Algebra and Discrete Mathematics
Number 3. (2003). pp. 82 - 88
(c) Journal "Algebra and Discrete Mathematics"

$\mathcal{H}-$ and $\mathcal{R}-$ cross-sections of the full finite semigroup T_n

RESEARCH ARTICLE

Vasyl Pyekhtyeryev

Communicated by B. V. Novikov

ABSTRACT. All \mathcal{H} - and \mathcal{R} - cross-sections of the full finite semigroup T_n of all transformations of the set $N = \{1, 2, \ldots, n\}$ are described.

1. Introduction

Let ρ be an equivalence relation on a semigroup S. The subsemigroup $T \subset S$ is called a *cross-section* with respect to ρ if T contains exactly 1 element from every equivalence class. Clearly, the most interesting are the cross-sections with respect to the equivalence relations connected with the semigroup structure on S. The first candidates for such relations are congruences and the Green relations.

The Green relations $\mathcal{L}, \mathcal{R}, \mathcal{H}, \mathcal{D}$ and \mathcal{J} on semigroup S are defined as binary relations in the following way: $a\mathcal{L}b$ if and only if $S^1a = S^1b$; $a\mathcal{R}b$ if and only if $aS^1 = bS^1$; $a\mathcal{J}b$ if and only if $S^1aS^1 = S^1bS^1$ for any $a, b \in S$ and $\mathcal{H} = \mathcal{L} \land \mathcal{R}, \ \mathcal{D} = \mathcal{L} \lor \mathcal{R}.$

Cross-sections with respect to the $\mathcal{H} - (\mathcal{L} -, \mathcal{R} -, \mathcal{D} -, \mathcal{J} -)$ Green relations are called $\mathcal{H} - (\mathcal{L} -, \mathcal{R} -, \mathcal{D} -, \mathcal{J} -)$ cross-sections in the sequel.

In the present paper all \mathcal{H} - and \mathcal{R} - cross-sections of the full finite semigroup T_n of all transformations of the set $N = \{1, 2, \ldots, n\}$ are described.

The study of cross-sections with respect to Green relations for the specific semigroups was initiated a few years ago. The most studied ones are cross-sections of the full inverse symmetric semigroup IS_n . For this

²⁰⁰⁰ Mathematics Subject Classification: 20M20, 20M10.

Key words and phrases: full finite semigroup, Green relations, cross-sections.

semigroup the first example of an \mathcal{H} -cross-section has been constructed in [R]. Later, a complete description of all \mathcal{H} -cross-sections for IS_n , $n \neq$ 3, was obtained in [CR]. After that in [GM] all \mathcal{L} - and \mathcal{R} -cross-sections of IS_n and their disposition with respect to the \mathcal{H} -cross-sections of this semigroup were described.

For $a \in T_n$ we denote by im(a) and ρ_a the image of the element a and the equivalence relation on the set N given by the rule $i\rho_a j$ iff a(i) = a(j) respectively. We will multiply the elements in T_n from the left to the right, that is, (ab)(x) = b(a(x)) for all $x \in N$. The number rk(a) = |im(a)| is called the rank of a. The identity map $id_N : N \to N$ is the unit element of T_n and will be denoted by e.

For an element $a \in T_n$ one can use the usual tableaux presentation

$$a = \left(\begin{array}{rrrr} 1 & 2 & \cdots & n \\ k_1 & k_2 & \cdots & k_n \end{array}\right),$$

where $a(i) = k_i, i = 1, 2, ..., n$.

It is well-known (see for example [CP]) that the Green relations on T_n can be described as follows:

 $a\mathcal{R}b$ if and only if $\rho_a = \rho_b$;

 $a\mathcal{L}b$ if and only if im(a) = im(b);

 $a\mathcal{H}b$ if and only if $\rho_a = \rho_b$ and im(a) = im(b);

 $a\mathcal{D}b$ if and only if rk(a) = rk(b).

In particular, Green's \mathcal{D} -classes are $D_k = \{ a \in T_n \mid \mathrm{rk}(a) = k \}, 1 \leq k \leq n.$

2. Description of \mathcal{H} - cross-sections

From the structure of Green relation \mathcal{H} on the semigroup T_n it follows that each \mathcal{H} -class of this semigroup is uniquely determined by a disjoint decomposition $N = A_1 \cup \ldots \cup A_k$ of the set N into k non-empty blocks and a set $P \subseteq N$ with |P| = k. Denote by $H_P^{A_1,\ldots,A_k}$ the \mathcal{H} -class determined by these data.

