1
1 = . . . = aln

n = Rm(a1, . . . , an) = 1 >, (1)
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where n ≥ 2, m ≥ 1, li = 0 or li ≥ 2 for all i, R(a1, . . . , an) is a cyclically
reduced word in the free group on a1, . . . , an which is not a proper power,
is called an one-relator product of n cyclic groups.

One relator products of cyclic groups provide a natural algebraic gen-
eralization of Fuchsian groups which are one relator products of cyclics
relative to the standard Poincare presentation (see [6])

F = 〈a1, . . . , ap, b1, . . . , bt, c1, d1, . . . , cg, dg;

ami

i = a1 . . . apb1 . . . bt[c1, d1] . . . [cg, dg] = 1〉.

If n = 2 and m ≥ 2 then we have so-called generalized triangle groups

T (k, l, m, R) = 〈a, b; ak = bl = Rm(a, b) = 1〉.

If R(a, b) = ab then we obtain an ordinary triangle group.
Let Γ be a group of the form (1) and m ≥ 2. If either n ≥ 4 or n = 3

and (l1, l2, l3) 6= (2, 2, 2) then Γ contains a free subgroup of rank 2 [5]. If
n = 3 and (l1, l2, l3) = (2, 2, 2) then Γ either contains a free subgroup of
rank 2 or a free abelian subgroup of rank 2 and index 2.

The case when Γ is a generalized triangle group is much more difficult.
Rosenberger stated the following conjecture.

Conjecture 1 ([13]). The Tits alternative holds for generalized triangle
groups.

Fine, Levin, and Rosenberger proved this conjecture in the following
cases: 1) l = 0 or k = 0; 2) m ≥ 3 [5]. Now suppose that k, l, m ≥ 2.
Let s(Γ) = 1/k + 1/l + 1/m. If s(Γ) < 1 then Baumslag, Morgan and
Shalen [1] proved that the group Γ contains a non abelian free subgroup.
Using some new methods, Howie [8] proved Conjecture 1 in the case
s(Γ) = 1 and up to equivalence R 6= ab. If s(Γ) = 1 and R = ab then Γ
is an ordinary triangle group. The classical result says that Γ contains Z
as a subgroup of finite index.

Now consider groups of the form

Γ = T (2, l, 2, R) = 〈a, b; a2 = bl = R2(a, b) = 1〉, (2)

where l > 2, R = abv1 . . . abvs , 0 < vi < l. In the following cases Conjec-
ture 1 holds for Γ: 1) s ≤ 4 [13], [9]; 2) l > 5 and l 6= 6, 10, 12, 15, 20, 30, 60
[2], [3]. In this paper we prove two theorems.

Theorem 1. Let Γ be a group of the form (2) with s ≥ 5 and l ∈
{6, 12, 30, 60}. Then Γ contains a free subgroup of rank 2.
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Theorem 2. Let Γ = 〈a, b; a3 = b4 = R2(a, b) = 1〉, where R =
au1bv1 . . . ausbvs with 0 < ui < 3 and 0 < vi < 4. In the following
cases Γ contains a non-abelian free subgroup: i) V =

∑s
i=1 vi is even; ii)

s is even.

Thus, Conjecture 1 is still open for groups T (2, l, 2, R) with l =
3, 4, 5, 10, 15, 20 and groups T (3, l, 2, R) with l = 3, 4, 5.

1. Some auxiliary results

In this section we prove several auxiliary results used in the proofs of
theorems 1 and 2. Throughout we shall denote the ring of algebraic
integers in C by O, the group of units in O by O∗, the free group of a
rank 2 with generators g and h by F2 =< g, h >, the greatest common
divisor of integers a and b by (a, b). the image of a matrix A ∈ SL2(C) in
PSL2(C) by [A], the trace of a matrix A by trA, the identity matrix in
SL2(C) by E. The following lemma characterizes elements of finite order
in PSL2(C).

Lemma 1. Let 2 ≤ m ∈ Z and ±E 6= X ∈ SL2(C). Then [X]m = 1 in
PSL2(C) if and only if tr X = 2 cos rπ

m for some r ∈ {1, . . . , m − 1}.

The proof easily follows from the fact that ε, ε−1, where ε is a root of
unity of degree m, are the eigenvalues of the matrix X.

We shall use standard facts from geometric representation theory (see
[4, 10]). Here we recall some notations. Let Fn = 〈g1, . . . , gn〉 be a free
group, R(Fn) = SL2(C)n be a representation variety of Fn in SL2(C)
The group GL2(C) acts naturally on R(Fn) (by simultaneous conjuga-
tion of components) and its orbits are in one-to-one correspondence with
the equivalence classes of representations of Fn. Under this action orbits
of GL2(C) are not necessarily closed and so the variety of orbits (the
geometric quotient) is not an algebraic variety. However one can con-
sider the categorical quotient R(Fn)/GL2(C) (see [12]), which we shall
denote by X(Fn) and call the variety of characters. By construction, its
points parametrize closed GL2(C)-orbits. It is well known that an orbit
of a representation is closed iff the corresponding representation is fully
reducible and so the points of the variety X(Fn) are in one-to-one corre-
spondence with the equivalence classes of fully reducible representations
of Γ in SL2(C).

