$\mathcal{H}-$ and \mathcal{R}-cross-sections of the full finite semigroup T_{n}
 Vasyl Pyekhtyeryev

Communicated by B. V. Novikov

Abstract. All $\mathcal{H}-$ and \mathcal{R} - cross-sections of the full finite semigroup T_{n} of all transformations of the set $N=\{1,2, \ldots, n\}$ are described.

1. Introduction

Let ρ be an equivalence relation on a semigroup S. The subsemigroup $T \subset S$ is called a cross-section with respect to ρ if T contains exactly 1 element from every equivalence class. Clearly, the most interesting are the cross-sections with respect to the equivalence relations connected with the semigroup structure on S. The first candidates for such relations are congruences and the Green relations.

The Green relations $\mathcal{L}, \mathcal{R}, \mathcal{H}, \mathcal{D}$ and \mathcal{J} on semigroup S are defined as binary relations in the following way: $a \mathcal{L} b$ if and only if $S^{1} a=S^{1} b$; $a \mathcal{R} b$ if and only if $a S^{1}=b S^{1} ; a \mathcal{J} b$ if and only if $S^{1} a S^{1}=S^{1} b S^{1}$ for any $a, b \in S$ and $\mathcal{H}=\mathcal{L} \wedge \mathcal{R}, \mathcal{D}=\mathcal{L} \vee \mathcal{R}$.

Cross-sections with respect to the $\mathcal{H}-(\mathcal{L}-, \mathcal{R}-, \mathcal{D}-, \mathcal{J}-)$ Green relations are called $\mathcal{H}-(\mathcal{L}-, \mathcal{R}-, \mathcal{D}-, \mathcal{J}-)$ cross-sections in the sequel.

In the present paper all \mathcal{H} - and \mathcal{R} - cross-sections of the full finite semigroup T_{n} of all transformations of the set $N=\{1,2, \ldots, n\}$ are described.

The study of cross-sections with respect to Green relations for the specific semigroups was initiated a few years ago. The most studied ones are cross-sections of the full inverse symmetric semigroup $I S_{n}$. For this

Key words and phrases: full finite semigroup, Green relations, cross-sections.
semigroup the first example of an \mathcal{H}-cross-section has been constructed in $[\mathrm{R}]$. Later, a complete description of all \mathcal{H}-cross-sections for $I S_{n}, n \neq$ 3 , was obtained in $[\mathrm{CR}]$. After that in [GM] all $\mathcal{L}-$ and \mathcal{R}-cross-sections of $I S_{n}$ and their disposition with respect to the \mathcal{H}-cross-sections of this semigroup were described.

For $a \in T_{n}$ we denote by $i m(a)$ and ρ_{a} the image of the element a and the equivalence relation on the set N given by the rule $i \rho_{a} j$ iff $a(i)=a(j)$ respectively. We will multiply the elements in T_{n} from the left to the right, that is, $(a b)(x)=b(a(x))$ for all $x \in N$. The number $\operatorname{rk}(a)=|i m(a)|$ is called the rank of a. The identity map $i d_{N}: N \rightarrow N$ is the unit element of T_{n} and will be denoted by e.

For an element $a \in T_{n}$ one can use the usual tableaux presentation

$$
a=\left(\begin{array}{cccc}
1 & 2 & \cdots & n \\
k_{1} & k_{2} & \cdots & k_{n}
\end{array}\right)
$$

where $a(i)=k_{i}, i=1,2, \ldots, n$.
It is well-known (see for example $[\mathrm{CP}]$) that the Green relations on T_{n} can be described as follows:
$a \mathcal{R} b$ if and only if $\rho_{a}=\rho_{b} ;$
$a \mathcal{L} b$ if and only if $i m(a)=i m(b)$;
$a \mathcal{H} b$ if and only if $\rho_{a}=\rho_{b}$ and $\operatorname{im}(a)=i m(b) ;$
$a \mathcal{D} b$ if and only if $\operatorname{rk}(a)=\operatorname{rk}(b)$.
In particular, Green's \mathcal{D}-classes are $D_{k}=\left\{a \in T_{n} \mid \operatorname{rk}(a)=k\right\}, 1 \leq$ $k \leq n$.

