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Abstract. A ball structure is a triple B = (X,P,B), where
X,P are nonempty sets and, for all x ∈ X, α ∈ P , B(x, α) is a sub-
set of X,x ∈ B(x, α), which is called a ball of radius α around x.
We introduce the class of uniform ball structures as an asymptotic
counterpart of the class of uniform topological spaces. We show
that every uniform ball structure can be approximated by metriz-
able ball structures. We also define two types of ball structures
closed to being metrizable, and describe the extremal elements in
the classes of ball structures with fixed support X.

Following [2], by ball structure we mean a triple B = (X, P, B), where
X, P are nonempty sets and, for any x ∈ X, α ∈ P , B(x, α) is a subset
of X which is called a ball of radius α around x. It is supposed that
x ∈ B(x, α) for all x ∈ X, α ∈ P . A set X is called a support of B, P is
called a set of radiuses.

Let B1 = (X1, P1, B1), B2 = (X2, P2, B2) be ball structures, f :
X1 −→ X2 We say that f is a ≻-mapping if, for every β ∈ P2, there
exists α ∈ P1 such that

B2(f(x), β) ⊆ f(B1(x, α))

for every x ∈ X1. If there exists a surjective ≻-mapping f : X1 −→ X2,
we write B1 ≻ B2.

A mapping f : X1 −→ X2 is called a ≺-mapping if, for every α ∈
P1,there exists β ∈ P2 such that

f(B1(x, α)) ⊆ B2(f(x), β)
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for every x ∈ X. If there exists an injective ≺-mapping f : X1 −→ X2,
we write B1 ≺ B2.

A bijection f : X1 −→ X2 is called an isomorphism between B1 and
B2 if f is a ≻-mapping and f is a ≺-mapping.

Let B1 = (X1, P1, B1), B2 = (X2, P2, B2) be ball structures with
common support X. We say that B1 ⊆ B2 if the identity mapping id:
X −→ X is a ≺-mapping from B1 to B2. If B1 ⊆ B2 and B2 ⊆ B1, we
write B1 = B2.

A property P of ball structures is called a ball property if a ball
structure B has a property P provided that B is isomorphic to some ball
structure with property P. Now we describe four basic ball properties.

Let B = (X, P, B) be a ball structure. For any x ∈ X, α ∈ P put

B∗(x, y) = {y ∈ X : x ∈ B(y, α)}.

A ball structure B
∗ = (X, P, B) is called dual to B. Note that B

∗∗ = B.

A ball structure B = (X, P, B) is called symmetric if B = B
∗.

A ball structure B = (X, P, B) is called multiplicative if, for any
α, β ∈ P , there exists γ(α, β) ∈ P such that

B(B(x, α), β) ⊆ B(x, γ(α, β))

for every x ∈ X. Here

B(Y, α) =
⋃

y∈Y

B(y, α), Y ⊆ X, α ∈ P.

Let B = (X, P, B) be a ball structure, x, y ∈ X, We say that x, y are
connected if there exists α ∈ P such that x ∈ B(y, α), y ∈ B(x, α). A
subset Y ⊆ X is called connected if any two elements from Y are con-
nected. A ball structure B is called connected if its support is connected.
If B is symmetric and multiplicative, then connectivity is an equivalence
on X, so X disintegrates into connected components.

For an arbitrary ball structure B = (X, P, B) we define a preodering
≤ on the set P by the rule α ≤ β if and only if B(x, α) ⊆ B(x, β) for
every x ∈ X. A subset P ′ ⊆ P is called cofinal if, for every α ∈ P , there
exists β ∈ P ′ such that α ≤ β. A cofinality cfB of B is the minimal
cardinality of cofinal subsets of P .

Let (X, d) be a metric space, R
+ = {x ∈ R : x ≥ 0}. Given any

x ∈ X, r ∈ R
+, put

Bd(x, r) = {y ∈ X : d(x, y) ≤ r}.
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A ball structure (X, R+, Bd) is denoted by B(X, d). We say that a
ball structure B is metrizable if B is isomorphic to B(X, d) for some metric
space (X, d). We shall use the following metrizability criterion [2].

A ball structure B is metrizable if and only if B is symmetric, multi-
plicative, connected and cf B ≤ ℵ0.

A ball structure is called uniform if it is symmetric and multiplicative.