For an arbitrary element g ∈ Fn one can consider the regular function

τg : R(Fn) → C, τg(ρ) = tr ρ(g).
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Usually, τg is called a Fricke character of the element g. It is known that
the C-algebra T (Fn) generated by all functions τg, g ∈ Fn, is equal to
C[X(Fn)] = C[R(Fn)]GL2(C). Combining results of [4, 14] it is easy to
see that T (Fn) is generated by Fricke characters τgi

= xi, τgigj
= yij ,

τgigjgk
= zijk, where 1 ≤ i < j < k ≤ n. Consider a morphism π :

R(Fn) → At defined by

π(ρ) = (x1(ρ), . . . , xn(ρ), y12(ρ), . . . , yn−1,n(ρ),

z123(ρ), . . . , zn−2,n−1,n(ρ)), (3)

where t = n + n(n − 1)/2 + n(n − 1)(n − 2)/6. The image π(R(Fn)) is
closed in At [4]. Since X(Fn) and π(R(Fn)) are biregularly isomorphic,
we shall identify X(Fn) and π(R(Fn)). Obviously, dimR(Fn) = 3n,
dimX(Fn) = 3n − 3. Set

Rs(Fn) = {ρ ∈ R(Fn) | ρ is irreducible}, Xs(Fn) = π(Rs(Fn)).

Rs(Fn), Xs(Fn) are open in Zariski topology subsets of R(Fn), X(Fn)
respectively [4].

Now, consider a free group F2 = 〈g, h〉. The ring T (F2) is generated
by the functions τg, τh, τgh.

Lemma 2. For all α, β,Γ ∈ C there exist matrices A, B ∈ SL2(C) such
that τg(A, B) = trA = α, τh(A, B) = trB = β, τgh(A, B) = trAB =
Γ.

This lemma can be easily proved by straightforward computations.
Lemma 2 implies that X(F2) = π(R(F2)) = A3. Moreover, the func-

tions τg, τh, τgh are algebraically independent over C and for every u ∈ F2

we have
τu = Qu(τg, τh, τgh),

where Qu ∈ Z[x, y, z] is a uniquely determined polynomial with integer
coefficients [4]. The polynomial Qu is usually called the Fricke polynomial
of the element u.

Consider polynomials Pn(λ) satisfying the initial conditions P−1(λ) =
0, P0(λ) = 1 and the recurrence relation

Pn(λ) = λPn−1(λ) − Pn−2(λ).

If n < 0 then we set Pn(λ) = −P|n|−2(λ). The degree of the polynomial
Pn(λ) is equal to n if n > 0 and to |n| − 2 if n < 0. It is easy to verify
by induction on n that

Pn(2 cos ϕ) =
sin(n + 1)ϕ

sinϕ
. (4)
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It follows from (4) that the polynomial Pn(λ), n ≥ 1, has n zeros de-
scribed by the formula

λn,k = 2 cos
kπ

n + 1
, k = 1, 2, . . . , n. (5)

Moreover, it is easy to verify by induction that for n ≥ 0 we have

P2n(λ) = λ2n + · · · + (−1)n

P2n−1(λ) = λ(λ2n−2 + · · · + (−1)n−1n). (6)

Lemma 3. Let k, l ∈ Z, (k, l) = 1 and l ≥ 2 is not a power of a prime.
Then 2 sin kπ

l ∈ O∗.

Proof. Let l = 2tu, where u is odd. If t = 1 then k is odd and 2 sin kπ
l =

2 cos rπ
u with r = (u − k)/2 ∈ Z Since u − 1 is even, it follows from (6)

that 2 cos rπ
u ∈ O∗.

If t > 1 then k is odd and 2 sin kπ
l = 2 cos rπ

2tu with r = 2t−1u − k.

If t = 0 then 2 sin kπ
l = 2 cos rπ

2u with r = u − 2k.
Thus, it is sufficient to prove that 2 cos rπ

2tu ∈ O∗, where t ≥ 1,
(r, 2tu) = 1, u > 1 and u is not a power of a prime in the case t = 1. Let
u = pα1

1 . . . pαs
s , where pi is a prime and 0 < αi ∈ Z for i = 1, 2, . . . , s.

By (5) numbers λi = 2 cos i
2tuπ, i = 1, 2, . . . , 2tu− 1, are the roots of the

polynomial P2tu−1(λ), so that

P2tu−1(λ) =
2tu−1
∏

i=1

(λ − λi)

and the constant term of P2tu−1 is equal to (−1)2
t−1−12t−1pα1

1 . . . pαs
s . On

the other hand, the polynomials P2p
αi
i −1(λ), i=1,2,. . . ,s, and P2t−1(λ) has

the roots 2 cos jπ

2p
αi
i

, j = 1, 2, . . . , 2pαi

i −1, and 2 cos jπ
2t , j = 1, 2, . . . , 2t−1,

respectively. Hence, all these polynomials divide P2tu−1(λ) and any two
of them have only one common root λ = 0. Hence,

P2tu−1(λ) = F (λ)F1(λ),

where

F (λ) = λ−sP2t−1(λ)
s

∏

i=1

P2p
αi
i −1(λ).

By (5) the constant term of F (λ) is equal to (−1)2
t−1−12t−1pα1

1 . . . pαs
s .

Consequently, the constant term and the leading coefficient of F1(λ) are
equal to 1. Since 2 cos rπ

2tu is not a root of F (λ), it is a root of F1(λ) and
we obtain 2 cos rπ

2tu ∈ O∗ as required.
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Furthermore, we require the more detailed information on the Fricke
polynomials. Let w = gα1hβ1 . . . gαshβs ∈ F2 and let x = τg, y = τh,
z = τgh. Let us treat the Fricke polynomial Qw(x, y, z) as a polynomial
in z. Set

Qw(x, y, z) = Mn(x, y)zn + Mn−1(x, y)zn−1 + . . . + M0(x, y).

Lemma 4 ([16]). The degree of the Fricke polynomial Qw(x, y, z) with
respect to z is equal to s and its leading coefficient Ms(x, y) has the form

Ms(x, y) =

s
∏

i=1

Pαi−1(x))Pβi−1(y). (7)

A subgroup H ∈ PSL2(C) is called non-elementary if H is infinite,
irreducible and non-isomorphic to a dihedral group.

