Number 3. (2003). pp. $1-6$
(C) Journal "Algebra and Discrete Mathematics"

N - real fields

Shalom Feigelstock

Communicated by M. Ya. Komarnytskyj

Abstract. A field F is n-real if -1 is not the sum of n squares in F. It is shown that a field F is m-real if and only if rank $\left(A A^{t}\right)=\operatorname{rank}(A)$ for every $n \times m$ matrix A with entries from F. An n-real field F is n-real closed if every proper algebraic extension of F is not n-real. It is shown that if a 3 -real field F is 2-real closed, then F is a real closed field. For F a quadratic extension of the field of rational numbers, the greatest integer n such that F is n-real is determined.

A field F is formally real if -1 is not a sum of squares in F, or equivalently if 0 is not a sum of squares in F with non-zero summand. The study of these fields was initiated by Artin and Schreier, [1]. Many results on vector spaces over a subfield of the field of real numbers remain valid if the field of scalars is formally real; e.g. many results on real quadratic forms. For finite dimensional vector spaces the following weaker condition often suffices:
Definition. Let n be a positive integer, and let $\nu=\left(a_{1}, \ldots, a_{n}\right), \omega=$ $\left(b_{1}, \ldots, b_{n}\right) \in F^{n}$. The scalar product $\nu \cdot \omega=a_{1} b_{1}+\ldots+a_{n} b_{n}$. A field F is n-real if for every non zero-vector $\nu \in F^{n}$ the scalar product $\nu \cdot \nu \neq 0$.

Clearly every field is 1 -real. For $n>1$, a field F is n-real if and only if -1 is not the sum of $n-1$ squares, and F is a formally real field if and only if F is n-real for every positive integer n. If F is n-real then F is m-real for every $m<n$.

Example. The field $\mathbb{Q}(\sqrt{-5})$ is 2-real but not 3-real.

Key words and phrases: n-real, n-real closed.

Theorem 1. A field F is m-real if and only if for every positive integer n, and every $n \times m$ matrix A with entries from F, the $\operatorname{rank} r\left(A A^{t}\right)=r(A)$.

Proof. Suppose that F is m-real, and let $r(A)=k$. Performing a GramSchmidt like process on k linearly independent rows of A, with the scalar product replacing the inner product, yields orthogonal vectors $\nu_{1}, \ldots, \nu_{k} \in$ F^{m}. The $n \times m$ matrix B with first k rows ν_{1}, \ldots, ν_{k}, and with remaining $n-k$ rows the 0 -vector, can be obtained by performing a series of elementary row operations on A. Therefore there exists an $n \times n$ matrix C with entries from F such that $B=C A$. The matrix $B B^{t}$ is diagonal with first k diagonal entries non-zero, and remaining entries 0 . Therefore $k=r\left(B B^{t}\right) \leq r\left(A A^{t}\right) \leq r(A)=k$, and so $r\left(A A^{t}\right)=r(A)$. If F is not m-real then there exists a non-zero vector $\nu \in F^{m}$ such that $\nu \cdot \nu=0$. For any positive integer n let A be the $n \times m$ matrix all of whose rows are ν. Then $r(A)=1$, but $r\left(A A^{t}\right)=0$.

If every proper algebraic extension of a formally real field F is not formally real, then F is said to be a real closed field. The obvious parallel concept for n-real fields is:

Definition. An n-real field F is an n-real closed field if every proper algebraic extension of F is not n-real.

A simple Zorn's Lemma argument yields:
Lemma 2. Every n-real field, $n>1$, is contained in an n-real closed field.

Lemma 3. Let F be a 2-real closed field and let $a \in F$. Then either a or $-a$ is a square in F.

Proof. If a is not a square in F then $F(\sqrt{a})$ is not 2-real, so there exist $b, c \in F$ such that $(b+c \sqrt{a})^{2}=-1$, i.e., $b^{2}+c^{2} a+2 b c \sqrt{a}=-1$. Since $\sqrt{a} \notin F$, and F is 2-real it follows that $b=0$, and $-a=\left(c^{-1}\right)^{2}$.

Recall [4], p. 271, that a field F is ordered if there exists a subset P of F such that $F=P \bigcup\{0\} \bigcup-P$ is a disjoint union, and $a+b, a b \in P$ for all $a, b \in P$. A well known result of Artin-Schreier is that a field is formally real if and only if it is ordered.

