686 MY
 $$
43.1-2015
$$
 MATEMATИЧНI С Т У Δ II

Matematychni S T U D II

Tom 43, No. 12015 Vol. 43, No. 1

МАТЕМАТИЧНІ СТУДII

Праці Львівського математичного товариства

ISSN 1027-4634

Журнал присвячено дослідженням в усіх областях математики. Приймаються оригінальні статті середнього розміру; виняток можливий для оглядових статей. Статті публікуються англійською, німецькою, російською, українською та французькою мовами. Виходить щоквартально.

Видається видавництвом «ВНТЛ-Класика» для Львівського математичного товариства за фінансової та організаційної підтримки Львівського національного університету.

Редактори:

М.М.Зарічний (Львів), О.Б.Скасків (Львів), М.М.Шеремета (Львів)

Редакційна колегія:

О.Д.Артемович (Івано-Франківськ; Краків, Польща), Т.О.Банах (Львів), М.М.Бокало (Львів), Ю.Д.Головатий (Львів), Р.І.Григорчук (Москва, Росія), Р.О.Гринів (Львів), І.Й. Гуран (Львів), А.А.Дороговцев (Київ), Ю.А.Дрозд (Київ), С. Д.Івасишен (Київ), В.В.Кириченко (Київ), М.Я. Комарницький (Львів), Б.І.Копитко (Львів), А.А.Кореновський (Одеса), Р.Коті (Париж, Франція), О.В. Лопушанський (Львів; Жешув, Польща), Я.В.Микитюк (Львів), Й.В.Островський (Харків; Анкара, Туреччина), О.А.Панков (Балтімор, США), М.М.Попов (Чернівці), І.В.Протасов (Київ), Б.Й.Пташник (Львів), Д.Реповш (Любляна, Словенія), В.Г.Самойленко (Київ), А.М.Седлецький (Москва, Росія), О.Г.Сторож (Львів), B.I.Сущанський (Глівіце, Польща), С.Ю.Фаворов (Харків), Б.Н.Хабібуллін (Уфа, Росія), І.Е.Чижиков (Львів)

Технічний редактор:

Д.Ю.Зікрач

Адреса редакціі:

Україна, 79000 Львів,
Університетська, 1
Львівський національний університет,
механіко-математичний факультет,
Математичні студіі
e-mail: matstud@franko.lviv.ua

Інформація про передплату:

3 питань передплати звертатись за адресою:
ВНТЛ-Класика
а/с 10249, Львів, 79006
e-mail: info@vntl.com, http://www.vntl.com

MATEMATYCHNI STUDII

Proceedings of the Lviv Mathematical Society ISSN 1027-4634

Journal is devoted to research in all fields of mathematics. Original papers of moderate length are accepted; exception is possible for survey articles. Languages accepted are: English, French, German, Russian, and Ukrainian. Published quarterly.

Published for the Lviv Mathematical Society by VNTL Publishers with finansial and organizing support of the Lviv National University.

Editors-in-Chief:

M.M.Sheremeta (Lviv), O.B.Skaskiv (Lviv), M.M.Zarichnyi (Lviv)

Editorial Board:

O.D.Artemovych (Ivano-Frankivs'k; Kraków, Poland), T.O.Banakh (Lviv), M.M.Bokalo (Lviv), R.Cauty (Paris, France), I.E.Chyzhykov (Lviv), A.A.Dorogovtsev (Kyiv), Yu.A.Drozd (Kyiv), S.Yu.Favorov (Kharkiv), Yu.D.Golovaty (Lviv), R.I.Grigorchuk (Moscow, Russia), I.Yo.Guran (Lviv), R.O.Hryniv (Lviv), S.D.Ivasyshen (Kyiv), B.N.Khabibullin (Ufa, Russia), V.V.Kirichenko (Kyiv), M.Ya.Komarnytskyi (Lviv), B.I.Kopytko (Lviv), A.A.Korenovskii (Odessa), O.V.Lopushanskyi (Lviv; Rzeszów, Poland), Ya.V.Mykytyuk (Lviv), I.V.Ostrovskii (Kharkiv; Ankara, Turkey), O.A.Pankov (Baltimore, USA), M.M.Popov (Chernivtsi), I.V.Protasov (Kyiv), B.Yo.Ptashnyk (Lviv), D.Repovš (Ljubljana, Slovenia), V.G.Samoilenko (Kyiv), A.M.Sedletskii (Moscow, Russia), O.G.Storozh (Lviv), V.I.Sushchansky (Glivice, Poland)

Technical editor:

D.Yu.Zikrach

Address:

Matematychni Studii
Dept. of Mechanics and Mathematics,
Lviv National University,
1 Universytetska St., 79000 , Lviv, Ukraine
e-mail: matstud@franko.lvivua

Subscription information:

Subscription information can be obtained by the address:
VNTL Publishers
P.O.Box 10249, Lviv, 79006, Ukraine
e-mail: info@vntl.com, http://www.vntl.com

