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Abstract. We study the R−module of generalized flows in a
graph with coefficients in the R−representation of the graph over
a ring R with 1 and show that this R−module is isomorphic to the
first derived functor of the colimit. We generalize Kirchhoff’s laws
and build an exact sequence for calculating the R−module of flows
in the union of graphs.

1. Preliminaries

Let Γ = (A
s

→
→
t

V ) be a directed graph, R a ring with 1, {F (v)}v∈V a

family of left R−modules with a family of R−homomorphisms {F (γ) :
F (s(γ)) → F (t(γ))}γ∈A. A (generalized) flow on Γ with coefficients in F
is a family {fγ}γ∈A of fγ ∈ F (s(γ)) such that almost all of fγ are zeros
and for each v ∈ V the following equality holds

∑

s(γ)=v

fγ =
∑

t(γ)=v

F (γ)(fγ)

If F (v) = Z for all v ∈ V where Z is the additive group of integers and
if F (γ) are the identity homomorphisms idZ : Z → Z for all γ ∈ A then
we have the (ordinary) integer flows.
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The purpose of this work is to applicate the homology theory of
small categories (in the sense of [2, Application 2], [3], [7]) for the
study of the R−module of generalized flows in the directed graphs with
R−homomorphisms F (γ) on the edges γ ∈ A. Flows with intensifica-
tions and flows with delays are the examples of such generalized flows.
Our approach to the flows in graphs is entirely distinguished with the
theory described in Wagner’s work [8] where it was considered the func-
torial sequence of groups of flows in undirected graphs and proved that
this sequence is the invariant of graphs.

We show that the R−module of flows is isomorphic to the first homol-
ogy of the free category generated by Γ with coefficients in the functor
corresponding to F . This generalize that the abelian group of integer
flows is isomorphic the first integer homology group of the graph. This
allows us to applicate the homological methods in the study of the net-
works. We calculate the R−module of flows in the union of graphs and
generalize Kirchhoff’s laws.

Let C be a small category, R a ring with identity. Denote by ModR

the category of left R-modules and R-homomorphisms, ModC

R the cat-
egory of functors C → ModR, colimC : ModC

R → ModR the colimit
functor. The category ModC

R has enough projectives [3]. The functor
colimC is right exact. Hence for every integer n > 0 it is defined the
n-th left derived functor colimC

n : ModC

R → ModR of the colimit. Let
F : C → ModR be a functor. For arbitrary family {ai}i∈I we will say
that almost all ai are zeros if there exists a finite subset J ⊆ I such
that ai = 0 for all i ∈ I \ J . Denote Cn(C, F ) =

∑

c0→...→cn

F (c0) and

write elements of Cn(C, F ) as sums
∑

c0→...→cn

fc0→...→cn
[c0 → ... → cn]

with fc0→...→cn
∈ F (c0) where almost all fc0→...→cn

are zeros. For every
c0 → ... → cn+1 and f ∈ F (c0) we let

dn(f [c0 → ... → cn+1]) = F (c0 → c1)(f)[c1 → ... → cn+1]+

+
n+1
∑

i=1

(−1)if [c0 → ... → ĉi → ... → cn+1]

and define homomorphisms dn : Cn+1(C, F ) → Cn(C, F ) by

dn





∑

c0→...→cn+1

fc0→...→cn+1
[c0 → ... → cn+1]



 =

=
∑

c0→...→cn+1

dn

(

fc0→...→cn+1
[c0 → ... → cn+1]

)

.
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Here
[c0

α1→ · · ·
αi→ ĉi

αi+1

→ · · ·
αn+1

→ cn+1] =

{

[c0
α1→ · · ·

αi−1

→ ci−1
αi+1αi
→ ci+1

αi+2

→ · · ·
αn+1

→ cn+1], if 0 < i < n + 1,

[c0
α1→ · · ·

αn→ cn], if i = n + 1.

It is well-known [2, Application 2] that R-modules colimC

n F are iso-
morphic to homologies of the complex

0
d−1

←− C0(C, F )
d0←− C1(C, F )

d1←− · · ·
dn−1

←− Cn(C, F )
dn←− · · ·

in the sense of colimC

n F ∼= Kerdn−1/Imdn, n > 0.
If α ◦ β = id in C implies α = id and β = id, then C is called to be

without retractions. If C is a small category without retractions, then the
complex {Cn(C, F ), dn} includes the subcomplex {C+

n (C, F ), dn} where

C+
n (C, F ) =

∑

c0
→
6=
···→

6=
cn

F (c0)

is the submodule in which sequences c0 → · · · → cn do not contain
identity morphisms if n > 0, with C+

0 (C, F ) = C0(C, F ). As the dual
affirmation [5, Proposition 2.2] we can prove the following.