Corollary 4. Let F be a 2-real closed field. If F is 3 -real then F is real closed.

Proof. Let F be a 2-real closed, 3-real field. It suffices to show that F is ordered. Let P be the set of non-zero squares in F. It follows from

Lemma 3 that $F=P \bigcup\{0\} \bigcup-P$. If $a \in P \bigcap-P$, then there exist nonzero elements $b, c \in F$ such that $a=b^{2}=-c^{2}$, and so $b^{2}+c^{2}=0$, a contradiction. Therefore the above union is a disjoint union. Let $a, b \in P$. Clearly $a b \in P$, so it suffices to show that $a+b \in P$. If not, then by Lemma 3 there exists $c \in F$ such that $a+b=-c^{2}$. Since $a, b \in P$ there exist $a_{1}, b_{1} \in F$ such that $a=a_{1}^{2}$, and $b=b_{1}^{2}$. Therefore $a_{1}^{2}+b_{1}^{2}+c^{2}=0$ contradicting the fact that F is 3 -real.

If F is a real closed field, and $f(x) \in F[x]$ is a polynomial of odd degree, then $f(x)$ has a root in F; see $[8]$, p. 226, Theorem 2. An almost identical argument yields:

Theorem 5. If F is an n-real closed field, $n>1$, and $f(x) \in F[x]$ is a polynomial of odd degree, then $f(x)$ has a root in F.

Let F be a field of prime characteristic p. Since 0 is the sum of p copies of 1^{2} it follows that F is not formally real. The following known number theory result yields that properties of p determine completely whether or not F is n-real for every positive integer n.

Proposition 6. Let n be a positive integer.

1) n is the sum of two squares of integers if and only if the prime decomposition of n has no factor of the form q^{e}, with q a prime satisfying $q \equiv 3 \bmod 4$, and e odd.
2) n is not the sum of three squares of integers if and only if $n=$ $4^{m}(8 k+7)$, with m, k non-negative integers.

Proof. See [5], p. 110 Corollary 5.14, and [7], p. 45, Theorem (Gauss).

Theorem 7. A field F of prime characteristic p is not 3 -real. It is 2 -real if and only if $p \equiv 3 \bmod 4$.

Proof. Since $1^{2}+1^{2} \equiv 0 \bmod 2$ it may be assumed that p is odd. If $p \not \equiv 7 \bmod 8$ then p is the sum of three squares of integers by Proposition 6.2 , so F is not 3 - real. If $p \equiv 7 \bmod 8$ then $2 p \equiv 6 \bmod 8$ so $2 p$ is the sum of three squares of integers by Proposition 6.2 which yields that F is not 3 -real. The field F is 2 -real if and only if -1 is a quadratic nonresidue $\bmod p$, which occurs if and only if $p \equiv 3 \bmod 4$.

A well known result of Lagrange is that every positive integer is the sum of 4 squares of integers. This yields:

Lemma 8. Let $F=\mathbb{Q}(\sqrt{a}), \alpha \in \mathbb{Q}$ be a quadratic extension of the field of rational numbers. If F is not real then F is not 5 -real.

Proof. If F is not real then it may be assumed that α is a negative integer, [5], Theorem 9.20. Since $-\alpha$ is the sum of 4 squares of integers, it follows that F is not 5 -real.

Definition. Let F be a field which is not formally real. The least positive integer n such that -1 is the sum of n squares in F was called the Stuffe of F by Pfister, [6]; it is, of course, the greatest positive integer n such that F is n-real.

Pfister proved the following:
Proposition 9. Let n be a positive integer. There exists a field with Stuffe n if and only if $n=2^{k}$, with k a non-negative integer.

Proof. See [6], Satz 4 and Satz 5.
Lemma 8 and Proposition 9 yield:
Corollary 10. Let F be a quadratic extension of \mathbb{Q}. If F is not real then the Stuffe of F is either 1, 2, or 4 .

Fein, Gordon and Smith proved the following:
Proposition 11. For m a negative square free integer, -1 is the sum of two squares in $\mathbb{Q}(\sqrt{m})$ if and only if $m \equiv 2$ or $3 \bmod 4$, or $m \equiv 5 \bmod 8$.