Lemma 5 ([11]). Let H ∈ PSL2(C) be a non-elementary subgroup. Then
H contains a non-abelian free subgroup.

Lemma 6 ([4]). Let A, B ∈ SL2(C) and trA = x, trB = y, trAB = z.
A subgroup < A, B > is irreducible if and only if

trABA−1B−1 = x2 + y2 + z2 − xyz − 2 6= 2.

2. Proof of Theorem 1.

Let Γ be a group from Theorem 1, that is,

Γ = T (2, l, 2, R) = 〈a, b; a2 = bl = R2(a, b) = 1〉, (8)

where R = abv1 . . . abvs , 0 < vi < l, s > 4. Set V =
∑s

i=1 vi. If (V, l) 6= 1
then Γ contains a non-abelian free subgroup (see [2]). So we shall assume
that (V, l) = 1. To prove Theorem 1, we construct a representation
ρ : Γ → PSL2(C) such that ρ(Γ) contains a non-abelian free subgroup.
Let k be an integer such that k

l = k′

l′ with (k′, l′) = 1 and l′ > 5. Set

βk = 2 cos
kπ

l
, fR,k(z) = QR(0, βk, z), (9)

where QR is the Fricke polynomial of R.

Definition 2. Let z0 be a root of a polynomial fR,k(z) and A, B ∈ SL2(C)
be matrices such that trA = 0, trB = βk, trAB = z0. We shall denote
by G(z0) a subgroup of PSL2(C), generated by [A], [B].
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The group G(z0) is an epimorphic image of Γ since by Lemma 1

[A]2 = [B]l = R2([A], [B]) = 1.

Lemma 7. Numbers ±2 sin kπ
l are not roots of the polynomial fR,k(z).

Proof. Suppose that fR,k(−2 sin kπ
l ) = 0. Let ε be a primitive root of

unity of degree 2l. Consider a representation ρk : F2 → SL2(C) defined
by

ρk(g) = A =

(

εl/2 0

1 ε−l/2

)

, ρk(h) = Bk =

(

εk x
0 ε−k

)

. (10)

Then we have trA = 0, trBk = βk, trABk = x − 2 sin kπ
l . So we obtain

fR,k(z)(ρk) = fR,k(x − 2 sin
kπ

l
) = gk(x) = trR(A, Bk).

Since −2 sin kπ
l is a root of fR,k(z), 0 is a root of gk(x). This means that

a constant term of gk(x) is equal to 0. On the other hand, a constant
term of trR(A, B−k) is equal to

εls/2+kV + ε−ls/2−kV = 2 cos(
ls/2 + kV

l
π) 6= 0,

since (V, l) = 1 by assumption. This contradiction proves that 2 sin kπ
l is

not a root of fR,k(z). Analogously, considering a matrix B−k instead the
matrix Bk, we obtain that 2 sin kπ

l is not a root of fR,k(z).

Lemma 8. Assume that the polynomial fR,k(z) has a root z0 6= 0. Then
Γ contains a non-abelian free subgroup.

Proof. By Lemma 7 we have z0 6= ±2 sin kπ
l . Let us show that G(z0)

is a non-elementary subgroup of PSL2(C). First, G(z0) is irreducible by
Lemma 6 since

trABA−1B−1 − 2 = z2
0 − 4 sin2 kπ

l
6= 0.

Second, G(z0) is not a dihedral group since two of three numbers trA,
trB, trAB are not equal to 0 (see [11]). Third, it follows from classi-
fication of finite subgroups of SLC [11] that G(z0) is infinite since it is
irreducible and contains an element [B] of order > 5. Thus, G(z0) (and
consequently Γ) contains a non-abelian free subgroup.
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Bearing in mind Lemmas 7 and 8, we shall assume in what follows
that

fR,k(z) = MR,kz
s, (11)

where by lemma 4

MR,k =
s

∏

i=1

Pvi−1(2 cos
kπ

l
) = (2 sin

kπ

l
)−s

s
∏

i=1

2 sin
vikπ

l
. (12)

Lemma 9. In the following cases Γ contains a non-abelian free subgroup:
1) l = 6, s is odd and there exists i such that vi ∈ {2, 3, 4};
2) l = 6, s is even and either there exists i such that vi = 3 or there

exist i, j such that i 6= j and vi, vj ∈ {2, 4};
3) l > 6 and there exists i such that 6 divides vi.

Proof. Let fR,k(z) = MR,kz
s and ρ−k be a representation defined by (10).

Then

gk(x) = fR,k(x + 2 sin
kπ

l
) = MR,k(x + 2 sin

kπ

l
) = tr R(A, B−k). (13)

Comparing constant terms in (13),we obtain

s
∏

i=1

2 sin
vikπ

l
= 2 cos

ls/2 − kV

l
π. (14)

1) If l = 6, s = 2s1 +1 then we set k = 1 and obtain 2 cos 6s1+3−V
6 π =

±1 since (V, 6) = 1. Suppose that there exists i such that vi ∈ {2, 3, 4}.
Then

δ = Pvi−1(2 cos
π

6
) =

2 sin viπ/6

2 sinπ/6
∈ {

√
3, 2}

and we have from (14)

s
∏

j=1

Pvj−1(2 cos
π

6
) = δ

∏

j 6=i

Pvj−1(2 cos
π

6
) = ±1. (15)

It follows from (15) that 1/δ ∈ O which is a contradiction.
2) If l = 6 and s = 2s1 then we set k = 1 and obtain 2 cos 6s1−V

6 π =

±
√

3 since (V, 6) = 1. First, suppose that there exists i such that vi = 3.
Then

Pvi−1(2 cos
π

6
) =

2 sin viπ/6

2 sin π/6
= 2

and we have from (14)

s
∏

j=1

Pvj−1(2 cos(
π

6
)) = 2

∏

j 6=i

Pvj−1(2 cos(
π

6
)) = ±

√
3. (16)
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It follows from (16) that
√

3/2 ∈ O which is a contradiction.

