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We introduce the notion of a nilpotent trioid, construct a free n-nilpotent trioid and describe

its structure. We also characterize the least n-nilpotent congruence on a free trioid and give
examples of nilpotent trioids of nilpotency index 2.

Юл. В. Жучок. Cвободные n-нильпотентные триоиды // Мат. Студiї. – 2015. – Т.43, №1.
– C.3–11.

Введено понятие нильпотентного триоида, построен свободный n-нильпотентный три-
оид и описана его структура. Также охарактеризована наименьшая n-нильпотентная конг-
руэнция на свободном триоиде и приведены примеры нильпотентных триоидов индекса
нильпотентности 2.

1. Introduction. J.-L. Loday and M. O. Ronco ([1]) introduced a type of algebras, called
trioids, which are sets endowed with three binary associative operations a, ` and ⊥ satisfying
eight axioms: (x a y) a z = x a (y ` z) (T1), (x ` y) a z = x ` (y a z) (T2), (x a y) `
z = x ` (y ` z) (T3), (x a y) a z = x a (y ⊥ z) (T4), (x ⊥ y) a z = x ⊥ (y a z) (T5), (x a
y) ⊥ z = x ⊥ (y ` z) (T6), (x ` y) ⊥ z = x ` (y ⊥ z) (T7), (x ⊥ y) ` z = x ` (y ` z) (T8).
Trioids have applications in the theory of trialgebras ([1]). Recall that trialgebras are linear
analogs of trioids. This kind of algebras is closely related to ternary planar trees. It is well
known that dialgebras (dimonoids) ([2, 3]) can be obtained from trialgebras (trioids). In the
survey paper [4], numerous examples of trioids were presented. The problem of constructing
free trioids was solved in [1, 4]. Free rectangular trioids were given in [5].

Nilpotency in different algebras has been extensively studied by many authors. So, the
notion of a nilpotent semigroup was introduced by A. I. Malcev ([6]) and independently
by B. H. Neuman and T. Taylor ([7]). The relationships between nilpotent semigroups and
semigroup algebras were studied by E. Jespers and J. Okninski ([8]). Nilpotency in rings was
considered in [9]. Papers [10, 11] are devoted to studying (di)nilpotent dimonoids.

This paper develops the variety theory of trioids. In Section 2 constructions of a free trioid
and some other algebras are given. In Section 3 we introduce the notion of a nilpotent trioid,
give examples of nilpotent trioids of nilpotency index 2 and construct a free n-nilpotent
trioid. In Section 4 we introduce the notion of a 0-triband of subtrioids and in terms of
0-tribands of subtrioids describe the structure of free n-nilpotent trioids. In the final section
the least n-nilpotent congruence on a free trioid is characterized.

2. Preliminaries. Consider free trioids (see [4]).
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Let Y be an arbitrary nonempty set, Y = {x |x ∈ Y }, X = Y ∪ Y and F [X] be the free
semigroup on X. Let further P ⊂ F [X] be a subsemigroup which contains words w with the
element x (x ∈ Y ) occuring in w at least one time. It is easy to see that F [X] is a band of
semigroups P and F [X]\P [12].

Let w ∈ P . Denote by w̃ the word obtained from w by the replacement of all letters x
(x ∈ Y ) with x. For instance, if w = xx yxz, then w̃ = xxyxz. Obviously, w̃ ∈ F [X]\P .

Define operations a, ` and ⊥ on P by

w a u = wũ, w ` u = w̃u, w ⊥ u = wu

for all w, u ∈ P . Denote the algebra (P,a,`,⊥) by Frt(Y ).
The proof of the following statement is similar to the proof of Proposition 1.9 from [1]

obtained for the free trioid of rank 1.

Proposition 1. Frt(Y ) is the free trioid of an arbitrary rank.

If Y = {x}, then Frt(Y ) is the free trioid of rank 1 presented by J.-L. Loday and
M. O. Ronco in [1]. In the latter paper it was shown that the free associative trialgebra over
a vector space is completely determined by the free associative trialgebra on one generator
and the description of that trialgebra is reduced to the description of the free trioid of rank 1.
A trioid which is isomorphic to the free trioid of rank 1 can be found in [4].

