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On associative algebras satisfying the identity

x
5

= 0

Ivan Shestakov and Natalia Zhukavets

Abstract. We study Kuzmin’s conjecture on the index of
nilpotency for the variety N il5 of associative nil-algebras of de-
gree 5. Due to Vaughan-Lee [11] the problem is reduced to that
for k-generator N il5-superalgebras, where k ≤ 5. We confirm
Kuzmin’s conjecture for 2-generator superalgebras proving that
they are nilpotent of degree 15.

1. Introduction

For a positive integer n let N iln be the variety of associative algebras
over a field F of characteristic zero defined by the identity xn = 0. The
classical Dubnov-Ivanov-Nagata-Higman theorem [3], [5] states that every
algebra from N iln is nilpotent of degree 2n − 1. Razmyslov [8] improved
the nilpotency degree in this theorem to n2. Kuzmin [7] showed that the
degree cannot be less than f(n) = n(n + 1)/2 and conjectured that the
last number gives the exact estimate of nilpotency degree for the variety
N iln.

It is easy to see that Kuzmin’s conjecture is true for n = 2, and
Higman’s results implied that it is also true for n = 3. It was natural to
try to use computer for checking the conjecture for other small values of n.
Vaughan-Lee in [10] did this for n = 4, confirming Kuzmin’s conjecture
in this case. We consider the next value n = 5.

In principle the calculations required are quite straightforward. Let
A = N iln[a1, . . . , af(n)] be the free algebra of the variety N iln with free
generators a1, a2, . . . , af(n). We need to show that a1a2 · · · af(n) = 0.
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In characteristic zero the identity xn = 0 is equivalent to the multi-
linear identity

sn(x1, x2, . . . , xn)
df
=

∑

σ∈Sym(n)

x1σx2σ · · ·xnσ = 0.

If we let F 〈T 〉 be the (absolutely) free associative algebra over F with
the set of free generators T = {t1, t2, . . . , tf(n)}, then A ∼= F 〈T 〉/I, where
I is the ideal of F 〈T 〉 generated by

{sn(u1, u2, . . . , un)| u1, u2, . . . , un ∈ F 〈T 〉}.

So we need to show that the product t1t2 · · · tf(n) is a linear combi-
nation of terms of the form

vsn(u1, u2, . . . , un)w,

where u1, u2, . . . , un, v, w are products of the free generators of F 〈T 〉 (with
v and w possibly empty). In fact, we may suppose that v and w are empty
because it is well known that the IDEAL of an algebra generated by all the
n-th powers ot its elements coincides with the VECTOR SPACE spanned
by the elements sn(u1, u2, . . . , un), where u1, u2, . . . , un are monomials
of positive degree. We may also assume that the term u1u2 · · ·un is
multilinear in t1, t2, . . . , tf(n). There are only finitely many expressions of
the form sn(u1, u2, . . . , un) satisfying this condition. And so the problem
reduces to a finite calculation in the f(n)!-dimensional space spanned by

{t1σt2σ · · · tf(n)σ| σ ∈ Sym(f(n))}.

We see that the dimensions are too big already for n = 4, 5.
Vaughan-Lee applied to the problem the representation theory of sym-

metric groups and the superalgebra technique, and reduced for n = 4 the
original calculation in 10!-dimensional space to 8 smaller calculations in

10!
4!3!2! and 10!

4!3!3! -dimensional spaces. Let us briefly explain the main idea
of this reduction.

2. The superalgebra method

The dimension is certainly smaller when not all ti are different. So, it
seems natural to try to reduce the number of different variables in this
problem.

It is well known that reduction of this kind exists for symmetric mul-
tilinear functions: every such a function on n variables may be obtained
by a linearization or polarization of a function of degree n on one variable.
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Now, assume that we have a skew-symmetric multilinear function
Φ : Bn → B defined on an associative algebra B over a field F of char-
acteristic zero. Take the Grassmann algebra G over F generated by
Grassmann variables e1, e2, . . .; that is the unital associative algebra over
F subject to the relations eiej = −ejei, i, j = 1, 2, . . . . Form the tensor
product G ⊗ B, and extend the function Φ to it by setting

Φ(g1 ⊗ x1, . . . , gn ⊗ xn) = g1 · · · gn ⊗ Φ(x1, . . . , xn).