In §1 we define a wide spectrum of examples of uniform ball structures
related to groups and filters. In §2 we introduce some ball operations
which give new uniform ball structures from a pregiven family of uniform
ball structures. It is well known [1], that every uniform topological space
can be approximated by pseudometrizable spaces. In §3 we prove a ball
analogue of such an approximation. In §3 − 4 we introduce two types
of ball structures (inductively metrizable and submetrizable) close to
being metrizable. In §5 we describe extremal by inclusion elements in
the classes of ball structures with fixed support.

§1 Examples

Let G be an infinite group with the identity e, γ be an infinite cardinal,
γ < |G|. Denote by ℑe(G, γ) the family of all subsets of G of cardinality
< γ containing e. Given any g ∈ G, F ∈ ℑe(G), put

Bl(g, F ) = Fg, Br(g, F ) = gF.

The ball structures

(G,ℑe(G, γ), Bl), (G,ℑe(G, γ), Br)

will be denoted by Bl(G, γ), Br(G, γ). Note that the mapping g 7−→ g−1

is an isomorphism between Bl(G) and Br(G). In the case γ = ℵ0 we
write Bl(G) and Br(G) instead of Bl(G, γ) and Br(G, γ). It easy to see
that Bl(G)=Br(G) if and only if the set {x−1gx : x ∈ G} is finite for
every g ∈ G.

By metrizability criterion, Bl(G, γ) is metrizable if and only if γ = |G|
and cf γ = ℵ0. In particular, Bl(G) is metrizable if and only if G is
countable.

Let X be a set and let ϕ be a filter on X. For any x ∈ X, F ∈ ϕ, put

B(x, F ) =

{

X\F, if x /∈ F ;
{x}, if x ∈ F ;

and denote by B(X, ϕ) the ball structure (X, ϕ, B). Note that B(X, ϕ)
is connected if and only if either

⋂

ϕ = ∅ or |X| = 1. Hence, B(X, ϕ) is
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metrizable if and only if either |X| = 1 or
⋂

ϕ = ∅ and ϕ has a countable
base.

Now we define a wide class of ball structures containing all ball struc-
tures of filters and almost all ball structures of groups.

Let X be a set and let P be a family of partitions of X. For any
x, y ∈ X and P ∈ P, denote by B(x, P ) the set {y ∈ X : x, y are in the
same cell of the partition P}. A ball structure (X,P, B) is denoted by
B(X,P). Clearly, B(X,P) is symmetric. Given any P1, P2 ∈ P, we say
that P2 is an enlargement of P1 if B(x, P1) ⊆ B(x, P2) for each x ∈ X. A
ball structure B(X,P) is multiplicative if and only if, for any P1, P2 ∈ P,
there exists P ∈ P such that P is an enlargement of P1 and P2.

A ball structure B is called cellular if B is isomorphic to B(X,P)
for some set X and some family P of partitions of X. Given any ball
structure B = (X, P, B), x, y ∈ X and α ∈ P , we say that x, y are α-path
connected if there exists a sequence x0, x1, ..., xn, x0 = x, xn = y such
that

xi+1 ∈ B(xi, α), xi ∈ B(xi+1, α)

for every i ∈ {0, 1, ..., n − 1}. For any x ∈ X, α ∈ P , put

B2(x, α) = {y ∈ X : x, y are α − path connected}.

A ball structure B
2(X, P, B2) is called a cellularization of B. By [2],

a ball structure B is cellular if and only if B = B
2. A metrizable ball

structure B is cellular if and only if B is isomorphic to B(X, d) for some
non-Archimedian metric space.

Every ball structure B(X, ϕ) of a filter ϕ on X is cellular. A ball
structure B(G, γ) of a group G is cellular if and only if either γ > ℵ0 or
γ = ℵ0 and every finite subsets of G generates a finite subgroup.

§2 Constructions

Let {Bλ = (Xλ, P, Bλ) : λ ∈ I} be a family of ball structures with
pairwise disjoint supports and common set of radiuses, X =

⋃

λ∈I Xλ.
For every x ∈ X, x ∈ Xλ and every α ∈ P , put B(x, α) = Bλ(x, α).
A ball structure B = (X, P, B) is called a disjoint union of the family
{Bλ : λ ∈ I}. Every uniform ball structure is a disjoint union of its
connected components.