Lemma 1.1. Let C be a small category without retractions, R a ring with
identity. Then for each functor F : C → ModR the R-modules colimC

n F
are isomorphic to n-th homology modules of the complex {C+

n (C, F ), dn}.

Let ∆CZ be a functor from a small category to the category Ab of
Abelian groups and homomorphisms which assign to every c ∈ C the
group of integers Z and to every α ∈ MorC the identity homomorphism
idZ : Z → Z. We denote by Hn(C) the groups colimC

n ∆CZ for all n > 0.
Let S : C → D be a functor between small categories, d an object in D.
The comma-category d/S is defined as the following category:

Objects of d/S are pairs (c, α) with c ∈ ObC and α ∈ D(d, S(c)),
morphisms (c1, α1) → (c2, α2) in d/S consist of the triples (β ∈ C(c1, c2),
α1, α2) satisfying S(β) ◦ α1 = α2. A functor S : C → D is called
strong cofinal if Hn(d/S) ∼= Hn(pt) for all n > 0. Here pt = {∗} is the
discrete category with one object, thus S is strong cofinal if and only if
for all d ∈ ObD the groups Hn(d/S) are zeros for all n > 0 and d/S are
connected.

By Oberst’s Theorem [7, Theorem 2.3] if S is strong cofinal, then for
every functor F : D → ModR the canonical homomorphisms colimD

n F →
colimC

n (F ◦ S) are isomorphisms.
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Let C be a small category. Each object a ∈ ObC will be considered as
the identity ida, so ObC ⊆ MorC. The factorization category [1] FC is
the category such that ObFC = MorC and for every pair f, g ∈ MorC
the set FC(f, g) of morphisms consists of the pairs (α, β), with α, β ∈
MorC, for which β ◦ f ◦ α = g.

Lemma 1.2. The functor s : (FC)op → C which assign to any f ∈
ObFC its domain s(f) and to any morphism (α, β) the morphism α is
strong cofinal.

Proof. Objects of c/s for c ∈ ObC are pairs (x, α) of morphisms c
x
→

s(α)
α
→ t(α), and morphisms (x, α) → (y, β) are commutative diagrams

c
x

−→ s(α)
α

−→ t(α)
↓ idc ↓ ↑

c
y

−→ s(β)
β

−→ t(β)

For every c ∈ ObC the category c/s includes the full subcategory consist-
ing of all the objects (idc, α). This subcategory is isomorphic to (c/C)op.
For every object (x, α) there is a morphism (idc, α◦x) → (x, α) such that
for each morphism (idc, β) → (x, α) there exists the unique morphism
(idc, β) → (idc, α ◦ x) for which the following diagram is commutative

(idc, α ◦ x) −→ (x, α)
↑ ∃! ↑

(idc, β)
id
−→ (idc, β)

It follows that there exists a right adjoint functor to the inclusion
(c/C)op ⊆ c/s. A right adjoint is strong cofinal, hence

colimc/s
n ∆Z ∼= colim(c/C)op

n ∆Z.

But (c/C)op has a terminal object. Thus Hn(c/s) ∼= Hn(pt) for all
n > 0.

2. Generalized Flows

By a (directed) graph we mean a pair of sets (A, V ) and a pair of functions

A
s

→
→
t

V . The elements of A are called arrows , V is the set of vertexes ,

s(α) and t(α) are called the source and the target of α ∈ A respectively.
Let Γ = (A, V, s, t) be a graph, R a ring with identity. A R-representa-

tion of Γ is a family of R-modules {F (v)}v∈V with a family of homomor-
phisms {F (α) : F (s(α)) → F (t(α))}α∈A. A path in Γ from u ∈ V to
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v ∈ V is an arbitrary word α1α2 · · ·αn with t(α1) = v and s(αn) = u
such that s(αi) = t(αi+1) for all 1 6 i 6 n − 1. For each vertex v ∈ V
define idv as the empty path from v to v. Objects of the category of
paths in Γ are vertexes v ∈ V , and morphisms are paths in Γ with the
composition law

α1 · · ·αn ◦ β1 · · ·βm = α1 · · ·αnβ1 · · ·βm,

for s(αn) = t(β1). Let WΓ be the category of paths in Γ. For every
R-representation F there is the unique functor F̃ : WΓ → ModR such
that F̃ |Γ = F . This functor is defined by F̃ (α1 · · ·αn) = F (α1) · · ·F (αn)
if n > 0, and F̃ (idv) = idF (v).