Then Φ becomes a symmetric function on the variables yi = ei ⊗ xi;
moreover,

n!e1 · · · en ⊗ Φ(x1, . . . , xn) = Φ(z, . . . , z),

where z = e1 ⊗ x1 + · · · + en ⊗ xn. It is clear, for example, that
Φ(x1, . . . , xn) = 0 if and only if Φ(z, . . . , z) = 0. So, in a skew-symmetric
case we also can reduce the number of variables, only the new variables
lie not in B but in G ⊗ B.

The problem is that in general G ⊗ B does not belong to the same
variety as B; for instance, if B = F then G⊗ F = G is already not com-
mutative. Nevertheless, G ⊗ B satisfies certain graded identities related
with those of B.

The Grassmann algebra G has a basis over F consisting of 1 together
with all the possible products eiej · · · ek with 1 ≤ i < j < . . . < k.
We can write G = G0 + G1, where G0 is spanned by the products of
even length, and G1 is spanned by the products of odd length. Then
GiGj ⊆ Gi+j (mod 2). So G is a Z2-graded algebra, or a superalgebra. We
call G0 the even part of G, and G1 the odd part. If g ∈ G0 and h ∈ G
then gh = hg. But if g, h ∈ G1 then gh = −hg.

The Z2-grading of G is inherited by G ⊗ B = G0 ⊗ B + G1 ⊗ B. If
B = V〈X〉 is a free algebra of a certain variety V of algebras, then the
Z2-graded identities of the superalgebra G ⊗ V〈X〉 define a variety Ṽ of

so called V-superalgebras. For instance, the variety C̃om of commutative
superalgebras is defined by the graded identities of G

ab = ba,

ax = xa,

xy = −yx,

where the elements a, b are even and x, y are odd. The variety Ñ il3 of
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N il3-superalgebras is defined by

abc + bca + cab + acb + bac + cba = 0,

abx + bxa + xab + axb + bax + xba = 0,

axy + xya − yax − ayx + xay − yxa = 0,

xyz + yzx + zxy − xzy − yxz − zyx = 0,

where a, b, c are even and x, y, z are odd. Similarly, the varieties Ñ il4
and Ñ il5 are defined by five and six graded identities, respectively. In
general, the variety Ñ iln is defined by n+1 graded identities which may
be united in the following superidentity

s̃n(x1, x2, . . . , xn)
df
=

∑

σ∈Sym(n)

signodd(σ)x1σx2σ . . . xnσ = 0,

where signodd(σ) is the sign of the permutation afforded by σ on the
odd xi.

Now the idea is the following: at the first step we substitute our
multilinear identity t1t2 · · · tf(n) = 0 by the equivalent set of multilinear
identities Φi = 0, where in every Φi the n! variables are divided in mi < n
groups, and Φi is symmetric or skew-symmetric on the variables in each
group. And on the second step we reduce the number of the variables in
each of these identities, substituting instead of every group of symmetric
variables an even element, and instead of skew-symmetric, an odd one.
The point is that these new elements are not from the free algebra of a
variety, but from the free superalgebra.

It was Kemer [6] who first applied superalgebras to the investigation
of varieties of associative algebras, in his solution of the famous Specht
problem. Then this method was extended in the papers by Zel’manov
[12] and Zel’manov-Shestakov [13] to investigation of nilpotence and solv-
ability problems in non-associative algebras. Finally, Vaughan-Lee [10]
applied superalgebras to reduce the number of variables for his computer
calculations in N il4.

The two steps mentioned above were formalized by Vaughan-Lee [11]
in two theorems below. First we establish some notations.

If C is an algebra generated by c1, c2, . . . , cm, and if w is a prod-
uct of these generators, then we define the multiweight of w to be w =
(w1, w2, . . . , wm) if there are wi occurrences of the generator ci in w, for
i = 1, 2, . . . , m. The subspace of C spanned by all products of multiweight
w is called the multiweight w component of C.

Let V be a variety of ungraded algebras over a field F of charac-
teristic zero determined by a set of multilinear identities. Let V〈X〉 be
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the free algebra of rank m of V with the set of free generators X =
{x1, x2, . . . , xm}, and let M be the space of all the multilinear elements
of degree m in V〈X〉. We turn M into an F Sym(m) module, letting
permutations in Sym(m) permute x1, x2, . . . , xm. If S is a non-empty
subset of {1, 2, . . . , m} then we let

ϕ+
S =

∑

σ∈Sym(S)

σ and ϕ−

S =
∑

σ∈Sym(S)

sign(σ) · σ.