Let {Bλ = (X, Pλ, Bλ) : λ ∈ I} be a family of ball structures with
common support. Suppose that, for any λ1, λ2 ∈ I, there exists λ ∈ I
such that Bλ1

⊆ Bλ, Bλ2
⊆ Bλ. For every λ ∈ I, choose a copy P ′

λ =
fλ(Pλ) of Pλ such that the family {P ′

λ : λ ∈ I} is disjoint. Put P =
⋃

λ∈I P ′

λ. For all x ∈ X, β ∈ P, β ∈ P ′

λ, put B(x, β) = Bλ(x, f−1

λ (β)).
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A ball structure B = (X, P, B) is called an inductive limit of the family
{Bλ : λ ∈ I}. Clearly, Bλ ⊆ B for every λ ∈ I. If every Bλ is uniform, B

is uniform.
Let B = (X, P, B) be a ball structure, Y ⊆ X. For any y ∈ Y , α ∈ P ,

put BY (y, α) = B(y, α)
⋂

Y . A ball structure BY = (Y, P, BY ) is called
a substructure of B. If B is uniform, then BY is uniform.

Let {Bλ = (Xλ, Pλ, Bλ) : λ ∈ I} be an arbitrary family of ball struc-
tures. By box product of this family we mean a ball structure

∏

λ∈I

Bλ = (
∏

λ∈I

Xλ,
∏

λ∈I

Pλ, B),

where

B(x, p) = {y ∈
∏

λ∈I

Xλ : prλ(y) ∈ Bλ(prλ(x), prλ(p)), λ ∈ I}

for all
x ∈

∏

λ∈I

Xλ, p ∈
∏

λ∈I

Pλ.

If every ball structure Bλ is uniform, then
∏

λ∈I Bλ is uniform. Note
also that

Bγ ≺
∏

λ∈I

Bλ,
∏

λ∈I

Bλ ≻ Bγ

for every γ ∈ I.
Let B = (X, P, B) be a ball structure. A subset Y ⊆ X is called

bounded if there exist x ∈ X, α ∈ P such that Y ⊆ B(x, α). We say that
B is bounded if its support is bounded. Let B be a connected uniform ball
structure, x0 ∈ X, Y ⊆ X. Then Y is bounded if and only if there exists
α ∈ P such that Y ⊆ B(x0, α). A box product of an arbitrary family of
bounded ball structures is bounded. It is metrizable if and only if every
Bλ, λ ∈ I is metrizable and all but finitely many of them are bounded.

We define also two modifications of box products. Let F be a family
of all finite subsets of I. The first modification is

∨
∏

λ∈I

Bλ = (
∏

λ∈I

Xλ,ℑ×
∏

λ∈I

Pλ, B̌),

where

B̌(x, (F, p)) = {y ∈
∏

λ∈I

Xλ : prλ(y) ∈ Bλ(prλ(x), prλ(p))

for every λ /∈ F}.
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The second modification is

∧
∏

λ∈I

Bλ = (
∏

λ∈I

Xλ,ℑ×
∏

λ∈I

Pλ, B̂),

where

B̂(x, (F, p)) = {y ∈
∏

λ∈I

Xλ : prλ(y) ∈ Bλ(prλ(x), prλ(p)),

λ ∈ F and prλ(x) = prλ(y), λ /∈ F}.

Clearly,
∧

∏

λ∈I

Bλ ⊆
∏

λ∈I

Bλ ⊆
∨

∏

λ∈I

Bλ.

§3 Approximations

A ball structure B is called pseudometrizable if B is a disjoint union of
metrizable ball structures.

Theorem 3.1. Every uniform ball structure B = (X, P, B) is an
inductive limit of some family of pseudometrizable ball structures.

Proof. We may suppose that B(X, α) = B∗(X, α) for all x ∈ X,
α ∈ P . Denote by I the family of all subsets of P of the form {αn ∈ P :
n ∈ ω} such that αn ≤ αn+1, n ∈ ω and, for any n, m ∈ ω, there exists
k(n, m) ∈ ω such that

B(B(x, n), m) ⊆ B(x, k(n, m))

for every x ∈ X. For every λ ∈ I, λ = {αn : n ∈ ω}, put Pλ =
{αn : n ∈ ω}. By metrizability criterion, every connected component
of Bλ = (X, Pλ, Bλ), Bλ(x, αn) = B(x, αn) is metrizable, so Bλ is pseu-
dometrizable . It is easy to check that B is an inductive limit of the
family {Bλ : λ ∈ I}. 2

A ball structure B is called inductively metrizable if B is an inductive
limit of metrizable ball structures.

Theorem 3.2. For every uniform ball structure B = (X, P, B) the
following statements are equivalent

(i) B is inductively metrizable;

(ii) there exists a metric space (X, d) such that B(X, d) ⊆ B;

(iii) there exists a subset P ′ ⊆ P, |P ′| ≤ ℵ0 and x0 ∈ X such that
⋃

α∈P ′ B(x0, α) = X.