The notion of a normal form for elements of Frt(Y ) of rank 1 (see [1], Lemma 1.10)
can be naturally extended to the case of an arbitrary set Y . Namely, let Y be an arbitrary
nonempty set and w ∈ Frt(Y ). Then we obtain the normal form for w (see [13]):

w = u
(0)
1 u

(0)
2 . . . u

(0)
k0
u
(1)
1 u

(1)
2 . . . u

(1)
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u
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1 u

(2)
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k2
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2 . . . u
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kj

=

= (u
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) ⊥ . . . ⊥ (u
(j)
1 a . . . a u

(j)
kj

),

where u(i)l ∈ Y , 1 ≤ l ≤ ki for all i ∈ {0, 1, . . . , j}, or

w = u
(1)
1 u

(1)
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(1)
k1
u
(2)
1 u

(2)
2 . . . u

(2)
k2
. . . u

(j−1)
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(j)
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=
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(1)
k1
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(j)
1 a . . . a u

(j)
kj

),

where u(i)l ∈ Y , 1 ≤ l ≤ ki for all i ∈ {1, 2, . . . , j}. Let further (T,a′ ,`′ ,⊥′) be an arbi-
trary trioid and ϕ : Y → T be an arbitrary map. Since Frt(Y ) is a free trioid, there exists
a homomorphism Φ: Frt(Y )→ (T,a′ ,`′ ,⊥′). It is defined by the following rule (see [13]):

wΦ = (u
(0)
1 ϕ `′ u(0)2 ϕ `′ . . . `′ u(0)k0 ϕ) `′ (u

(1)
1 ϕ a′ u(1)2 ϕ a′ . . . a′ u(1)k1 ϕ) ⊥′

⊥′ . . . ⊥′ (u
(j)
1 ϕ a′ u(j)2 ϕ a′ . . . a′ u(j)kj ϕ)

or

wΦ = (u
(1)
1 ϕ a′ u(1)2 ϕ a′ . . . a′ u(1)k1 ϕ) ⊥′ (u

(2)
1 ϕ a′ u(2)2 ϕ a′ . . . a′ u(2)k2 ϕ) ⊥′

⊥′ . . . ⊥′ (u
(j)
1 ϕ a′ u(j)2 ϕ a′ . . . a′ u(j)kj ϕ).

We will call Φ the canonical homomorphism.
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Now recall the definition of a dimonoid ([2, 3]).
A nonempty set D equipped with two binary associative operations a and ` satisfying

the axioms (T1)− (T3) is called a dimonoid. If D = (D,a,`) is a dimonoid, then the trioid
(D,a,`,a) (respectively, (D,a,`,`)) will be denoted by (D)a (respectively, (D)`). It is clear
that (D)a and (D)` are distinct as trioids but they coincide as dimonoids.

Consider some algebras from [14] and [5] which will be used in Section 4.
For an arbitrary nonempty set Y let Y`z = (Y,a), Yrz = (Y,`), Yrb = Y`z × Yrz be a

left zero semigroup, a right zero semigroup and a rectangular band, respectively. By [14]
Y`z,rz = (Y,a,`) is the free left zero and right zero dimonoid (or the free left and right
diband).

Define operations a and ` on Y 2 by (x, y) a (a, b) = (x, b), (x, y) ` (a, b) = (a, b) for
all (x, y), (a, b) ∈ Y 2. By [14] (Y 2,a,`) is the free (rb, rz)-dimonoid. It is denoted by Yrb,rz.

Define operations a and ` on Y 2 by (x, y) a (a, b) = (x, y), (x, y) ` (a, b) = (x, b) for
all (x, y), (a, b) ∈ Y 2. By [14] (Y 2,a,`) is the free (`z, rb)-dimonoid. It is denoted by Y`z,rb.

A trioid (dimonoid) is called a rectangular triband ([5], rectangular diband [14]), if each
of its semigroups is a rectangular band.