Theorem 2.1. Let d be the sum of the dimensions of the irreducible

representations of F Sym(m). Then M =
∑d

i=1 Mi, where each Mi has

the form M · ϕε1

S1
· ϕε2

S2
· · · · ϕεk

Sk
, for some partition of {1, 2, . . . , m} into

disjoint non-empty subsets S1, S2, . . . , Sk with 1
2k(k + 1) ≤ m, and for

some ε1, ε2, . . . , εk = ±.

Theorem 2.2. Let S1, S2, . . . , Sk be a partition of {1, 2, . . . , m} into dis-

joint non-empty subsets. Let ε1, ε2, . . . , εk = ±, and let mi = |Si| for

i = 1, 2, . . . , k. Then

dim(M · ϕε1

S1
· ϕε2

S2
· · · · ϕεk

Sk
) = dim N,

where N is the multiweight (m1, m2, . . . , mk) component of the free su-

peralgebra Z of rank k in the variety Ṽ, where for i = 1, 2, . . . , k the i-th
generator of Z is even, if εi = + and is odd if εi = −.

In fact, Theorem 2.1 is just a reformulation of the well known appli-
cation of the representation theory of Sym(m) to the study of identities
and reduces a given identity to its irreducible components correspond-
ing to all the possible Young tableaux. Theorem 2.2 admits to associate
with each Young tableau a certain superalgebra on k <

√
2m homoge-

neous generators and to do calculations in this superalgebra. The num-
ber of generators needed corresponds to the number of horizontal (even
variables) and vertical (odd variables) strips needed to subdivide Young
diagrams for Sym(m).

3. The nilpotency of 2-generator

superalgebras from Ñ il5

Following Vaughan-Lee, it is easy to see that in order to confirm Kuzmin’s
conjecture for n = 5, it suffices to prove that any superalgebra from
Ñ il5 on k ≤ 5 homogeneous generators is nilpotent of degree f(5) = 15.
However this is a huge computation, even on a supercomputer.

For example, if we consider 2-generator superalgebra, then in the case
of multiweight (7, 8) component we need to show that every of 15!

7!8! = 6435
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words is equal to zero. For the multiweight (5, 5, 5) component of 3-
generator superalgebra we need already to consider 15!

5!5!5! = 756756 words.

Using the GAP computer package, we prove that every 2-generator
superalgebra of Ñ il5 is nilpotent of degree 15.

The main difference of our algorithm and that of Vaughan-Lee is the
following one. In the algorithm of Vaughan-Lee, like in the algorithms of
the programs ‘Albert’ [4] and ‘Malcev’ [1], a base of a relatively free nilpo-
tent algebra or superalgebra is constructed, while we DO NOT construct
a base of a relatively free nilpotent 2-generator superalgebra, but only
show that every word of length 15 in it equals zero. Observe that neither
‘Albert’ nor ‘Malcev’ programs could construct a base for 2-generator free
superalgebras in Ñ il5 even in the simplest case of two even generators.

Let Ñ5 = Ñ il5[a, b] be the free superalgebra on homogeneous gener-
ators a and b. We have to consider separately the cases when a, b are
both even, both odd and when one of them is even and another is odd.
In each case we consider all the homogeneous components Ñ5(m, n), of
degree m on a and of degree n on b, where m + n = 15. For each set of
words u1, . . . , u5 ∈ Ñ5 such that their total degree on a is m and on b is
n, we have an equality s̃5(u1, . . . , u5) = 0 relating some of 15!

m!n! words of
multiweight (m, n) on a, b.

In fact, we can omit from the very beginning the words with zero
subwords. For example, if both a and b are odd, then the words a10, b10,
(ab)5, (ba)5 are zero and we have to consider

6365 words of multiweight (8, 7),

4970 −”− (9, 6),

2990 −”− (10, 5),

1340 −”− (11, 4),

415 −”− (12, 3),

75 −”− (13, 2),

5 −”− (14, 1).

If a is even then the multiweight (13, 2) and (14, 1) components are triv-
ially zero. Note that when the generators a and b have different parity,
the dimensions of the multiweight (m, n) and (n, m) components are not
necessary the same.