Proof. The implications (i) =⇒ (ii) =⇒ (iii) are trivial.
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(iii) =⇒ (i). We may suppose that P ′ = {αn : n ∈ ω}, αn ≤ αn+1,
n ∈ ω and, for any n, m ∈ ω there exists k(n, m) ∈ ω such that

B(B(x, n), m) ⊆ B(x, k(n, m))

for every x ∈ X. Then B
′ = (X, P ′, B′), B′(x, α) = B(x, α), α ∈ P ′ is

a metrizable ball structure. Consider the family ℑ of all metrizable ball
structures on X such that B

′ ⊆ B
′′ for every B

′′ ∈ ℑ. Clearly, B is an
inductive limit of ℑ. 2

By Theorem 3.2, a ball structure B(X, ϕ) of a filter ϕ on X, |X| > 1
is inductively metrizable if and only if there exists a countable subset ψ
of ϕ such that

⋂

ψ = ∅. A ball structure B(G, γ) is inductively metrizable
if and only if it is metrizable.

§4 Submetrizability

A uniform ball structure B = (X, P, B) is called submetrizable if there
exists an unbounded metrizable ball structure B

′ = (X, P ′, B′) such that
B ⊆ B

′.

Let B = (X, P, B) be a ball structure, f : X −→ R. We say that f is
a function of bounded oscilation (with respect to B) if, for every α ∈ P ,
there exists a natural number n(α) such that

diam f(B(x, α)) ≤ n(α)

for every x ∈ X, where diam A = sup{|a− b| : a, b ∈ A}. Clearly, every
bounded function is of bounded oscilation.

Theorem 4.1. For every uniform ball structure B = (X, P, B) the
following statements are equivalent

(i) B is submetrizable;

(ii) there exists an unbounded function f : X −→ R of bounded os-
cilation.

Proof. (i) =⇒ (ii). Let (X, d) be an unbounded metric space such
that B ⊆ B(X, d). Fix an arbitrary point x0 ∈ X and put f(x) = d(x, x0).
Since (X, d) is unbounded, f is unbounded. If x, y ∈ X, then

|f(x) − f(y)| = |d(x0, x) − d(x0, y)| ≤ d(x, y).

Hence, f is of bounded oscilation on (X, d). Since B ⊆ B(X, d), f is
of bounded oscilation with respect to B.

(i) =⇒ (ii). For all x ∈ X, n ∈ ω, put

B′(x, n) = {y ∈ X : |f(x) − f(y)| ≤ n}.
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Clearly, the ball structure B
′ = (X, ω, B′) is symmetric, multiplica-

tive, connected and cfB
′ = ℵ0. Hence, B is metrizable. To show that

B ⊆ B
′, fix an arbitrary α ∈ P , choose n(α) such that diam f(B(x, α)) ≤

n(α) for every x ∈ X. Then B(x, α) ⊆ B′(x, n(α)) for every x ∈ X. 2

A connected uniform ball structure B = (X, P, B) is called ordinal
if there exists a cofinal well ordered by ≤ subset of P. Clearly, every
metrizable ball structure is ordinal.

Theorem 4.2. For every ordinal ball structure B = (X, P, B), the
following statements are equivalent

(i) B is metrizable;

(ii) B is submetrizable;

Proof. The implication (i) =⇒ (ii) is trivial.

(ii) =⇒ (i). We may suppose that P is well ordered. Assume that B is
not metrizable so cf P > ℵ0. By Theorem 4.1, there exists an unbounded
function f : X −→ R of bounded oscilation. Choose a countable subset
X ′ ⊆ X such that f(X ′) is unbounded in R. Since cf P > ℵ0, there
exists X0 ∈ X, α ∈ P such that X ′ ⊆ B(x0, α). We get a contradiction
to the definition of function of bounded oscilation. 2

The next results give us examples of nonmetrizable submetrizable
ball structures.

Theorem 4.3. If a group G has a normal subgroup H of countable
index, then Bl(G) is submetrizable.

Proof. Let ℑ be a family of all finite subsets of G containing the
identity e of G. Given any g ∈ G, F ∈ ℑ put

B′

l(g, FN) = FNg.

Denote by ℑ′ the family of all subsets Y ⊆ G of the form Y = FN ,
F ∈ ℑ. Then B

′ = (G,ℑ′, B′) is metrizable ball structure and B ⊆ B
′.