Define operations a and ` on Y 3 by

(x1, x2, x3) a (y1, y2, y3) = (x1, x2, y3), (x1, x2, x3) ` (y1, y2, y3) = (x1, y2, y3)

for all (x1, x2, x3), (y1, y2, y3) ∈ Y 3. The algebra (Y 3,a,`) is denoted by FRct(Y ). According
to Theorem 1 from [14] FRct(Y ) is a free rectangular diband.

Define operations a, ` and ⊥ on Y 3 by

(a1, b1, c1)a(a2, b2, c2) = (a1, b1, c1), (a1, b1, c1)`(a2, b2, c2) = (a1, b2, c2),

(a1, b1, c1, )⊥(a2, b2, c2) = (a1, b1, c2)

for all (a1, b1, c1), (a2, b2, c2) ∈ Y 3. By Lemma 1 from [5] (Y 3,a,`,⊥) is a rectangular triband.
It is denoted by Ylz,rd.

Define operations a, ` and ⊥ on Y 3 by

(a1, b1, c1)a(a2, b2, c2) = (a1, b1, c2), (a1, b1, c1)`(a2, b2, c2) = (a2, b2, c2),

(a1, b1, c1, )⊥(a2, b2, c2) = (a1, b2, c2)

for all (a1, b1, c1), (a2, b2, c2) ∈ Y 3. By Lemma 2 from [5] (Y 3,a,`,⊥) is a rectangular triband.
It is denoted by Yrd,rz.

Define operations a, ` and ⊥ on Y 2 by

(a1, b1)a(a2, b2) = (a1, b1), (a1, b1)`(a2, b2) = (a2, b2), (a1, b1)⊥(a2, b2) = (a1, b2)

for all (a1, b1), (a2, b2) ∈ Y 2. By Lemma 3 from [5] (Y 2,a,`,⊥) is a rectangular triband. It
is denoted by Y rb

lz,rz. Note that the trioid Y rb
lz,rz was first constructed in [15].

Define operations a, ` and ⊥ on Y 4 by

(x1, x2, x3, x4) a (y1, y2, y3, y4) = (x1, x2, x3, y4),

(x1, x2, x3, x4) ` (y1, y2, y3, y4) = (x1, y2, y3, y4),

(x1, x2, x3, x4) ⊥ (y1, y2, y3, y4) = (x1, x2, y3, y4)
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for all (x1, x2, x3, x4), (y1, y2, y3, y4) ∈ Y 4. The algebra (Y 4,a,`,⊥) is denoted by FRT(Y ).
By Theorem 5 from [5] FRT(Y ) is a free rectangular triband.

A nonempty subset A of a trioid (T, a,`,⊥) is called a subtrioid, if for any a, b ∈ T ,
a, b ∈ A implies a a b, a ` b, a ⊥ b ∈ A.

As usual, N denotes the set of all positive integers.

3. Nilpotency in trioids. In this section we introduce the notion of a nilpotent trioid, give
examples of nilpotent trioids of nilpotency index 2 and construct a free n-nilpotent trioid of
an arbitrary rank.

An element 0 of a trioid (T,a,`,⊥) is called zero ([16]), if x ∗ 0 = 0 ∗ x = 0 ∗ 0 = 0 for
all x ∈ T and ∗ ∈ {a,`,⊥}.

A trioid (T,a,`,⊥) with zero will be called nilpotent, if for some n ∈ N and any xi ∈ T ,
1 ≤ i ≤ n + 1, and ∗j ∈ {a,`,⊥}, 1 ≤ j ≤ n, any parenthesizing of x1 ∗1 x2 ∗2 . . . ∗n xn+1

gives 0 ∈ T . The least such n we shall call the nilpotency index of (T,a,`,⊥). For k ∈ N
a nilpotent trioid of nilpotency index ≤ k is said to be k-nilpotent.

It is clear that operations of any 1-nilpotent trioid coincide and it is a zero semigroup.
Now we give examples of nilpotent trioids of nilpotency index 2.
Let X1 and X2 be arbitrary disjoint sets, 0 ∈ X1, and let

ϕ1 : X2 ×X2 → X1, ϕ2 : X2 ×X2 → X1, ϕ3 : X2 ×X2 → X1

be arbitrary distinct maps. Define operations a, ` and ⊥ on X1 ∪X2 by

x a y =

{
(x, y)ϕ1, x, y ∈ X2,

0, otherwise,
x ` y =

{
(x, y)ϕ2, x, y ∈ X2,

0, otherwise,

x ⊥ y =

{
(x, y)ϕ3, x, y ∈ X2,

0, otherwise

for all x, y ∈ X1 ∪X2.
The proof of the following statement is similar to the proof of Proposition 2 from [10].