Thus, we get a linear homogeneous system on k ≤ 15!
m!n! unknowns,

i.e. words of multiweight (m, n) on a, b. Our purpose is to calculate the
rank of the matrix T of this system. If the rank r(T ) < k, then there
exists a non-zero word on a, b of the given multiweight, and Ñ 15

5 6= 0;
and if r(T ) = k, then all the words of length 15 and multiweight (m, n)
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on a, b are equal 0.
We do not write down all equations at once, since the parameters of

the most of the obtained systems are too big for the GAP. Instead, we
start with some reasonable number of them, reduce the system by GAP,
and then add more equations step by step. Because of the symmetry of
the identity s̃5(u1, . . . , u5) = 0, we can always suppose that deg(u1) ≤
· · · ≤ deg(u5). In any case we stopped our calculations when the rank of
the system reached the number of the unknowns.

Observe that the matrix T consists of integers. Clearly, for every
prime p > 0, its rank rp(T ) over the field Z(p) is less or equal than r(T ).
Hence, in order to prove that r(T ) = k it suffices to prove that rp(T ) = k
for some p > 0. We do the calculations for p = 13 and prove that in
all the cases the rank of the system is equal to the number of variables.
Thus, we have the following result.

Theorem 3.1. Every 2-generator superalgebra from the variety Ñ il5 is

nilpotent of degree 15.

Corollary 3.2. Let g(x1, . . . , xn, y1, . . . , ym), n + m = 15, be a multilin-

ear polynomial that is symmetric or skew-symmetric on each of the groups

of the variables, x-s and y-s. Then g = 0 identically in N il5.

Proof. Assume, for the definiteness, that g is symmetric on x-s and skew-
symmetric on y-s. Let A = N il5[x1, . . . , xn, y1, . . . , ym] be the free al-
gebra of the variety N il5. Consider the unital commutative associa-
tive algebra H = alg〈α1, α2, . . . |α2

i = 0〉 and the Grassmann algebra
G = alg〈e1, e2, . . . | eiej = −ejei〉. Furthermore, let B = (H ⊗ G) ⊗ A.
It is easy to see that with respect to the Z2-grading inherited from G,
B = B0 + B1 is a N il5-superalgebra. Let a = α1 ⊗ x1 + · · · + αn ⊗ xn ∈
B0, b = e1 ⊗ y1 + · · · + em ⊗ ym ∈ B1, then by the Theorem 3.1,
(alg〈a, b〉)15 = 0. In particular, we have

0 = g(a, . . . , a︸ ︷︷ ︸
n

, b, . . . , b︸ ︷︷ ︸
m

) =

= n!m!(α1 · · ·αn ⊗ e1 · · · em) ⊗ g(x1, . . . , xn, y1, . . . , ym).

Since char (F ) = 0, it follows that g = 0 in A.

In fact we were looking for a possible counter-example to the con-
jecture. The arguments of Kuzmin and the previous cases give certain
evidence that such a counter-example, if it existed, might already appear
in case of two generators. The proof of the corollary above can be easily
modified for this imaginary non-nilpotency situation. Below we give a
more easy superalgebra–algebra passage for this case.
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Proposition 3.3. Assume that for some natural n and m, a 2-generator

Ñ iln-superalgebra B = B0 + B1 is not nilpotent of degree m, that is,

Bm 6= 0. Then x1x2 · · ·xm 6= 0 in N iln.

Proof. Let B = alg〈a, b〉, where a and b are homogeneous. We may
assume that at least one of a, b is odd since otherwise the proposi-
tion is evident. Since Bm 6= 0, there exists a multilinear monomial
u(y1, . . . , yk, z1, . . . , zl) of degree m = k + l such that

u(a, . . . , a︸ ︷︷ ︸
k

, b, . . . , b︸ ︷︷ ︸
l

) 6= 0.

Consider the algebra A = G0 ⊗B0 + G1 ⊗B1 where G = G0 + G1 is the
Grassmann algebra; then A ∈ N iln (see [9], [11]). Let a be even and b
be odd; then 1 ⊗ a, e1 ⊗ b, . . . , el ⊗ b ∈ A, and we have

u(1 ⊗ a, . . . , 1 ⊗ a︸ ︷︷ ︸
k

, e1⊗b, . . . , el⊗b) = ±e1 · · · el⊗u(a, . . . , a︸ ︷︷ ︸
k

, b, . . . , b︸ ︷︷ ︸
l

) 6= 0.

Hence Am 6= 0. If both generators a and b are odd then e1⊗a, . . . , ek⊗a,
ek+1 ⊗ b, . . . , ek+l ⊗ b ∈ A, and as above we have Am 6= 0.
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