Now, suppose that there exists i, j such that vi, vj ∈ {2, 4}. For
r ∈ {i, j} we have

Pvr−1(2 cos
π

6
) =

2 sin vrπ/6

2 sinπ/6
=

√
3.

Hence by (14)

s
∏

k=1

Pvk−1(2 cos
π

6
) = 3

∏

k 6=i,k 6=j

Pvk−1(2 cos
π

6
) = ±

√
3. (17)

It follows from (17) that
√

3/3 ∈ O which is a contradiction.

3) If l ∈ {12, 30} then by assumptions of the lemma there exists i
such that vi = 6. Set k = 1. Then

2 sin
viπ

l
=

{

2, if l = 12,

2 sin π
5 =

√
2
√

5−
√

5
2 , if l = 30.

In both cases 2 sin viπ
l /∈ O∗. On the other hand, 2 cos ls/2−V

l π ∈ O∗ by
lemma (3) and (14) implies

1

2 sin viπ
l

=
1

2 cos ls/2−V
l π

∏

j 6=i

2 sin
vjπ

l
∈ O,

which is a contradiction.

If l = 60 and there exists i such that vi = 30 then we set k =
1. As before we obtain from (14) that 2 sin viπ

60 = 2 ∈ O∗ which is a
contradiction. If for any i we have vi 6= 30 then we set k = 2 and obtain
a contradiction in the same way as in the case l = 30.

Let A, Bk be matrices defined in (10), W (A, Bk) = ABu1

k . . . ABus

k ,
where 0 < ui < l. A set (u1, . . . , us) will be considered as cyclically
ordered. Let

li = |{j | uj = i}|, fi,j = |{r | ur = i, ur+1 = j}|. (18)

We have following equations:

l−1
∑

i=1

li = s,
l−1
∑

i=1

fij = lj ,
l−1
∑

j=1

fij = li, i, j = 1, . . . , l − 1. (19)
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Lemma 10. Let g(x) = trW (A, Bt) = a0x
s + · · · + as, hi = Pi−1(ε

k +
ε−k). Then we have a0 =

∏s
j=1 huj

and

a2 =a0

l−1
∑

j=1

fii

hi





li − 2

hi
+

∑

j 6=i

ljε
ti−tj

hj



 +

a0

∑

i6=j

fij

hi





li − 1

hi
+

(lj − 1)εti−tj

hj
+

∑

k 6=i,k 6=j

lkε
ti−tk

hk



−

a0





l−1
∑

i=1

li(li − 1)

2h2
i

(ε2ti + ε−2ti) +
∑

i6=j

lilj
hihj

(εti+tj + ε−ti−tj)



 .

(20)

This lemma can be proved by direct computations.

2.1. The case l = 6, s is odd.

Bearing in mind Lemma 9, we have vi ∈ {1, 5} for every i. Set k = 1
and MR = MR,1. Then MR =

∏s
i=1 Pvi−1(2 cos π

6 ) = 1 since P0 = 1 and

P4(2 cos π
6 ) = 2sin5π/6

2 sin π/6 = 1. Consequently,

fR(z) = zs. (21)

Consider a representation ρ : F2 → PSL2(C), ρ(g) = A, ρ(h) = B1,
where A, B1 are defined in (10). Then we have

f1(x) = trR(A, B1) = (x − 1)s. (22)

Further, the equations (19) have the form

f11 + f15 = l1, f11 + f51 = l1, l1 + l5 = s,

f55 + f15 = l5, f55 + f51 = l5. (23)

It follows from (23) that f15 = f51. Taking into account Lemma 10, we
obtain that the coefficient by xs−2 of the polynomial f1(x) is equal to

a2 = f11(l1 − 2 + l5ε
−4) + f15(l1 − 1 + (l5 − 1)ε−4)+

f51((l1 − 1)ε4 + l5 − 1) + f55(l1ε
4 + l5 − 2)−

l1(l1 − 1)

2
− l5(l5 − 1)

2
+ 2l1l5 = 3f15 +

s2

2
− 3

2
s. (24)

On the other hand, a2 = s(s − 1)/2 by (22). Thus, we obtain

s = 3f15. (25)
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Now, consider an epimorphic image Γ1 = 〈c, d; c2 = d3 = R2(c, d) =
1〉 of the group Γ, where R(c, d) = cdv1 . . . cdvs . We can write the word
R(c, d) from the free product 〈c; c2 = 1〉∗〈d; d3 = 1〉 in the form R1(c, d) =

cdu1 . . . cdus , where ui =

{

1, if vi = 1,

2, if vi = 5.
Let U =

∑s
i=1 ui. Since (V, 6) =

1, we have (U, 3) = 1. Set

P (z) = QR1
(0, 1, z),

where QR1
is a Fricke polynomial of R1.

Lemma 11. If the polynomial P (z) has a root z0 which is not equal to 0,

±1, ±
√

2, ±1±
√

5
2 , ±

√
3 then the group Γ1 (and, consequently, Γ) contains

a non-abelian free subgroup.

Proof. Let X, Y ∈ SL2(C) be matrices such that trX = 0, tr Y = 1,
trXY = z0. Let H = 〈[X], [Y ]〉 ⊂ PSL2(C). First, H is infinite (see
[17]). Second, H is not dihedral group since [Y ] has order 3. Third,
H is irreducible since tr XY X−1Y −1 − 2 = z2

0 − 3 6= 0. Thus, H is a
non-elementary subgroup of PSL2(C). Consequently, H contains a non-
abelian free subgroup.