Proposition 2. (X1 ∪X2,a,`,⊥) is a nilpotent trioid of nilpotency index 2.

Recall that a trioid is called commutative, if its three operations are commutative.
Let Y be an arbitrary set such that 0, a, b, c, d, e, f ∈ Y and a 6= b, b 6= c, c 6= d, d 6= a,

b 6= e, d 6= e, f 6= e, a 6= f , c 6= f . Define operations a, ` and ⊥ on Y , assuming

x a y =

{
b, x = y = a,

0, otherwise,
x ` y =

{
d, x = y = c,

0, otherwise,
x ⊥ y =

{
f, x = y = e,

0, otherwise

for all x, y ∈ Y .
The proof of the following statement is similar to that of Proposition 3 from [10].

Proposition 3. If b 6= 0 or d 6= 0, or f 6= 0, then (Y,a,`,⊥) is a nilpotent commutative
trioid of nilpotency index 2.

Note that the trioid (Y,a,`,⊥) was first constructed in [15].
It is not difficult to see that the class of all n-nilpotent trioids is a subvariety of the

variety of all trioids. A trioid which is free in the variety of n-nilpotent trioids will be called
a free n-nilpotent trioid.
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See [4, 17, 18] for more information about trioids.
For every w ∈ F [X] denote the length of w by lw. Let n ∈ N and Pn ⊂ P be a set which

contains words w with the length no more than n (see Section 2). Define operations ≺,�
and ↑ on the set Pn ∪ {0} by

w≺u =

{
wũ, lwu≤n,
0, lwu > n,

w�u =

{
w̃u, lwu≤n,
0, lwu > n,

w↑u =

{
wu, lwu≤n,
0, lwu > n,

w ∗ 0 = 0 ∗ w = 0 ∗ 0 = 0

for all w, u ∈ Pn and ∗ ∈ {≺,�, ↑}. Denote the algebra (Pn ∪ {0},≺,�, ↑) by P 0
n(Y ).

Theorem 1. P 0
n(Y ) is a free n-nilpotent trioid of an arbitrary rank.

Proof. By Proposition 1 from [16] P 0
n(Y ) is a trioid with zero. For any wi ∈ P 0

n(Y )\{0},
1 ≤ i ≤ n + 1, and ∗j ∈ {≺,�, ↑}, 1 ≤ j ≤ n, any parenthesizing of w1 ∗1 w2 ∗2 . . . ∗n wn+1

gives 0. Thus, P 0
n(Y ) is nilpotent. On the other hand, for x ∈ Y ,

x ≺ x ≺ . . . ≺ x︸ ︷︷ ︸
n

= xx . . . x︸ ︷︷ ︸
n

6= 0.

It means that P 0
n(Y ) has nilpotency index n.

Let us show that P 0
n(Y ) is free in the variety of n-nilpotent trioids.

Let (T,a′,`′,⊥′) be an arbitrary n-nilpotent trioid, ρ : Y → T be an arbitrary map
and µ : Frt(Y ) → (T,a′,`′,⊥′) be the canonical homomorphism which is defined by ρ (see
Section 2). Define a map δ : P 0

n(Y )→ (T,a′,`′,⊥′) : w 7→ wδ, assuming

wδ =

{
wµ, w ∈ P 0

n(Y )\{0},
0, w = 0.

Show that δ is a homomorphism.
Let w1, w2 ∈ P 0

n(Y )\{0} and lw1 + lw2 ≤ n. As w1 ≺ w2 ∈ P 0
n(Y )\{0}, then

(w1 ≺ w2)δ = (w1 ≺ w2)µ = (w1 a w2)µ = w1µ a′ w2µ = w1δ a′ w2δ.