Definition 2.1. Let Γ be a graph, F a R-representation of Γ. A flow
in Γ with coefficients in F is a family {fγ}γ∈A of elements fγ ∈ F (s(γ))
such that almost all of fγ are zeros and for each v ∈ V the following
equality holds:

∑

s(γ)=v

fγ =
∑

t(γ)=v

F (γ)(fγ)

We denote by Φ(Γ;F ) the R-module of flows in Γ with coefficients in
F . We have the following exact sequence:

0 → Φ(Γ; F ) →
∑

γ∈A

F (s(γ))
d

−→
∑

v∈V

F (v) → colimWΓF̃ → 0, (1)

where d(
∑

γ∈A

fγ [γ])v =
∑

t(γ)=v

F (γ)(fγ) −
∑

s(γ)=v

fγ .

Example 2.2. Let Γ = (A, V, s, t) be a (directed) graph. If F (v) = Z for
all v ∈ V and if F (α) = idZ : Z → Z then F̃ = ∆WΓZ. It is well known
that Φ(Γ, F ) is isomorphic to the integer group homology H1(Γ, Z).

If F (v) = Z for all v ∈ V and if F (α) : Z → Z act by z 7→ pαz for
some family of pα ∈ Z then we have flows with intensifications.

Let F (v) = ZZ be the abelian group of functions f : Z → Z for all
v ∈ V . If F (α) : ZZ → ZZ act by F (α)(f)(t) = f(t− tα) for some family
of tα ∈ Z then Φ(Γ;F ) consists of flows with delays.

Let S : C → D be a functor between small categories, d ∈ ObD an
object. We denote by S/d the category which objects are pairs (c, α)
with c ∈ ObC, α ∈ D(S(c), d)); morphisms (c1, α1) → (c2, α2) in S/d are
triples (β ∈ C(c1, c2), α1, α2) satisfying α2 ◦ S(β) = α1. It is clear that
d/(Sop) ∼= (S/d)op. Denote FWΓ = F(WΓ).

Lemma 2.3. Let Γ = (A, V, s, t) be a graph, Γ′ the full subcategory of
FWΓ such that ObΓ′ = A

∐

V . Then Γ′op is strong cofinal in (FWΓ)op.
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Proof. We denote by S the inclusion Γ′ ⊆ FWΓ. The objects of S/w are
pairs (x, (α, β)) where α and β are paths in Γ satisfying β ◦ x ◦ α = w

with either x = id or x ∈ A. Hence for w = (v0
α1→ v1

α2→ · · ·
αn→ vn) the

category S/w is the following:

The category S/w

f1 f2

r r r

r r

fn

r r r

e0 e1
r r

en

?

¡
¡

¡
¡ª ?

¡
¡ª ?

¡
¡

¡
¡ª

¡
¡

with the objects

e0 = (idv0
, (idv0

, αn · · ·α1)), f1 = (α1, (idv0
, αn · · ·α2)),

e1 = (idv1
, (α1, αn · · ·α2)), · · · ,

fn = (αn, (αn−1 · · ·α1, idvn
)), en = (idvn

, (αn · · ·α1, idvn
)),

where all morphisms excluding ei−1 → fi and ei → fi, for i ∈ {1, 2, · · · , n},
are identities.

But w/Sop is isomorphic to (S/w)op, hence Hn(w/Sop) = 0 for n > 0
and w/Sop is connected.

Lemma 2.4. Let Γ = (A, V, s, t) be a graph, F : (FWΓ)op → ModR a

functor. Then colim
(FWΓ)op

1 F is isomorphic to the submodule in
∑

γ∈A

F (γ)

consisting of families {gγ}γ∈A for which the following equality holds for
every v ∈ V :

∑

v=s(γ)

F (v
(id,γ)
→ γ)gγ =

∑

v=t(γ)

F (v
(γ,id)
→ γ)gγ (2)

Here γ runs the set A.