2

Theorem 4.4. Let ϕ be a filter on an infinite set X, Y =
⋂

ϕ. Then
B(X, ϕ) is submetrizable if and only if one of the following statements
holds

(i) Y is infinite;

(ii) Y is finite and there exists a filter ψ on X with a countable base
such that ϕ ⊆ ψ and Y /∈ ψ.

Proof. If (i) holds, choose a countable subset {yn : n ∈ ω} of Y and
put f(yn) = n, n ∈ ω and f(x) = 0 for every x ∈ X \ {yn : n ∈ ω}. Then
f : X −→ R is an unbounded function of bounded oscilation. Apply
Theorem 4.1.

If (ii) holds, choose a base {Fn : n ∈ ω} of ψ such that Fn+1 ⊂ Fn

for every n ∈ ω. For every x ∈ X, put
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f(x) =

{

n, if x ∈ Fn\Fn+1;
0, otherwise.

Since f is an unbounded function of bounded oscilation, we can apply
Theorem 4.1.

Assume that Y is finite and B(X, ϕ) is submetrizable. By Theorem
4.1, there exists an unbounded function f : X −→ R of bounded oscila-
tion. For every n ∈ ω, put Xn = {x ∈ X : |f(x)| > n}. Let ψ be a filter
on X with the base Xn : n ∈ ω. Take an arbitrary F ∈ ϕ. Since f is of
bounded oscilation, f is bounded on X\F . If follows that Xm ⊆ F for
some m ∈ ω, so ϕ ⊆ ψ. 2

Theorem 4.5. Let a ball structure B is a disjoint union of the fam-
ily {Bλ = (Xλ, P, Bλ) : λ ∈ I} of uniform ball structures. Then B is
submetrizable if and only if either I is infinite of there exists λ ∈ I such
that Bλ is submetrizable.

Proof. If I is infinite, choose a countable subset {λn : n ∈ ω} of I,
put f |Xλn

≡ n, n ∈ ω and f |Xλ ≡ 0, λ /∈ {λn : n ∈ ω}. Apply Theorem
4.1.

If Bλ is submetrizable, we fix an unbounded function f : Xγ −→ R of
bounded oscilation and put f |Xγ ≡ 0 for every γ 6= λ. Apply Theorem
4.1.

On the other hand, assume that I is finite and Bλ is not submetrizable
for every λ ∈ I. By Theorem 4.1, B is not submetrizable. 2

§5 Extremalities

Fix a set X and denote by B(X) the class of all ball structures with
the support X. Clearly, every bounded ball structure is a maximal by
inclusion ⊆ element of B(X), and any two bounded ball structures on
X coincide. On the other hand, the discrete ball structure (X, {p}, B),
B(x, p) = {x}, x ∈ X is a minimal by inclusion element of B(X). We
can easily avoid these trivialities considering some natural subclasses of
B(X).

An unbounded uniform ball structure B is called prebounded if B ⊆ B
′,

B
′ is unbounded and uniform, implies B ⊆ B

′.

Theorem 5.1. For every unbounded uniform ball structure B =
(X, P, B), there exists a prebounded ball structure B

′ such that B ⊆ B
′.

Every prebounded ball structure is not submetrizable.

Proof. The first statement follows directly from Zorn lemma and
the construction of inductive limit. To prove the second statement, we
take an unbounded metric space (X, d) and define a new metric d′ on X
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such that (X, d′) is unbounded and B(X, d) ⊂ B(X, d′). Fix an arbitrary
element x0 ∈ X. For every x ∈ X, choose n ∈ ω such that

n2 ≤ d(x) < (n + 1)2

and put f(x) = n. For every x ∈ X, m ∈ ω, denote

B′(x, m) = {y ∈ X : |f(x) − f(y)| ≤ m}.

Consider the ball structure B′ = (X, ω, B′). By metrizability criterion,
B
′ is metrizable. Clearly, B ⊂ B

′. 2

Theorem 5.2. Let X be an infinite set and let ϕ = {F ⊆ X :
X\F is finite}. Then B(X, ϕ) ⊆ B for every connected uniform ball
structure B = (X, P, B).

Proof. Take an arbitrary F ∈ ϕ. Since B is connected and uniform,
the finite subset X\F is bounded. Choose α ∈ P such that X\F ⊆
B(x, α) for every x ∈ X\F . Then id B(x, F ) ⊆ B(x, α) for every
x ∈ X. Hence, B(X, ϕ) ⊆ B. 2
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