Analogously, (w1 � w2)δ = w1δ `′ w2δ, (w1 ↑ w2)δ = w1δ ⊥′ w2δ. The map µ sends an
arbitrary element w to the product of some lw elements from T . Hence, in the remaining
cases the equalities

(w1 ≺ w2)δ = (w1 � w2)δ = (w1 ↑ w2)δ = 0 = w1δa′w2δ = w1δ`′w2δ = w1δ ⊥′ w2δ

hold. Thus, δ is a homomorhism.

4. 0-triband decompositions of P 0
n(Y ). In this section we introduce the notion of

a 0-triband of subtrioids and in terms of 0-tribands of subtrioids describe the structure
of free n-nilpotent trioids.

For trioids with zero there exists a natural analog of the notion of a triband of subtrioids
(see [15]).
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A trioid S with zero 0 (see Section 3) will be called a 0-triband of subtrioids Sβ, β ∈ B,
where B is an idempotent trioid [15], if S =

⋃
β∈B Sβ, Sβ∩Sγ = {0} for β 6= γ and SβaSγ ⊆

Sβaγ, Sβ`Sγ ⊆ Sβ`γ, Sβ⊥Sγ ⊆ Sβ⊥γ for any β, γ ∈ B. If B is an idempotent semigroup
(band), then we say that S is a 0-band of subtrioids Sβ, β ∈ B.

Observe that the notion of a 0-triband of subtrioids generalizes the notion of a 0-diband
of subdimonoids ([3]) and the notion of a 0-band of semigroups ([19]).

Let ω ∈ F [X] and w ∈ P 0
n(Y )\{0}. Denote the first (respectively, last) letter of ω by ω(0)

(respectively, ω(1)). Suppose that u is the initial (respectively, terminal) subword of w with
the minimal length such that u(1) ∈ Y (respectively, u(0) ∈ Y ). In this case ũ(1) (respectively,
ũ(0)) will be denoted by w[0] (respectively, w[1]).

Let

Q(i,j) = {w ∈ P 0
n(Y )\{0} | (w̃(0), w̃(1)) = (i, j)} ∪ {0},

Q(i) = {w ∈ P 0
n(Y )\{0} | w̃(0) = i} ∪ {0}, Q[i] = {w ∈ P 0

n(Y )\{0} | w̃(1) = i} ∪ {0}

for i, j ∈ Y , n > 1 and |Y | > 1.
The following structural theorem gives decompositions of P 0

n(Y ) into 0-bands of sub-
trioids.

Theorem 2. The free n-nilpotent trioid P 0
n(Y ) is a 0-band of subtrioids

(i) Q(i,j), (i, j) ∈ Yrb, if n > 1 and |Y | > 1;
(ii) Q(i), i ∈ Ylz, if n > 1 and |Y | > 1;
(iii) Q[i], i ∈ Yrz, if n > 1 and |Y | > 1.

Proof. We prove (i). It is obvious that in the case where n > 1 and |Y | > 1 one has
Q(i,j)\{0} 6= ∅ for all (i, j) ∈ Yrb. Moreover, Q(i,j), (i, j) ∈ Yrb, is a subtrioid of P 0

n(Y ).
Clearly,

P 0
n(Y ) =

⋃
(i,j)∈Yrb

Q(i,j), Q(i,j) ∩Q(i′ ,j′ ) = {0}

for (i, j) 6= (i
′
, j
′
). It is immediate to verify that

Q(i,j)aQ(i
′
,j
′
) ⊆ Q(i,j

′
), Q(i,j)`Q(i′ ,j′ ) ⊆ Q(i,j′ ), Q(i,j)⊥Q(i′ ,j′ ) ⊆ Q(i,j′ )

for any (i, j), (i
′
, j
′
) ∈ Yrb. So, P 0

n(Y ) is a 0-band of subtrioids Q(i,j), (i, j) ∈ Yrb.
The proofs of the remaining cases are similar.