Proof. We have by Lemma 2.3 from the Oberst theorem that

colim
(FWΓ)op

n F is isomorphic to colimΓ′op

n F |Γ′op . The category Γ′op has
no retractions except identities.

Hence, by Lemma 1.1 R-modules colim
(FWΓ)op

n F are isomorphic to
the homology groups of the chain complex

0 → C+
1 (Γ′op

, F ) → C+
0 (Γ′op

, F ) → 0
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which is equal to

0 →
∑

id6=(v→γ)∈MorΓ′

F (γ)
d

−→
∑

γ∈A

F (γ) ⊕
∑

v∈V

F (v) → 0

with

d(
∑

v→γ

fv→γ [v → γ]) =
∑

v→γ

d(fv→γ [v → γ]) =

=
∑

v→γ

(F (v → γ)(fv→γ)[v] − fv→γ [γ]).

(Here we consider the homology of the category which is opposite to Γ′,
in particular fv→γ ∈ F (γ) and a homomorphism F (v → γ) acts from

F (γ) into F (v).) Therefore colimΓ′op

1 F is isomorphic to the R-module of
families fv→γ ∈ F (γ) satisfying fs(γ)→γ + ft(γ)→γ = 0 for each γ ∈ A,
and

∑

v→γ
F (v → γ)(fv→γ) = 0 for each v ∈ V .

We denote gγ = fs(γ)→γ for a such family. Then ft(γ)→γ = −gγ ,

and
∑

v=s(γ)

F (v → γ)(gγ) =
∑

v=t(γ)

F (v → γ)(gγ). Thus colimFWΓop

1 F is

isomorphic to the submodule of
∑

γ∈A

F (γ) consisting of {gγ}γ∈A for which

the equation (2) holds.

Theorem 2.5. Let Γ = (A, V, s, t) be a graph, R a ring with identity, F
a R-representation of Γ. Then Φ(Γ; F ) ∼= colimWΓ

1 F̃ .

Proof. By Lemma 1.2 the functor s : (FC)op → C is strong cofinal for
an arbitrary small category. Hence colimWΓ

1 F̃ ∼= colimFWΓop

1 (F̃ ◦s). The
substitution of F̃ ◦s instead F in Lemma 2.4 leads to the concluding that
colimWΓ

1 F̃ is isomorphic to the submodule of
∑

γ∈A

F (γ) which consists

of families fγ ∈ F (s(γ)) satisfying
∑

v=s(γ)

fγ =
∑

v=t(γ)

F (γ)(fγ), for each

v ∈ V .

Example 2.6. Let Γ = (A, V, s, t) be the graph with A = {γ} consists
of the one arrow, V = {v}, where s(γ) = t(γ) = v. Then the category
WΓ is isomorphic the free monoid generated by one element. For every
functor F̃ : WΓ → ModR the R−module Φ(Γ;F ) contains f ∈ F (v) for
which F (γ)(f) = f . Hence, H1(WΓ, F̃ ) is isomorphic the submodule of
all fixed elements of the action F (γ) : F (v) → F (v).
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3. The First Kirchhoff Law

Let Γ = (A, V, s, t) be a graph, F a R-representation of Γ. Elements of
∑

v∈V

F (v) and
∑

γ∈A

F (s(γ)) are called 0-chains and 1-chains respectively.

Let ε :
∑

v∈V

F (v) → colimWΓF̃ be the canonical R-homomorphism.

It follows from the exact sequence (1) that the equation df = ϕ has a
solution for ϕ ∈

∑

v∈V

F (v) if and only if ε(ϕ) = 0. Hence colimWΓF̃ can

be interpreted as the R-module of ”obstructions”. Denote it by Φ0(Γ; F ).
We have the exact sequence

0 → Φ(Γ; F )
⊆
→

∑

γ∈A

F (s(γ))
d

−→
∑

v∈V

F (v)
ε
→ Φ0(Γ; F ) → 0

with Φ(Γ;F ) ∼= colimWΓ
1 F̃ and Φ0(Γ; F ) ∼= colimWΓF̃ .