Theorem 1. a) T_1 contains the single \mathcal{H} -cross-section $H = T_1$. b) T_2 contains the single \mathcal{H} -cross-section

$$H = \left\{ \left(\begin{array}{cc} 1 & 2 \\ 1 & 1 \end{array} \right), \left(\begin{array}{cc} 1 & 2 \\ 2 & 2 \end{array} \right), \left(\begin{array}{cc} 1 & 2 \\ 1 & 2 \end{array} \right) \right\}.$$

c) For n > 2, the semigroup T_n does not contain \mathcal{H} -cross-sections.

Proof. a) Obvious.

b) From the structure of Green relation \mathcal{H} it follows that each \mathcal{H} -cross-section H of this semigroup has to contain all elements of the rank 1 and one element of the rank 2. Moreover, the latter one must be idempotent. One can verify immediately that the only subsemigroup that fulfills these conditions is

$$H = \left\{ \left(\begin{array}{cc} 1 & 2 \\ 1 & 1 \end{array} \right), \left(\begin{array}{cc} 1 & 2 \\ 2 & 2 \end{array} \right), \left(\begin{array}{cc} 1 & 2 \\ 1 & 2 \end{array} \right) \right\}.$$

c) Consider three \mathcal{H} -classes $H' = H_{\{1,3\}}^{\{1\},\{2,...,n\}} = \{a',b'\},$ where

$$a' = \begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ 1 & 3 & 3 & \cdots & 3 \end{pmatrix}, \quad b' = \begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ 3 & 1 & 1 & \cdots & 1 \end{pmatrix},$$

 $H''=H_{\{2,3\}}^{\{1,2\},\{3,\ldots,n\}}=\{a'',b''\},$ where

$$a'' = \begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ 2 & 2 & 3 & \cdots & 3 \end{pmatrix}, \quad b'' = \begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ 3 & 3 & 2 & \cdots & 2 \end{pmatrix},$$

 $H^{\prime\prime\prime}=H^{\{1,3\},\{2,4,\dots,n\}}_{\{1,2\}}=\{a^{\prime\prime\prime},b^{\prime\prime\prime}\},\,\text{where}\,$

$$a''' = \begin{pmatrix} 1 & 2 & 3 & 4 & \cdots & n \\ 1 & 2 & 1 & 2 & \cdots & 2 \end{pmatrix}, \quad b''' = \begin{pmatrix} 1 & 2 & 3 & 4 & \cdots & n \\ 2 & 1 & 2 & 1 & \cdots & 1 \end{pmatrix}$$

Let us assume that there exists an \mathcal{H} -cross-section H. Then from $|H \cap H'| = 1$ and b'b' = a' one gets that $a' \in H$. Analogously, we can prove that $a'', a''' \in H$. Since H is a subsemigroup, the elements c = a'a''a''' and c^2 also belong to H. But

$$c = \left(\begin{array}{rrr} 1 & 2 & \cdots & n \\ 2 & 1 & \cdots & 1 \end{array}\right), \quad c^2 = \left(\begin{array}{rrr} 1 & 2 & \cdots & n \\ 1 & 2 & \cdots & 2 \end{array}\right),$$

therefore $c\mathcal{H}c^2$. On the other hand $c \neq c^2$. This contradicts our assumption that H is \mathcal{H} -cross-section and accomplishes the proof of the theorem.

Remark. Finiteness of the set N was not used in the proof. Therefore this theorem holds true for arbitrary full infinite semigroup \mathcal{T}_X .

3. Description of \mathcal{R} - cross-sections

Since for $a, b \in T_n$ the condition $a\mathcal{R}b$ is equivalent to the condition $\rho_a = \rho_b$, the equalities a = b and $\rho_a = \rho_b$ are equivalent for elements a, b from arbitrary \mathcal{R} -cross-section T of T_n . We will frequently use this fact in the paper.

From the structure of Green relation \mathcal{R} on the semigroup T_n it follows that each \mathcal{R} -class of this semigroup is uniquely determined by a disjoint decomposition $N = A_1 \dot{\cup} \dots \dot{\cup} A_k$ of the set N into k non-empty blocks. Denote by $R(A_1, \dots, A_k)$ the \mathcal{R} -class determined by this decomposition.

Lemma 1. Let T be an \mathcal{R} -cross-section of T_n and $a, b \in D_k \cap T$ for some $k, 1 \leq k \leq n$. Then im(a) = im(b).