Assume

Q(i,j,k,s) = {w ∈ P 0
n(Y )\{0} | (w̃(0), w[0], w[1], w̃(1)) = (i, j, k, s)} ∪ {0}

for i, j, k, s ∈ Y , n > 3 and |Y | > 1;

Q(i,j,k) = {w ∈ P 0
n(Y )\{0} | (w̃(0), w[0], w[1]) = (i, j, k)} ∪ {0},

Q[i,j,k] = {w ∈ P 0
n(Y )\{0} | (w[0], w[1], w̃(1)) = (i, j, k)} ∪ {0}

for i, j, k ∈ Y , n > 2 and |Y | > 1; Q[i,j] = {w ∈ P 0
n(Y )\{0} | (w[0], w[1]) = (i, j)} ∪ {0} for

i, j ∈ Y , n > 1 and |Y | > 1.
The following two structural theorems give decompositions of P 0

n(Y ) into 0-tribands of
subtrioids.
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Theorem 3. The free n-nilpotent trioid P 0
n(Y ) is a 0-triband of subtrioids

(i) Q(i,j,k,s), (i, j, k, s) ∈ FRT(Y ), if n > 3 and |Y | > 1;

(ii) Q(i,j,k), (i, j, k) ∈ Ylz,rd, if n > 2 and |Y | > 1;

(ii) Q[i,j,k], (i, j, k) ∈ Yrd,rz, if n > 2 and |Y | > 1;

(iv) Q[i,j], (i, j) ∈ Y rb
lz,rz, if n > 1 and |Y | > 1.

Proof. We prove (i). It is easy to see that in the case where n > 3 and |Y | > 1 we get
Q(i,j,k,s)\{0} 6= ∅ for all (i, j, k, s) ∈ FRT(Y ). Furthermore, Q(i,j,k,s), (i, j, k, s) ∈ FRT(Y ), is
a subtrioid of P 0

n(Y ). Evidently,

P 0
n(Y ) =

⋃
(i,j,k,s)∈FRT(Y )

Q(i,j,k,s), Q(i,j,k,s) ∩Q(i′ ,j′ ,k′ ,s′ ) = {0}

for (i, j, k, s) 6= (i
′
, j
′
, k
′
, s
′
). It can be shown that

Q(i,j,k,s)aQ(i′ ,j′ ,k′ ,s′ ) ⊆ Q(i,j,k,s′ ), Q(i,j,k,s)`Q(i′ ,j′ ,k′ ,s′ ) ⊆ Q(i,j′ ,k′ ,s′ ),

Q(i,j,k,s)⊥Q(i′ ,j′ ,k′ ,s′ ) ⊆ Q(i,j,k′ ,s′ )

for any (i, j, k, s), (i
′
, j
′
, k
′
, s
′
) ∈ FRT(Y ). Thus, P 0

n(Y ) is a 0-triband of subtrioids Q(i,j,k,s),
(i, j, k, s) ∈ FRT(Y ).

The proofs of the remaining cases are similar.

Let

W(i,j,k) = {w ∈ P 0
n(Y )\{0} | (w̃(0), w[0], w̃(1)) = (i, j, k)} ∪ {0},

W[i,j,k] = {w ∈ P 0
n(Y )\{0} | (w̃(0), w[1], w̃(1)) = (i, j, k)} ∪ {0}

for i, j, k ∈ Y , n > 2 and |Y | > 1;

W(i,j) = {w ∈ P 0
n(Y )\{0} | (w̃(0), w[0]) = (i, j)} ∪ {0},

W[i,j] = {w ∈ P 0
n(Y )\{0} | (w̃(0), w[1]) = (i, j)} ∪ {0},

W(i,j] = {w ∈ P 0
n(Y )\{0} | (w[0], w̃(1)) = (i, j)} ∪ {0},

W[i,j) = {w ∈ P 0
n(Y )\{0} | (w[1], w̃(1)) = (i, j)} ∪ {0},

W(i) = {w ∈ P 0
n(Y )\{0} | w[0] = i} ∪ {0}, W[i] = {w ∈ P 0

n(Y )\{0} | w[1] = i} ∪ {0}

for i, j ∈ Y , n > 1 and |Y | > 1.