A network (Γ, E, F ) consists of the following data:
1) a graph Γ = (A, V, s, t);
2) an arbitrary subset E ⊆ V which elements are called external;
3) a R-representation F of Γ.
We say that the 1-chain {fγ}γ∈A satisfies to the first Kirchhoff law if

d({fγ}γ∈A)v = 0, ∀v 6∈ E.

Let Φ(Γ, E; F ) be a R-module of all 1-chains satisfying to the first Kirch-
hoff law in the network (Γ, E, F ). For E = ∅ an 1-chain satisfies to the
first Kirchhoff law if and only if it is a flow in Γ with coefficients in F .
Thus, Φ(Γ, ∅; F ) = Φ(Γ;F ).

A vertex v ∈ V is called to be attractive if there are not arrows with
s(γ) = v. Let E ⊆ V be any subset such that all e ∈ E are attractive
vertexes, FE the R-representation of Γ with FE(v) = 0 for all v 6∈ E, and
FE(v) = F (v) for all v ∈ E. We have by Theorem 2.5 the following

Lemma 3.1. Let (Γ, E, F ) be a network. If all vertexes in E are attrac-

tive then Φ(Γ, E; F ) ∼= colimWΓ
1 (F̃/FE).

To a description the R-module of 1-chains satisfying to the first Kirch-
hoff law in any network (Γ, E, F ) we add to the graph Γ the vertex ∗ and
the arrows γe for all e ∈ E with s(γe) = e and t(γe) = ∗. Denote by
Γ∪E pt the obtained graph. Let F ⊕E 0 be the R-representation of Γ∪E pt
such that (F ⊕E 0)|Γ = F and (F ⊕E 0)(∗) = 0.

Theorem 3.2. For any network (Γ, E, F ) the R-module Φ(Γ, E; F ) is

isomorphic to colim
W (Γ∪Ept)
1

˜(F ⊕E 0).
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Proof. Consider the network (Γ ∪E pt, pt, F ⊕E 0). The vertex ∗ is at-
tractive in Γ ∪E pt. It follows from the previous lemma that Φ(Γ ∪E

pt, pt; F ⊕E 0) ∼= colim
W (Γ∪Ept)
1

˜(F ⊕E 0). But Φ(Γ ∪E pt, pt; F ⊕E 0) =
Φ(Γ, E; F ).

4. Flows in the Union of Graphs

Let (I,6) be a partially ordered set. A covering X =
⋃

i∈I

Xi of a set

is called to be locally filtered if i < j in I implies Xi ⊆ Xj and if for
each x ∈ Xi ∩ Xj there exists k ∈ I such that k < i, k < j, and
x ∈ Xk ⊆ Xi ∩ Xj .

A graph Γ = (A, V, s, t) is called to be locally filtered covered by
graphs Γi = (Ai, Vi, si, ti) if A =

⋃

i∈I

Ai and V =
⋃

i∈I

Vi are locally filtered

coverings and the following diagrams are commutative

Ai
⊆
−→

Aj

si↓ sj↓

Vi
⊆
−→

Vj

Ai
⊆
−→

Aj

↓ ti ↓ tj
Vi

⊆
−→

Vj

for all i 6 j in I.

Theorem 4.1. Let Γ = (A, V, s, t) be a graph which is locally filtered
covered by graphs {Γi}i∈I = {Ai, Vi, si, ti}, E ⊆ V a subset such that
E =

⋃

i∈I

Ei is a locally filtered covering by Ei ⊆ Vi. Then for each R-

representation F of Γ there exists an exact sequence

0 → colimI
2{Φ0(Γi, Ei; Fi)} → colimI{Φ(Γi, Ei; Fi)} →

→ Φ(Γ, E; F ) → colimI
1{Φ0(Γi, Ei; Fi)} → 0

where Fi = F |Γi
.