Since the polynomial P (z) has integer coefficients and bearing in mind
Lemma 11, we may assume that P (z) has the form

P (z) = zα1(z2−1)α2(z2−2)α3(z2−z−1)α4(z2+z−1)α5(z2−3)α6 . (26)

Consider a representation δ : F2 → SL2(C), g 7→ A, h 7→ B2, where
A, B2 are defined in (10). We have tr A = 0, trB2 = 1, tr AB2 = x−

√
3.

Consequently,

P1(x) = τR1
(0, 1, z)(δ) = P (x −

√
3) = (x −

√
3)α1(x2 − 2

√
3x + 2)α2

· (x2 − 2
√

3x + 1)α3(x2 − (2
√

3 + 1)x + 2 +
√

3)α4

· (x2 − (2
√

3 − 1)x + 2 −
√

3)α5(x − 2
√

3)α6xα6 = trR1(A, B2). (27)

The constant term of the polynomial trR1(A, B2) is equal to

ε3s+2U + ε−3s−2U = 2 cos
3s + 2U

6
π = ±

√
3

since s is odd and (U, 3) = 1. Comparing constant terms in (27), we
obtain α6 = 0 and

(−
√

3)α12α2(2 +
√

3)α4(2 −
√

3)α5 = ±
√

3. (28)
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It follows from (28) that α1 = 1, α2 = 0, α4 = α5. Thus, the polynomial
P1(x) has the form:

P1(x) = (x−
√

3)(x2−2
√

3x+1)α3(x4−4
√

3x3+15x2−6
√

3x+1)α4 . (29)

In particular,
2α3 + 4α4 + 1 = s. (30)

It follows from (29) that the coefficient of P1(x) by xs−2 is equal to

a2 =
3

2
s2 − 5

2
s + 1 + α4. (31)

On the other hand, we have by Lemma 10

a2 = f ′
11(l

′
1 − 2 + l′2ε

−2) + f ′
12(l

′
1 − 1 + (l′2 − 1)ε−2)+

f ′
21((l

′
1 − 1)ε2 + l′2 − 1) + f ′

22(l
′
1ε

2 + l′2 − 2)+

l′1(l
′
1 − 1)

2
+

l′2(l
′
2 − 1)

2
+ 2l′1l

′
2 = f ′

12 +
3

2
s2 − 5

2
s, (32)

where f ′
11 = f11, f ′

12 = f15, f ′
21 = f51, f ′

22 = f55, l′1 = l1, l′2 = l5. It
follows from (31), (32) that

f15 = 1 + α4. (33)

Equations (25), (30), and (33) imply

2α3 +
s

3
− 3 = 0. (34)

Since α3 ≥ 0, it follows from (34) that s
3 − 3 ≤ 0, that is, s ≤ 9. Thus, if

s > 9 then either fR(z) is not of the form (21) or P (z) is not of the form
(26). Bearing in mind lemmas 8 and 11, we obtain that if l = 6, s is odd
and s > 9 then Γ contains a non-abelian free subgroup.

Now, let s ≤ 9. Since s > 4, s is odd and s = 3f15 by (25), we
must have s = 9, f15 = 3. Furthermore, without loss of generality we
can assume l1 > l5. Moreover, one can cyclically shift the sequence
(v1, . . . , vs). This transformation replaces the relation R2(a, b) with an
equivalent one. It is easy to see that there exists only 9 words R under
these conditions:

R1 = ababababab5abab5abab5, R2 = abababab5ababab5abab5,

R3 = abababab5abab5ababab5, R4 = abababab5ab5abab5abab5,

R5 = abababab5abab5abab5ab5, R6 = abababab5abab5ab5abab5, (35)

R7 = ababab5ab5ababab5abab5, R8 = ababab5ab5abab5ababab5,

R9 = ababab5ababab5abab5ab5.
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Direct computations show that fRi
(z) 6= z9 for i = 1, . . . , 7. But

fR8
(z) = fR9

(z) = z9.

Since R9(a, b) is conjugate to R8(a
−1, b−1)−1, it is sufficient to consider

only the group Γ = 〈a, b; a2 = b6 = R2
8(a, b) = 1〉.

Lemma 12. The group Γ contains a non-abelian free subgroup.

Proof. Consider a dihedral group D3 = 〈c, d; c2 = d2 = (cd)3 = 1〉 of
order 6 and a homomorphism

ψ : Γ → D3, a 7→ c, b 7→ d.

Obviously, ψ(R8) = 1, that is, ψ is well defined and ψ is an epimorphism.
Let Γ1 = kerψ ⊂ Γ. Then [Γ : Γ1] = 6. Using Reidemeister–Schreier
rewriting process, we obtain that Γ1 has a presentation of the form

Γ1 = 〈g1, g2, g3, g4; g
3
1 = g3

2 = (g3g4)
3 = (g2

3g
−1
4 )2 =

(g−1
3 g2

4)
2 = W 2

1 (g1, g2, g4) = W 2
1 (g2, g1, g3) =

W 2
2 (g1, g2, g3) = W 2

2 (g2, g4, g1) = 1〉, (36)

where W1(g, h, t) = tgh2tgh2th2, W2(g, h, t) = t−1gt−1gt−1gh2.
To prove Lemma 12, it is sufficient to construct a representation δ :

Γ1 → PSL2(C) such that the group δ(Γ1) is a non-elementary subgroup
of PSL2(C). Let us consider matrices

A1 =

(

x1
−x2

1
+x1−1
y1

y1 1 − x1

)

, A3 =

(

i −1
0 −i

)

,

A2 =

(

x2
−x2

2
+x2−1
y2

y2 1 − x2

)

, A4 =

(

0 1
−1 0

)

.