2. Description of \mathcal{H} - cross-sections

From the structure of Green relation \mathcal{H} on the semigroup T_{n} it follows that each \mathcal{H}-class of this semigroup is uniquely determined by a disjoint decomposition $N=A_{1} \dot{U} \ldots \dot{\cup} A_{k}$ of the set N into k non-empty blocks and a set $P \subseteq N$ with $|P|=k$. Denote by $H_{P}^{A_{1}, \ldots, A_{k}}$ the \mathcal{H}-class determined by these data.

Theorem 1. a) T_{1} contains the single \mathcal{H}-cross-section $H=T_{1}$.
b) T_{2} contains the single \mathcal{H}-cross-section

$$
H=\left\{\left(\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 2 \\
2 & 2
\end{array}\right),\left(\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right)\right\}
$$

c) For $n>2$, the semigroup T_{n} does not contain \mathcal{H}-cross-sections.

Proof. a) Obvious.
b) From the structure of Green relation \mathcal{H} it follows that each \mathcal{H}-cross-section H of this semigroup has to contain all elements of the rank 1 and one element of the rank 2. Moreover, the latter one must be idempotent. One can verify immediately that the only subsemigroup that fulfills these conditions is

$$
H=\left\{\left(\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 2 \\
2 & 2
\end{array}\right),\left(\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right)\right\}
$$

c) Consider three \mathcal{H}-classes
$H^{\prime}=H_{\{1,3\}}^{\{1\},\{2, \ldots, n\}}=\left\{a^{\prime}, b^{\prime}\right\}$, where

$$
a^{\prime}=\left(\begin{array}{ccccc}
1 & 2 & 3 & \cdots & n \\
1 & 3 & 3 & \cdots & 3
\end{array}\right), \quad b^{\prime}=\left(\begin{array}{ccccc}
1 & 2 & 3 & \cdots & n \\
3 & 1 & 1 & \cdots & 1
\end{array}\right),
$$

$H^{\prime \prime}=H_{\{2,3\}}^{\{1,2\},\{3, \ldots, n\}}=\left\{a^{\prime \prime}, b^{\prime \prime}\right\}$, where

$$
a^{\prime \prime}=\left(\begin{array}{ccccc}
1 & 2 & 3 & \cdots & n \\
2 & 2 & 3 & \cdots & 3
\end{array}\right), \quad b^{\prime \prime}=\left(\begin{array}{ccccc}
1 & 2 & 3 & \cdots & n \\
3 & 3 & 2 & \cdots & 2
\end{array}\right),
$$

$H^{\prime \prime \prime}=H_{\{1,2\}}^{\{1,3\},\{2,4, \ldots, n\}}=\left\{a^{\prime \prime \prime}, b^{\prime \prime \prime}\right\}$, where

$$
a^{\prime \prime \prime}=\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & \cdots & n \\
1 & 2 & 1 & 2 & \cdots & 2
\end{array}\right), \quad b^{\prime \prime \prime}=\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & \cdots & n \\
2 & 1 & 2 & 1 & \cdots & 1
\end{array}\right) .
$$

Let us assume that there exists an \mathcal{H}-cross-section H. Then from $\mid H \cap$ $H^{\prime} \mid=1$ and $b^{\prime} b^{\prime}=a^{\prime}$ one gets that $a^{\prime} \in H$. Analogously, we can prove that $a^{\prime \prime}, a^{\prime \prime \prime} \in H$. Since H is a subsemigroup, the elements $c=a^{\prime} a^{\prime \prime} a^{\prime \prime \prime}$ and c^{2} also belong to H. But

$$
c=\left(\begin{array}{cccc}
1 & 2 & \cdots & n \\
2 & 1 & \cdots & 1
\end{array}\right), \quad c^{2}=\left(\begin{array}{cccc}
1 & 2 & \cdots & n \\
1 & 2 & \cdots & 2
\end{array}\right)
$$

therefore $c \mathcal{H} c^{2}$. On the other hand $c \neq c^{2}$. This contradicts our assumption that H is \mathcal{H}-cross-section and accomplishes the proof of the theorem.

Remark. Finiteness of the set N was not used in the proof. Therefore this theorem holds true for arbitrary full infinite semigroup \mathcal{T}_{X}.