Proof. At first we consider the case E = ∅. Let Γ′
i ⊆ Γ′ are the cat-

egories defined for the graphs Γi ⊆ Γ in Lemma 2.3. The covering
{Γ′

i}i∈I satisfies to the conditions of [4, Corollary 3.2]. The functors
s : (FWΓ)op → WΓ and Sop : Γ′op → (FWΓ)op are strong cofinal
by Lemma 1.2 and Lemma 2.3. Hence, colimWΓ

1 F̃ is isomorphic to
colimΓ′op

1 (F̃ ◦ s ◦ Sop). By [4, Corollary 3.2] there is the spectral se-

quence with E2
p,q = colimI

p{colim
Γ′op

i
q F̃ ◦ s ◦ Sop|Γ′op

i
} which converges to

colimΓ′op

n F̃ ◦s◦Sop. The substitution Γi instead Γ leads to the functors si :
(FWΓi)

op → WΓi and Sop
i : Γ′

i
op → (FWΓi)

op which are strong cofinal
by Lemmas 1.2 and 2.3. It follows from (F̃ ◦s◦Sop)|Γ′

i
op = F̃ |WΓi

◦si◦Sop
i



Jo
ur

na
l A

lg
eb

ra
 D

is
cr

et
e 

M
at

h.A. A. Husainov, H. Çalışıcı 45

and from the strong confinality of si and Sop
i that we have the spectral se-

quence colimI
p{colimWΓi

q F̃ |WΓi
} ⇒ colimWΓ

p+qF̃ . Then the exact sequence
of terms of low degree [6, P.332] gives the exact sequence

0 → colimI
2{Φ0(Γi; Fi)} → colimI{Φ(Γi; Fi)} →

→ Φ(Γ; F ) → colimI
1{Φ0(Γi; Fi)} → 0

For E 6= ∅ we consider the locally filtered covering Γ∪Ept =
⋃

i∈I

(Γi∪Ei

pt). There is an exact sequence

0 → colimI
2{Φ0(Γi ∪Ei

pt; Fi ⊕Ei
0)} →

→ colimI{Φ(Γi ∪Ei
pt; Fi ⊕Ei

0)} → Φ(Γ ∪E pt; F ⊕E 0) →

→ colimI
1{Φ0(Γi ∪Ei

pt; Fi ⊕Ei
0)} → 0

The equalities Φ0(Γ∪Ept; F⊕E0) = Φ0(Γ, E; F ) and Φ(Γ∪Ept; F⊕E0) =
Φ(Γ, E; F ) give looking.

5. The Second Kirchhoff Law

Let R be a field. The internal product on a vector space T is a bilinear
map <, >: T × T → R such that < a, b >=< b, a > for all a, b ∈ T . A
network (Γ, E, F ) together with an internal product <, > on

∑

γ∈A

F (s(γ))

is called to be Euclidian if the implication < f, f >= 0 ⇒ f = 0 is true.
We say that an 1-chain f = {fγ} of an Euclidian network satisfies to the
second Kirchhoff law if the linear map < f,− >:

∑

γ∈A

F (s(γ)) → R has

zero values on Φ(Γ, F ) in the sense that

< f,− > |Φ(Γ,F ) = 0.

Theorem 5.1. Let (Γ, E, F ) be an Euclidian network in which R is a
field, Γ a finite graph, and F (v) finite dimensional vector spaces for all
v ∈ V . Then for each ϕ ∈

∑

v∈E

F (v) satisfying ε(ϕ) = 0 there is the

unique 1-chain f = {fγ} such that df = ϕ and < f,− > |Φ(Γ,F ) = 0.

Proof. If df = 0 then f ∈ Φ(Γ, F ), in this case < f,− > |Φ(Γ,F ) = 0
implies < f, f >= 0 and f = 0. Considering fi, with i ∈ {1, 2}, for
which dfi = ϕ and < fi,− > |Φ(Γ,F ) = 0, we obtain f1 − f2 = 0. Hence,
the solution is unique.

Consider a map
∑

γ∈A

F (s(γ))
η
→ ModR(Φ(Γ, F ), R) ⊕ ε−1(0) which

assign to any g ∈
∑

γ∈A

F (s(γ)) the pair < g,− > |Φ(Γ,F ) ⊕ dg. We have
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proved that the map η is the injection. The exact sequence (1) gives the
exact sequence 0 → Φ(Γ; F ) →

∑

γ∈A F (s(γ)) → ε−1(0) → 0. The vector
space

∑

γ∈A

F (s(γ)) has a finite dimension. Hence, its dimension equals the

dimension of Φ(Γ, F )⊕ε−1(0) and cosequently η is the isomorphism. We
let g = η−1(0 ⊕ ϕ). Then η(g) = 0 ⊕ ϕ. Hence dg = ϕ and < g,− >
|Φ(Γ,F ) = 0. Thus there exists the solution.
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