Then we have trA1 = trA2 = tr A3A4 = 1, trA2
3A

−1
4 = trA−1

3 A2
4 = 0.

Therefore,

[A1]
3 = [A2]

3 = ([A3][A4])
3 = ([A3]

2[A4]
−1)2 = ([A3]

−1[A4])
2 = 1

by Lemma 1. Let us suppose that the following conditions hold:

trA1A3 = trA2A4 =
√

2, trA2A3 = trA1A4, (37)

trW1(A1, A2, A4) = tr W1(A2, A1, A3) =

tr W2(A1, A2, A3) = trW2(A2, A4, A1) = 0 (38)
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It follows from (37) that

x2 =
3x2

1 + (−2 + 3i
√

2)x1 − i
√

2 − 4/3

2x1 + i
√

2 − 1
, y1 = 2ix1 −

√
2 − i,

y2 =
3ix2

1 − (2
√

2 + 3i)x1 +
√

2 + i/3

2x1 + i
√

2 − 1
. (39)

Substituting (39) in (38), one obtains

trW1(A1, A2, A4) = trW1(A2, A1, A3) =
h1(x1)

(2x1 + i
√

2 − 1)4
,

trW2(A1, A2, A3) = trW2(A2, A4, A1) =
h2(x1)

(2x1 + i
√

2 − 1)2
, (40)

where

h1(x1) = −24i+
137

√
2

9
−

(

184i

3
+

424
√

2

3

)

x1+

(

1790i

3
+ 22

√
2

)

x2
1+

(−329i + 683
√

2)x3
1 − (975i + 446

√
2)x4

1 + (648i − 420
√

2)x5
1+

(198i + 261
√

2)x6
1 + (−108i + 18

√
2)x7

1 − 9
√

2x8
1,

h2(x1) = 3
√

2 + 4i/3 + (4
√

2 − 16i)x1 + (−10
√

2 + 18i)x2
1+

(−9
√

2 + 3i)x3
1 − 3ix4

1.

One can check that h2 devides h1. Let x′
1 be a roort of the equa-

tion h2(x1) = 0 and let x′
2, y

′
1, y

′
2 be defined by (39). Then the set

{x′
1, x

′
2, y

′
1, y

′
2} is a solution of equations (37), (38). Hence, matrices

A1, A2, A3, A4 define a required representation

δ : Γ1 → PSL2(C), δ(gi) = [Ai], i = 1, 2, 3, 4.

Let us show that δ(Γ1) is a non-elementary subgroup of PSL2(C). Con-
sider a subgroup G = 〈[A1A3], [A2A4]〉 ⊂ δ(Γ1). By construction, we
have trA1A3 = trA2A4 =

√
2. Next,

trA1A3A2A4 =
h3(x

′
1)

(2x′
1 + i

√
2 − 1)2

= ∆,

where

h3(x
′
1) = −3x′4

1 + (6 − 6
√

2i)x′3
1 + (11 − 9

√
2i)x′2

1 + (−14 + 5
√

2i)x′
1−

4
√

2i − 1/3.
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Direct computations show that ∆ /∈ {0, 1, 2}. By Lemma 6, G is irre-
ducible and infinite (see [17]). Obviously, G is not a dihedral group.
Therefore, G (and consequently Γ1) is a non-elementary subgroup of
PSL2(C).

2.2. The case l = 6, s is even.

Since (6, u) = 1 and bearing in mind Lemma 9, we can assume without
loss of generality that

R = abv1 . . . abvs ,

where v1 ∈ {2, 4}, vi ∈ {1, 5} for i = 2, . . . , s. Moreover, we can assume
that v1 = 2 applying otherwise to the word R an automorphism b 7→ b−1

of a cyclic group 〈b; b2 = 1〉. Thus, MR =
∏s

i=1 Pvi−1(2 cos π
6 ) =

√
3 since

P0 = 1, P4(2 cos π
6 ) = 2sin(5π/6)

2 sin(π/6) = 1, and P1(2 cos π
6 ) = 2 cos(π

6 ) =
√

3.
Taking into account Lemma 8, we shall assume that

fR(z) =
√

3zs.

Further, the equations (19) have the form

f11 + f12 + f15 = l1, f15 + f25 + f55 = l5, f12 + f52 = 1,

f11 + f21 + f51 = l1, f51 + f52 + f55 = l5, f21 + f25 = 1, (41)

l1 + l5 = s − 1.

It follows from (41) that

f11 = l1 − f12 − f15, f55 = s − l1 − 2 − f15 + f21, f25 = 1 − f21,

f51 = f12 + f15 − f21, l5 = s − l1 − 1, f52 = 1 − f12. (42)

Consider a representation ρ : F2 → PSL2(C), ρ(g) = A, ρ(h) = B1,
where A and B1 are defined by (10). Then we have

f1(x) = trR(A, B1) =
√

3(x − 1)s. (43)

Bearing in mind Lemma 10 and (42), we obtain that the coefficient by
xs−2 of the polynomial f1(x) is equal to

a2 =
√

3

(

1

2
s2 +

1

2
s + 2 − 2f21 + f12 + 3f15

)

. (44)

On the other hand, a2 =
√

3s(s − 1)/2. Thus, we obtain

s + 2f21 − f12 − 3f15 − 2 = 0. (45)
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Now, consider an epimorphic image Γ1 of the group Γ:

Γ1 = 〈c, d; c2 = d3 = R2(c, d) = 1〉,

where R(c, d) = cdv1 . . . cdvs . We can write the word R(c, d) from the
free product 〈c; c2 = 1〉 ∗ 〈d; d3 = 1〉 in the form R1(c, d) = cdu1 . . . cdus ,

where ui =

{

1, if vi = 1,

2, if vi = 5 or vi = 2.
Let U =

∑s
i=1 ui. Since (V, 6) = 1,

we have (U, 3) = 1. Set

P (z) = QR1
(0, 1, z),

where QR1
is a Fricke polynomial of R1. Since the polynomial P (z) has

integer coefficients and bearing in mind Lemma 11, we can assume that
P (z) has the form

P (z) =
√

3zα1(z2−1)α2(z2−2)α3(z2−z−1)α4(z2+z−1)α5(z2−3)α6 . (46)

Consider a representation δ : F2 → SL2(C), g 7→ A, h 7→ B2. We
have trA = 0, tr B2 = 1, trAB2 = x −

√
3. Consequently,

P1(x) = QR1
(0, 1, z)(δ) = P (x −

√
3) = (x −

√
3)α1(x2 − 2

√
3x + 2)α2

· (x2 − 2
√

3x + 1)α3(x2 − (2
√

3 + 1)x + 2 +
√

3)α4

· (x2 − (2
√

3 − 1)x + 2 −
√

3)α5(x − 2
√

3)α6xα6 = trR1(A, B2). (47)

The constant term of the polynomial trR1(A, B2) is equal to

ε3s+2U + ε−3s−2U = 2 sin(
3s + 2U

6
π) = ±1

since s is even and (U, 3) = 1. Comparing constant terms in (47), we
obtain α6 = 0 and

(−
√

3)α12α2(2 +
√

3)α4(2 −
√

3)α5 = ±1. (48)

It follows from (48) that α1 = α2 = 0, α4 = α5. Thus, the polynomial
P1(x) has the form:

P1(x) = (x2 − 2
√

3x + 1)α3(x4 − 4
√

3x3 + 15x2 − 6
√

3x + 1)α4 . (49)

In particular,
2α3 + 4α4 = s. (50)

By (49), the coefficient of P1(x) by xs−2 is equal to

a2 =
3

2
s2 − 5

2
s + α4. (51)
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On the other hand, we have by Lemma 10

a2 = f ′
11(l

′
1−2+l′2ε

−2)+f ′
12(l

′
1−1+(l′2−1)ε−2)+f ′

21((l
′
1−1)ε2+l′2−1)+

f ′
22(l

′
1ε

2 + l′2 − 2) +
l′1(l

′
1 − 1)

2
+

l′2(l
′
2 − 1)

2
+ 2l′1l

′
2, (52)

where f ′
11 = f11, f ′

12 = f15 + f12, f ′
21 = f51 + f21, f ′

22 = f55 + f25, l′1 = l1,
l′2 = l5 + 1. It follows from (52) that

a2 =
3

2
s2 − 5

2
s + f12 + f15. (53)

We obtain from (51), (53) that

f12 + f15 − α4 = 0. (54)

Now, equations (45), (50), (54) implies that

f21 = 1 − α3 −
1

2
f15 −

3

2
f12. (55)

Since f21 ≥ 0, it follows from (55) that there exist only three possibilities.

1. a3 = 1, f15 = f12 = 0. Then a4 = 0 and s = 2 which is a
contradiction.

2. a3 = 0, f15 = f12 = 0. Hence, a4 = 0 and s = 0. This is a
contradiction.

3. a3 = 0, f15 = 2, f12 = f21 = 0, so that a4 = 2 and s = 8. Direct
computations show that there are no words R(a, b) under our conditions
such that fR(z) =

√
3z8. Thus Theorem 1 is proved in the case l = 6 and

s is even.

2.3. The case l > 6

Let Γ be a group defined by (8). Taking into account Lemma 9, we can
assume that 6 do not divide vi for any i. Let us consider the epimorphic
image Γ1 of Γ:

Γ1 = 〈c, d; c2 = d6 = R2(c, d) = 1〉,

where R(c, d) = cdv1 . . . cdvs . Since 6 - vi for any i, the word R(c, d)
from the free product 〈c; c2 = 1〉 ∗ 〈d; d6 = 1〉 can be written in the form
R(c, d) = cdu1 . . . cdus with 0 < ui < 6 and ui ≡ vi(mod 6). We have
already proved that Γ1 contains a non-abelian free subgroup. Theorem 1
is proved.
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3. Proof of Theorem 2

3.1. The case V is even.

Let us consider an epimorphism

ϕ : Γ → 〈c; c2 = 1〉, ϕ(a) = 1, ϕ(b) = c.

Since ϕ(R(a, b)) = 1, we obtain using Reidemeister–Schreier rewriting
process that kerϕ has a representation of the form

ker ϕ = 〈g1, g2, g3; g
3
1 = g3

2 = g2
3 = R2

1(g1, g2, g3) = R2
2(g1, g2, g3) = 1〉,

where R1 and R2 is a rewriting of R. Let F3 = 〈g, h, t〉 be a free group
and X(F3) be the corresponding character variety. Consider a subvariety
W ⊂ X(F3) defined by equations

τg = τh = 1, τt = τR1(g,h,t) = τR2(g,h,t) = 0.

It is easy to see that W 6= ∅. Indeed, by [1] for any generalized triangle
group T (n, m, l, R) there exists a special representation ρ of T (n, m, l, R)
into PSL2(C), that is, a representation such that elements ρ(a), ρ(b) and
ρ(R) have orders n, m, l respectively. Let ρ be a special representation
of Γ into PSL2(C) and ρ(g1) = [A], ρ(g2) = [B], ρ(g3) = [C]. We can
choose matrices A, B such that tr A = trB = 1. Then we shall have
π(A, B, C) ∈ W , where π is defined by (3), so that W 6= ∅.