Theorem 4. The free n-nilpotent trioid P 0
n(Y ) is a 0-triband of subtrioids

(i) W(i,j,k), (i, j, k) ∈ (FRct(Y ))a, if n > 2 and |Y | > 1;

(ii) W[i,j,k], (i, j, k) ∈ (FRct(Y ))`, if n > 2 and |Y | > 1;

(iii) W(i,j), (i, j) ∈ (Ylz,rb)
a, if n > 1 and |Y | > 1;

(iv) W[i,j], (i, j) ∈ (Ylz,rb)
`, if n > 1 and |Y | > 1;

(v) W(i,j], (i, j) ∈ (Yrb,rz)
a, if n > 1 and |Y | > 1;

(vi) W[i,j), (i, j) ∈ (Yrb,rz)
`, if n > 1 and |Y | > 1;
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(vii) W(i), i ∈ (Ylz,rz)
a, if n > 1 and |Y | > 1;

(viii) W[i], i ∈ (Ylz,rz)
`, if n > 1 and |Y | > 1.

Proof. We prove (i). It is readily seen that in the case where n > 2 and |Y | > 1 one has
W(i,j,k)\{0} 6= ∅ for all (i, j, k) ∈ (FRct(Y ))a. In addition, W(i,j,k), (i, j, k) ∈ (FRct(Y ))a, is
a subtrioid of P 0

n(Y ). It is clear that

P 0
n(Y ) =

⋃
(i,j,k)∈(FRct(Y ))a

W(i,j,k), W(i,j,k) ∩W(i′ ,j′ ,k′ ) = {0}

for (i, j, k) 6= (i
′
, j
′
, k
′
). One can check that

W(i,j,k)aW(i′ ,j′ ,k′ ) ⊆ W(i,j,k′ ), W(i,j,k)`W(i′ ,j′ ,k′ ) ⊆ W(i,j′ ,k′ ), W(i,j,k)⊥W(i′ ,j′ ,k′ ) ⊆ W(i,j,k′ )

for any (i, j, k), (i
′
, j
′
, k
′
) ∈ (FRct(Y ))a. Therefore, P 0

n(Y ) is a 0-triband of subtrioidsW(i,j,k),
(i, j, k) ∈ (FRct(Y ))a.

The proofs of the remaining cases are similar.

5. The least n-nilpotent congruence on a free trioid. In this section we present the
least n-nilpotent congruence on a free trioid.

If f : T1 → T2 is a homomorphism of trioids, then the corresponding congruence on T1
will be denoted by ∆f . If α is a congruence on a trioid (T,a,`,⊥) such that (T,a,`,⊥) /α
is an n-nilpotent trioid (see Section 3), then we say that α is an n-nilpotent congruence.

Let Frt(Y ) be a free trioid of an arbitrary rank (see Section 2). Fix n ∈ N and define
a relation νn on Frt(Y ) by

w1νnw2 if and only if w1 = w2 or lw1 > n, lw2 > n.

Theorem 5. The relation νn is the least n-nilpotent congruence on the free trioid Frt(Y ).

Proof. Define a map ξ : Frt(Y )→ P 0
n(Y ) by

wξ =

{
w, lw≤n,
0, lw > n,

w ∈ Frt(Y ).

Take w1, w2 ∈ Frt(Y ) and assume lw1w2≤n. From lw1w2≤n it follows that lw1<n and
lw2<n. Then

(w1aw2)ξ = (w1w̃2)ξ = w1w̃2 = w1≺w2 = w1ξ≺w2ξ,

(w1`w2)ξ = (w̃1w2)ξ = w̃1w2 = w1�w2 = w1ξ�w2ξ,

(w1⊥w2)ξ = (w1w2)ξ = w1w2 = w1↑w2 = w1ξ↑w2ξ.

If lw1w2 > n, then

(w1aw2)ξ = (w1w̃2)ξ = 0 = w1ξ≺w2ξ,

(w1`w2)ξ = (w̃1w2)ξ = 0 = w1ξ�w2ξ, (w1⊥w2)ξ = (w1w2)ξ = 0 = w1ξ↑w2ξ.

Consequently, ξ is a surjective homomorphism. According to Theorem 1 P 0
n(Y ) is a free

n-nilpotent trioid of an arbitrary rank. Then ∆ξ is the least n-nilpotent congruence on
Frt(Y ). From the definition of ξ it follows that ∆ξ = νn.
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