Proof. Let us assume the contrary, then there exist a number k and elements $a, b \in D_k \cap T$ such that $im(a) \neq im(b)$. Denote $C = im(a) \cap$ $im(b), A = im(a) \setminus C, B = im(b) \setminus C$ and p = |A|. Since |A| = |B| = p, there exists the disjoint decomposition of the set $A \cup B$ into the pairs $(a_1, b_1), (a_2, b_2), \ldots, (a_p, b_p)$ such that $a_i \in A, b_i \in B$ for every $i, 1 \leq i \leq p$. Since T is an \mathcal{R} -cross-section, the set $T \cap R(\{a_1, b_1\}, \ldots, \{a_p, b_p\}, \{c_1\}, \ldots, \{c_{k-p-1}\}, \{c_{k-p} \cup (N \setminus (A \cup B \cup C))\})$ contains precisely one element. Let c denote this element. Now on one hand the equality im(ac) = im(c)and the implications $\rho_{ac} = \rho_a \Rightarrow ac = a \Rightarrow im(ac) = im(a) \Rightarrow im(a) = im(c)$ hold true and on the other hand, analogously, we can show that im(b) = im(c). But the latter equality is impossible because $im(a) \neq im(b)$. This contradiction completes the proof of the lemma. \Box

Lemma 2. Let T be an \mathcal{R} -cross-section of T_n and $a \in D_k \cap T, b \in D_{k+1} \cap T$ for some $k, 1 \leq k \leq n-1$. Then $im(a) \subset im(b)$.

Proof. Let

$$A = im(a) = \{a_1, \dots, a_k\}$$
$$c \in T \cap R(\{a_1\}, \dots, \{a_k\}, \{N \setminus A\}).$$

and

Then $\rho_{ac} = \rho_a$. This implies ac = a and im(ac) = im(a), but $im(ac) \subset im(c)$ implies that $im(a) \subset im(c)$. Since $c \in D_{k+1} \cap T$, we have that im(b) = im(c) by Lemma 1. The latter equality completes the proof of the inclusion $im(a) \subset im(b)$.

Thus from the lemmas, we can see that every \mathcal{R} -cross-section T of T_n defines linear order on the set N in the following way: an element $i \in N$ is less than $j \in N$ iff there exists $k, 1 \leq k \leq n$ such that the set $im(D_k \cap T)$ contains i, but does not contain j.

Let φ denote the map that assigns to each \mathcal{R} -cross-section T of the semigroup T_n the linear order on the set N determined as above.

Let linear order < on the set N be fixed. For every decomposition of the set $N = A_1 \dot{\cup} A_2 \dot{\cup} \dots \dot{\cup} A_k$ into disjoint union of non-empty blocks define the induced linear order on blocks by the rule $A_i \prec A_j$ iff $min(A_i) < min(A_j)$, where $min(A_i)$ denotes the least element of the set $(A_i, <)$.

Define

$$\begin{aligned} x_1 &= \min(N), \\ x_2 &= \min(N \setminus \{x_1\}), \\ \vdots \\ x_n &= \min(N \setminus \{x_1, \dots, x_{n-1}\}). \end{aligned}$$

Now construct the set S_{\leq} in the following way: an element $a \in R(A_1, \ldots, A_k)$, where $A_1 \prec A_2 \prec \cdots \prec A_k$ belongs to the set S_{\leq} if and only if the equality $a(A_i) = x_i$ holds true for every $i, 1 \leq i \leq k$. Then it is obvious, that S_{\leq} contains exactly one element from every \mathcal{R} -class. Moreover, the following proposition holds true.

Lemma 3. For every linear order < on the set N the set $S_{<}$ is closed under multiplication.

Proof. Let $a, b \in S_{\leq}$ be arbitrary elements. Then there exist two \mathcal{R} -classes $R(A_1, \ldots, A_k)$, $R(B_1, \ldots, B_m)$ such that $a \in R(A_1, \ldots, A_k)$, $b \in R(B_1, \ldots, B_m)$. Without loss of generality we can assume that $A_1 \prec A_2 \prec \cdots \prec A_k$ and $B_1 \prec B_2 \prec \cdots \prec B_m$. By p denote the least number such that $im(a) \cap B_p = \emptyset$. Clearly, p > 1 and $im(ab) = \{x_1, \ldots, x_{p-1}\}$ in this case. Now for every element $x \in im(ab)$ denote by C_x the set $(ab)^{-1}(x)$. The sets A_x, B_x are defined similarly. To complete the proof it is now sufficient to show that $C_x \prec C_y$ for every pair of elements x < y from the set im(ab). This follows immediately from the equality $min(C_x) = min(A_{min(B_x)})$ and the following sequence of implications $x < y \Rightarrow B_x \prec B_y \Rightarrow min(B_x) < min(B_y) \Rightarrow A_{min(B_x)} \prec A_{min(B_y)} \Rightarrow min(A_{min(B_x)}) < min(A_{min(B_y)}) \Rightarrow min(C_x) < min(C_y) \Rightarrow C_x \prec C_y$.