3. Description of \mathcal{R} - cross-sections

Since for $a, b \in T_{n}$ the condition $a \mathcal{R} b$ is equivalent to the condition $\rho_{a}=$ ρ_{b}, the equalities $a=b$ and $\rho_{a}=\rho_{b}$ are equivalent for elements a, b from arbitrary \mathcal{R}-cross-section T of T_{n}. We will frequently use this fact in the paper.

From the structure of Green relation \mathcal{R} on the semigroup T_{n} it follows that each \mathcal{R}-class of this semigroup is uniquely determined by a disjoint decomposition $N=A_{1} \dot{\cup} \ldots \dot{U} A_{k}$ of the set N into k non-empty blocks. Denote by $R\left(A_{1}, \ldots, A_{k}\right)$ the \mathcal{R}-class determined by this decomposition.

Lemma 1. Let T be an \mathcal{R}-cross-section of T_{n} and $a, b \in D_{k} \cap T$ for some $k, 1 \leq k \leq n$. Then $i m(a)=i m(b)$.

Proof. Let us assume the contrary, then there exist a number k and elements $a, b \in D_{k} \cap T$ such that $i m(a) \neq i m(b)$. Denote $C=i m(a) \cap$ $i m(b), A=i m(a) \backslash C, B=i m(b) \backslash C$ and $p=|A|$. Since $|A|=|B|=p$, there exists the disjoint decomposition of the set $A \cup B$ into the pairs $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right), \ldots,\left(a_{p}, b_{p}\right)$ such that $a_{i} \in A, b_{i} \in B$ for every $i, 1 \leq i \leq$ p. Since T is an \mathcal{R}-cross-section, the set $T \cap R\left(\left\{a_{1}, b_{1}\right\}, \ldots,\left\{a_{p}, b_{p}\right\},\left\{c_{1}\right\}\right.$, $\left.\ldots,\left\{c_{k-p-1}\right\},\left\{c_{k-p} \cup(N \backslash(A \cup B \cup C))\right\}\right)$ contains precisely one element. Let c denote this element. Now on one hand the equality $i m(a c)=i m(c)$ and the implications $\rho_{a c}=\rho_{a} \Rightarrow a c=a \Rightarrow i m(a c)=i m(a) \Rightarrow i m(a)=$ $\operatorname{im}(c)$ hold true and on the other hand, analogously, we can show that $\operatorname{im}(b)=i m(c)$. But the latter equality is impossible because $\operatorname{im}(a) \neq$ $i m(b)$. This contradiction completes the proof of the lemma.

Lemma 2. Let T be an \mathcal{R}-cross-section of T_{n} and $a \in D_{k} \cap T, b \in$ $D_{k+1} \cap T$ for some $k, 1 \leq k \leq n-1$. Then $\operatorname{im}(a) \subset i m(b)$.

Proof. Let

$$
A=i m(a)=\left\{a_{1}, \ldots, a_{k}\right\}
$$

and

$$
c \in T \cap R\left(\left\{a_{1}\right\}, \ldots,\left\{a_{k}\right\},\{N \backslash A\}\right)
$$

Then $\rho_{a c}=\rho_{a}$. This implies $a c=a$ and $\operatorname{im}(a c)=i m(a)$, but $i m(a c) \subset$ $i m(c)$ implies that $\operatorname{im}(a) \subset i m(c)$. Since $c \in D_{k+1} \cap T$, we have that $i m(b)=i m(c)$ by Lemma 1. The latter equality completes the proof of the inclusion $\operatorname{im}(a) \subset i m(b)$.

Thus from the lemmas, we can see that every \mathcal{R}-cross-section T of T_{n} defines linear order on the set N in the following way: an element $i \in N$ is less than $j \in N$ iff there exists $k, 1 \leq k \leq n$ such that the set $i m\left(D_{k} \cap T\right)$ contains i, but does not contain j.

Let φ denote the map that assigns to each \mathcal{R}-cross-section T of the semigroup T_{n} the linear order on the set N determined as above.