Let W1, . . . , Wr be irreducible components of W . Since dim X(F3) =
6 and the subvariety ∅ 6= W ⊂ X(F3) is defined by five equations, for
any component Wi we must have dimWi ≥ 1.

Lemma 13. Ui = Wi ∩ Xs(F3) 6= ∅.

Proof. Suppose that Ui = ∅ for some i. Then for any point ρ =
(A, B, C) ∈ π−1(Wi) a group 〈A, B, C〉 is reducible. Without loss of gen-
erality we may assume that A, B, C are upper triangular matrices. Since
A, B, C have finite orders, for any S ∈ F3 the trace trS(A, B, C) = τS(ρ)
can take only finite set of values, when ρ ∈ π−1(Wi). Hence, dimWi = 0
which is a contradiction.

Let αi : W1 → A1 be a projection to the i-th coordinate. Since
dimWi ≥ 1, there exists i such that αi is dominant. Let, for example,
the projection α on the coordinate τgh is dominant, so that α(U1) is dense
in A1 in Zarisski topology. Hence, we can choose a transcendental number
β ∈ C such that β ∈ α(U1). Let u ∈ α−1(β)∩U1 and (A, B, C) ∈ π−1(u).
By construction, we have trA = trB = 1, trC = trR1(A, B, C) =
trR2(A, B, C) = 0.
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Let G = 〈[A], [B], [C]〉. Let us show that G is a non-elementary
subgroup of PSL2(C). First, G is irreducible by construction. Second, G
is infinite since trAB = β is a transcendental number, so that a matrix
AB has infinite order. Third, G is not a dihedral group since [A] has
order 3.

Next, we have by construction

[A]3 = [B]3 = [C]2 = R2
1([A], [B], [C]) = R2

2([A], [B], [C]) = 1.

Hence, G is an epimorphic image of ker ϕ. Thus, kerϕ contains a non-
abelian free subgroup as required.

3.2. The case s is even.

Without loss of generality we can assume that V is odd. Set

fR(z) = QR(1,
√

2, z),

where QR is the Fricke polynomial of the word R = gu1hv1 . . . gushvs ∈ F2.
The leading coefficient of FR(z) is equal to

Ms =
s

∏

i=1

Pui−1(1)Pvi−1(
√

2) = (
√

2)t,

where t is a number of i such that vi = 2.

Lemma 14. Let us suppose that the polynomial fR(z) has a root z0 6∈
{0,

√
2,

√
2±

√
6

2 }. Then Γ contains a non-abelian free subgroup.

Lemma 14 can be proved in the same way as Lemma 8.
Bearing in mind Lemma 14, we may assume that the polynomial fR(z)

has the form

fR(z) = Msz
a1(z −

√
2)a2(z −

√
2 +

√
6

2
)a3(z −

√
2 −

√
6

2
)a4 . (56)

Let ε be a primitive root of unity of degree 24, F2 = 〈g, h〉 be a free
group. Consider a representation ρ : F2 → SL2(C) defined by

ρ(g) = A =

(

ε4 0
1 ε−4

)

, ρ(h) = B =

(

ε3 x
0 ε−3

)

.

Then tr A = 1, trB =
√

2, tr AB = x + 2 cos(7π
12 ) = x −

√
6−

√
2

2 and we
have from (56)

f1(x) = fR(z)(ρ) = trR(A, B) = fR(x −
√

6 −
√

2

2
) =

(
√

2)t(x −
√

6 −
√

2

2
)a1(x −

√
6 +

√
2

2
)a2(x −

√
6)a3xa4 . (57)
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The free coefficient of trR(A, B) is equal to

ε4U+3V + ε−4U−3V = 2 cos(
4U + 3V

12
π), (58)

where U =
∑s

i=1 ui. Bearing in mind our assumptions, 2 cos(4U+3V
12 π)

can take only the following values:

±(

√
6 −

√
2

2
)±1,±

√
2. (59)

Then it follows from (57) that a4 = 0.
Analogously, considering a representation ρ1 : F2 → SL2(C) defined

by

ρ(g) = A =

(

ε4 0
1 ε−4

)

, ρ(h) = B1 =

(

ε−3 x
0 ε3

)

,

we obtain a3 = 0. Thus,

f1(x) = (
√

2)t(x −
√

6 −
√

2

2
)a1(x −

√
6 +

√
2

2
)a2 , (60)

where a1 + a2 = s. Comparing constant terms of f1(x) and trR(A, B1),
we obtain from (58), (60)

(
√

2)t(

√
6 −

√
2

2
)a1(

√
6 +

√
2

2
)a2 = 2 cos(

4U + 3V

12
π). (61)

Since
√

6−
√

2
2

√
6+

√
2

2 = 1 and s is even, it follows from (61) that t = 1,
2a1 − s = 0, that is, a1 = a2 = s/2. Hence,

2 cos(
4U + 3V

12
π) =

√
2.

Thus, we must have U ≡ 0(mod 3). But in this case there exists a well
defined epimorphism

λ : Γ → 〈d; d3 = 1〉, λ(a) = d, λ(b) = 1.

Using Reidemeister–Schreier rewriting process, we obtain that ker λ has
a representation of the form

ker λ = 〈g1, g2, g3; g
4
1 = g4

2 = g4
3 =

R2
1(g1, g2, g3) = R2

2(g1, g2, g3) = R2
3(g1, g2, g3) = 1〉,

where R1, R2, R3 are rewrites of R. One can check that Rj(g1, g2, g3) =
gp1

i1
. . . gpr

ir
, where

∑r
i=1 pi is even. By Theorem 1 from [3], kerλ (and

consequently Γ) contains a non-abelian free subgroup. Theorem 2 is
proved.
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