Corollary 1. For every linear order < on the set N the set $S_{<}$ is an \mathcal{R} -cross-section in T_n .

Proof. By Lemma 3 this set is closed under multiplication. Moreover, the multiplication is associative, because $S_{\leq} \subset T_n$. Hence S_{\leq} is a subsemigroup of T_n . But from the construction of this set it also follows that

 $S_{<}$ contains exactly 1 element from every \mathcal{R} -class and the statement is proven.

Corollary 2. The map φ is surjective.

Proof. Follows from $S_{\leq} \in \varphi^{-1}(<)$ for every linear order < on the set N.

Lemma 4. Let T be an \mathcal{R} -cross-section of T_n and < denotes the linear order $\varphi(T)$. Denote by \prec the induced linear order on blocks. The elements $x_i, 1 \leq i \leq n$ are determined as above. Then for element $a \in T \cap R(A_1, \ldots, A_k)$, where $A_1 \prec A_2 \prec \cdots \prec A_k$ the equality $a(A_i) = x_i$ for every $i, 1 \leq i \leq k$ holds true.

Proof. Let us assume the contrary. Then there exist an element $a \in T$ and a number j such that $a(A_j) \neq x_j$. Without loss of generality we can assume that j is the minimal number with this property. Then $a(A_j) > x_j$. Consider the number p such that $min(A_j) = x_p$. Then for every $x \in A_{j+1} \cup \cdots \cup A_k$ the inequality $x > x_p$ holds true. From $A_i \prec A_j$ for every i < j it follows that there exist elements $y_i \in A_i$ such that $y_i < x_p$ for every i < j. Now consider element $b \in T \cap D_p$. It is obvious, that rk(ba) = j. But $im(ba) \neq \{x_1, \ldots, x_j\}$, because for every $x \in b^{-1}(x_p)$ we have that $(ba)(x) = a(b(x)) = a(x_p) > x_j$. Therefore $ba \notin T$. This contradiction completes the proof of the lemma. \Box

Corollary 3. The map φ is injective.

Proof. Let T_1, T_2 be \mathcal{R} -cross-sections of T_n such that $\varphi(T_1) = \varphi(T_2)$. Then by Lemma 4 sets $T_1 \cap R$, $T_2 \cap R$ coincide for every \mathcal{R} -class R. This implies $T_1 = T_2$ and completes the proof of the lemma.

Theorem 2. The map φ is a bijection between the set of all \mathcal{R} -cross-sections of T_n and the set of all linear orders on the set N.

Proof. Follows from Corollaries 2 and 3.

Theorem 3. The semigroup T_n contains exactly n! different \mathcal{R} -cross-sections. Every two \mathcal{R} -cross-sections are isomorphic.

Proof. By Theorem 2 the number of different \mathcal{R} -cross-sections of the semigroup T_n equals the number of all linear orders on the set N, but the last number equals n!. With the linear order $x_1 < x_2 < \cdots < x_n$ we associate the permutation $\pi = \begin{pmatrix} 1 & 2 & \cdots & n \\ x_1 & x_2 & \cdots & x_n \end{pmatrix}$. Let T_1, T_2 be two \mathcal{R} -cross-sections of T_n . Denote by π_1 and π_2 the permutations

associated with the linear orders $\varphi(T_1), \varphi(T_2)$ respectively. Then the equality $\pi_1 T_1 \pi_1^{-1} = \pi_2 T_2 \pi_2^{-1}$ holds true. This means that arbitrary two \mathcal{R} -cross-section are conjugated and hence isomorphic.

Acknowledgements

I would like to thank Prof. O. G. Ganyushkin for fruitful discussions.

References

- [R] Renner L. E. Analogue of Bruhat decomposition for algebraic monoids. II. The length function and the trichotomy. J. Algebra 175 (1995), no. 2, 697-714.
- [CR] Cowan D. F., Reily R. Partial cross-sections of symmetric inverse semigroups. Internat J. Algebra Comput. 5 (1995), no. 3, 259-287.
- [GM] Ganyushkin O., Mazorchuk V. *L- and R-cross-section in IS_n*. Com. in Algebra 31(2003), no. 9, 4507-4523.
- [CP] Clifford A. H., Preston G. B. The algebraic theory of semigroups, American Mathematical Society, Providence, Rhode Island, 1964.

CONTACT INFORMATION

V. Pyekhtyeryev

Department of Mechanics and Mathematics, Kiyv Taras Shevchenko University, 64, Volodymyrska st., 01033, Kiyv, UKRAINE *E-Mail:* vasiliy@univ.kiev.ua

Received by the editors: 01.07.2003 and final form in 24.10.2003.