Let linear order $<$ on the set N be fixed. For every decomposition of the set $N=A_{1} \dot{\cup} A_{2} \dot{\cup} \ldots \dot{\cup} A_{k}$ into disjoint union of non-empty blocks define the induced linear order on blocks by the rule $A_{i} \prec A_{j}$ iff $\min \left(A_{i}\right)<\min \left(A_{j}\right)$, where $\min \left(A_{i}\right)$ denotes the least element of the set $\left(A_{i},<\right)$.

Define

$$
\begin{aligned}
x_{1} & =\min (N) \\
x_{2} & =\min \left(N \backslash\left\{x_{1}\right\}\right), \\
\vdots & \\
x_{n} & =\min \left(N \backslash\left\{x_{1}, \ldots, x_{n-1}\right\}\right) .
\end{aligned}
$$

Now construct the set $S_{<}$in the following way: an element $a \in$ $R\left(A_{1}, \ldots, A_{k}\right)$, where $A_{1} \prec A_{2} \prec \cdots \prec A_{k}$ belongs to the set $S_{<}$if and only if the equality $a\left(A_{i}\right)=x_{i}$ holds true for every $i, 1 \leq i \leq k$. Then it is obvious, that $S_{<}$contains exactly one element from every \mathcal{R}-class. Moreover, the following proposition holds true.

Lemma 3. For every linear order $<$ on the set N the set $S_{<}$is closed under multiplication.

Proof. Let $a, b \in S_{<}$be arbitrary elements. Then there exist two \mathcal{R}-classes $R\left(A_{1}, \ldots, A_{k}\right), R\left(B_{1}, \ldots, B_{m}\right)$ such that $a \in R\left(A_{1}, \ldots, A_{k}\right)$, $b \in R\left(B_{1}, \ldots, B_{m}\right)$. Without loss of generality we can assume that $A_{1} \prec$ $A_{2} \prec \cdots \prec A_{k}$ and $B_{1} \prec B_{2} \prec \cdots \prec B_{m}$. By p denote the least number such that $\operatorname{im}(a) \cap B_{p}=\emptyset$. Clearly, $p>1$ and $\operatorname{im}(a b)=\left\{x_{1}, \ldots, x_{p-1}\right\}$ in this case. Now for every element $x \in i m(a b)$ denote by C_{x} the set $(a b)^{-1}(x)$. The sets A_{x}, B_{x} are defined similarly. To complete the proof it is now sufficient to show that $C_{x} \prec C_{y}$ for every pair of elements $x<y$ from the set $\operatorname{im}(a b)$. This follows immediately from the equality $\min \left(C_{x}\right)=\min \left(A_{\min \left(B_{x}\right)}\right)$ and the following sequence of implications $x<y \Rightarrow B_{x} \prec B_{y} \Rightarrow \min \left(B_{x}\right)<\min \left(B_{y}\right) \Rightarrow A_{\min \left(B_{x}\right)} \prec A_{\min \left(B_{y}\right)} \Rightarrow$ $\min \left(A_{\min \left(B_{x}\right)}\right)<\min \left(A_{\min \left(B_{y}\right)}\right) \Rightarrow \min \left(C_{x}\right)<\min \left(C_{y}\right) \Rightarrow C_{x} \prec C_{y}$.

Corollary 1. For every linear order $<$ on the set N the set $S_{<}$is an \mathcal{R}-cross-section in T_{n}.

Proof. By Lemma 3 this set is closed under multiplication. Moreover, the multiplication is associative, because $S_{<} \subset T_{n}$. Hence $S_{<}$is a subsemigroup of T_{n}. But from the construction of this set it also follows that
$S_{<}$contains exactly 1 element from every \mathcal{R}-class and the statement is proven.

Corollary 2. The map φ is surjective.
Proof. Follows from $S_{<} \in \varphi^{-1}(<)$ for every linear order $<$ on the set N.

Lemma 4. Let T be an \mathcal{R}-cross-section of T_{n} and $<$ denotes the linear order $\varphi(T)$. Denote by \prec the induced linear order on blocks. The elements $x_{i}, 1 \leq i \leq n$ are determined as above. Then for element $a \in T \cap$ $R\left(A_{1}, \ldots, A_{k}\right)$, where $A_{1} \prec A_{2} \prec \cdots \prec A_{k}$ the equality $a\left(A_{i}\right)=x_{i}$ for every $i, 1 \leq i \leq k$ holds true.