Proof. [3] Theorem 7.
Since every imaginary quadratic extension of \mathbb{Q} is of the form $\mathbb{Q}(\sqrt{m})$, with m a square free negative integer, Corollary 10 and Proposition 11 completely determine the Stuffe of such extensions as follows:

Theorem 12. For m a square free negative integer the Stuffe of $\mathbb{Q}(\sqrt{m})$ is :

1 if $m=-1$,
2 if $m \equiv 2$ or $3 \bmod 4$, or if $m \equiv 5 \bmod 8$, and
4 otherwise.
Example. The Stuffe of $\mathbb{Q}(\sqrt{-7})$ is 4 .
If A is a commutative ring and if $a, b \in A$ are both the sum of four squares in A, then an equality of Euler, [5], Lemma 5.3, yields that $a b$ is the sum of four squares in A. The following generalization of Euler's result for fields was proved by Pfister.

Proposition 13. Let F be a field, and let $n=2^{m}$, with m a non-negative integer. If $a, b \in F$ are both the sum of n squares in F then $a b$ is the sum of n squares in F.

Proof. See [6], Satz 2.
Corollary 14. Let F be a field extension of \mathbb{Q}. If F is formally real then $a \in F$ is the sum of four squares in F if and only if $a \geq 0$. If F is not formally real, then the Stuffe of F is ≤ 4 if and only if every rational number is the sum of four squares in F.

Proof. Every positive integer is the sum of four squares of integers, [5], Theorem 5.6. If a non-zero element a in a field E is the sum of n squares in E, then it is readily seen that a^{-1} is the sum of n squares in E. Therefore either Euler's equality, or Proposition 13 yield that every nonnegative rational number is the sum of four squares of rational numbers. If a negative rational number a is the sum of four squares in F then $-1=a(1 /|a|)$ is the sum of four squares and the Stuffe of F is ≤ 4. Conversely, if the Stuffe of F is ≤ 4 then every rational number is the sum of four squares in F by Proposition 13.

The following Proposition combines two results of Cassels:
Proposition 15. Let F be a field with characteristic $\neq 2$, let $a \in F$, and let x be an indeterminant. Then $x^{2}+a$ is the sum of $n>1$ squares in $F[x]$ if and only if either -1 or a is the sum of $n-1$ squares in F.

Proof. See [2], Theorem 2.
A simple consequence of Proposition 15 is:
Corollary 16. If F is a non-formally real field with characteristic $\neq 2$, and with Stuffe n, then every element in F is the sum of $n+1$ squares in F.

Proof. Let $a \in F$. By Proposition 15, there exist

$$
p_{i}(x) \in F[x], \quad i=1, \ldots, n+1
$$

such that $x^{2}+a=\sum_{i=1}^{n+1} p_{i}(x)^{2}$, so $a=\sum_{i=1}^{n+1} p_{i}(0)^{2}$.

References

[1] E. Artin and O. Schreier, Algebraische Konstructionen reeler Korper, Abh. Math. Sem. Hamburg, 5 (1926), 83-115.
[2] J. W. S. Cassels, On the representation of rational functions as sums of squares, Acta Arith. 9 (1964), 79-82.
[3] B. Fein, B. Gordon, and J. H. Smith, On the representation of -1 as a sum of two squares in an algebraic number field, Journal of Number Theory 3(1971), 310-315.
[4] S. Lang, Algebra, $1^{\text {st }}$ edition, Addison-Wesley, Reading, 1965.
[5] I. Niven and H. Zuckerman, An Introduction to the Theory of Numbers, Wiley, New York, 1960.
[6] A. Pfister, Darstellung von -1 als Summe von Quadraten in einen Korper, J. London Math. Soc., series 1, 40 (1965), 159-165.
[7] J. P. Serre, A Course in Arithmetic, Graduate Texts in Mathematics 7, Springer, New York, 1973.
[8] B. L. Van der Waerden, Modern Algebra, Vol. 1, Ungar, New York, 1964.

Contact information

S. Feigelstock Department of Mathematics Bar-Ilan, University Ramat Gan, Israel
 E-Mail: feigel@macs.biu.ac.il

Received by the editors: 03.03.2003 and final form in 23.10.2003.