Proof. Let us assume the contrary. Then there exist an element $a \in T$ and a number j such that $a\left(A_{j}\right) \neq x_{j}$. Without loss of generality we can assume that j is the minimal number with this property. Then $a\left(A_{j}\right)>$ x_{j}. Consider the number p such that $\min \left(A_{j}\right)=x_{p}$. Then for every $x \in A_{j+1} \cup \cdots \cup A_{k}$ the inequality $x>x_{p}$ holds true. From $A_{i} \prec A_{j}$ for every $i<j$ it follows that there exist elements $y_{i} \in A_{i}$ such that $y_{i}<x_{p}$ for every $i<j$. Now consider element $b \in T \cap D_{p}$. It is obvious, that $r k(b a)=j$. But $i m(b a) \neq\left\{x_{1}, \ldots, x_{j}\right\}$, because for every $x \in b^{-1}\left(x_{p}\right)$ we have that $(b a)(x)=a(b(x))=a\left(x_{p}\right)>x_{j}$. Therefore $b a \notin T$. This contradiction completes the proof of the lemma.

Corollary 3. The map φ is injective.
Proof. Let T_{1}, T_{2} be \mathcal{R}-cross-sections of T_{n} such that $\varphi\left(T_{1}\right)=\varphi\left(T_{2}\right)$. Then by Lemma 4 sets $T_{1} \cap R, T_{2} \cap R$ coincide for every \mathcal{R}-class R. This implies $T_{1}=T_{2}$ and completes the proof of the lemma.

Theorem 2. The map φ is a bijection between the set of all \mathcal{R}-crosssections of T_{n} and the set of all linear orders on the set N.

Proof. Follows from Corollaries 2 and 3.
Theorem 3. The semigroup T_{n} contains exactly n ! different \mathcal{R}-crosssections. Every two \mathcal{R}-cross-sections are isomorphic.

Proof. By Theorem 2 the number of different \mathcal{R}-cross-sections of the semigroup T_{n} equals the number of all linear orders on the set N, but the last number equals n !. With the linear order $x_{1}<x_{2}<\cdots<x_{n}$ we associate the permutation $\pi=\left(\begin{array}{cccc}1 & 2 & \cdots & n \\ x_{1} & x_{2} & \cdots & x_{n}\end{array}\right)$. Let T_{1}, T_{2} be two \mathcal{R}-cross-sections of T_{n}. Denote by π_{1} and π_{2} the permutations
$88 \mathcal{H}$ - and \mathcal{R}-CROSS-SECTIONS OF THE FULL FINITE SEMIGROUP T_{n}
associated with the linear orders $\varphi\left(T_{1}\right), \varphi\left(T_{2}\right)$ respectively. Then the equality $\pi_{1} T_{1} \pi_{1}^{-1}=\pi_{2} T_{2} \pi_{2}^{-1}$ holds true. This means that arbitrary two \mathcal{R}-cross-section are conjugated and hence isomorphic.

Acknowledgements

I would like to thank Prof. O. G. Ganyushkin for fruitful discussions.

References

[R] Renner L. E. Analogue of Bruhat decomposition for algebraic monoids. II. The length function and the trichotomy. J. Algebra 175 (1995), no. 2, 697-714.
[CR] Cowan D. F., Reily R. Partial cross-sections of symmetric inverse semigroups. Internat J. Algebra Comput. 5 (1995), no. 3, 259-287.
[GM] Ganyushkin O., Mazorchuk V. \mathcal{L} - and \mathcal{R}-cross-section in $I S_{n}$. Com. in Algebra 31(2003), no. 9, 4507-4523.
[CP] Clifford A. H., Preston G. B. The algebraic theory of semigroups, American Mathematical Society, Providence, Rhode Island, 1964.

CONTACT INFORMATION

$\begin{array}{ll}\text { V. Pyekhtyeryev } & \text { Department of Mechanics and Mathematics, } \\ & \text { Kiyv Taras Shevchenko University, 64, } \\ & \text { Volodymyrska st., 01033, Kiyv, UKRAINE } \\ & \text { E-Mail: vasiliy@univ.kiev.ua }\end{array}$

Received by the editors: 01.07.2003 and final form in 24.10.2003.