3 M I C T

Zhuchok Yul. V. Free n-nilpotent trioids 3
LUKASHENKO M. P. Derivations as homomorphisms or anti-homomorphisms in differentially semiprime rings 12
Kuryliak A. O., Shapovalovska L. O. Wiman's inequality for entire functions of several complex variables with rapidly oscillating coefficients. 16
Нестеренко В. В. Сукупні властивості відображень, які пов'язані із замкненістю графіка 27
КАРловА О. Сильно нарізно неперервні функції і одна характеризація відкритих множин в ящиковому добутку 36
Favorov S. Yu., Girya N. P. On a property of pairs of almost periodic zero sets 43
ТАРГОнСький А. Л. Деякі нерівності для внутрішніх радіусів попарно- неперетинних областей та відкритих множин 51
Khoroshchak V. S., Kondratyuk A. A. The Riesz measures and a repre- sentation of multiplicatively periodic δ-subharmonic functions in a punc- tured Euclidean space 61
Дерев'янко Т. О., КиРилич В. М. Оптимальне керування квазіліній- ною гіперболічною системою, що описуе попит Слуцького 66
Maslyuchenko V. K., Maslyuchenko O. V., Myronyk O. D. On L-separatedness and L-regularity of the Ceder products 78
К OPOTKI ПОВІДОМЛЕННЯ
Симотюк М. М. Метричні оцінки визначника інтерполяційної задачі, один з вузлів якої є кратним, для лінійних рівнянь з частинними похі- дними 88
Гришин А. Ф., Куинь Н. В. Предельные множества Азарина для мер Радона. I 94
ПРОБ ЛЕМИ
IL'InSKII A. I. On the division of a characteristic function by the Blaschke product 100
Bandura A. I., Skaskiv O. B. Open problems for entire functions of bounded index in direction 103
Savchenko A., Zarichnyi M. Open problems in the theory of fuzzy metric spaces 110

[^0]
CONTENTS

Zhuchok Yul. V. Free n-nilpotent trioids 3
Lukashenko M. P. Derivations as homomorphisms or anti-homomorphisms in differentially semiprime rings 12
Kuryliak A. O., Shapovalovska L. O. Wiman's inequality for entire functions of several complex variables with rapidly oscillating coefficients 16
Nesterenko V. V. Aggregate properties of mappings that are associated with the closedness of a graph 27
Karlova O. Strongly separately continuous functions and a characterization of open sets in a box-product 36
Favorov S. Yu., Girya N. P. On a property of pairs of almost periodic zero sets 43
TARGONSkil A. L. Some inequalities for inner radii of pair-wise disjoint domains and open sets 51
Khoroshchak V. S., Kondratyuk A. A. The Riesz measures and a repre- sentation of multiplicatively periodic δ-subharmonic functions in a punc- tured Euclidean space 61
Derevianko T. O., Kyrylych V. M. Optimal control problem for quasili- near hyperbolic system: the Slutsky equation 66
Maslyuchenko V. K., Maslyuchenko O. V., Myronyk O. D. On L-separatedness and L-regularity of the Ceder products 78
RESEARCH ANNOUNCEMENTS
Symotyuk M. M. Metric estimates of the characterictic determinant of an interpolation problem with nodes, one of which is multiple, for a linear partial differential equation 88
Grishin A. F., Quynh N. V. Azarin limit sets for Radon measures. I. 94
PROBLEM SECTION
Il'inskir A. I. On the division of a characteristic function by the Blaschke product 100
Bandura A. I., Skaskiv O. B. Open problems for entire functions of bounded index in direction 103
SAVChenko A., Zarichnyi M. Open problems in the theory of fuzzy metric spaces 110

Yul. V. Zhuchok

FREE n-NILPOTENT TRIOIDS

Yul. V. Zhuchok. Free n-nilpotent trioids, Mat. Stud. 43 (2015), 3-11.
We introduce the notion of a nilpotent trioid, construct a free n-nilpotent trioid and describe its structure. We also characterize the least n-nilpotent congruence on a free trioid and give examples of nilpotent trioids of nilpotency index 2 .

Юл. В. Жучок. Свободные п-нильпотентные триоидъ // Мат. Студії. - 2015. - Т.43, №1. - С.3-11.

Введено понятие нильпотентного триоида, построен свободный n-нильпотентный триоид и описана его структура. Также охарактеризована наименьшая n-нильпотентная конгруэнция на свободном триоиде и приведены примеры нильпотентных триоидов индекса нильпотентности 2.

1. Introduction. J.-L. Loday and M. O. Ronco ([1]) introduced a type of algebras, called trioids, which are sets endowed with three binary associative operations \dashv, \vdash and \perp satisfying eight axioms: $(x \dashv y) \dashv z=x \dashv(y \vdash z)(T 1),(x \vdash y) \dashv z=x \vdash(y \dashv z)(T 2),(x \dashv y) \vdash$ $z=x \vdash(y \vdash z)(T 3),(x \dashv y) \dashv z=x \dashv(y \perp z)(T 4),(x \perp y) \dashv z=x \perp(y \dashv z)(T 5),(x \dashv$ $y) \perp z=x \perp(y \vdash z)(T 6),(x \vdash y) \perp z=x \vdash(y \perp z)(T 7),(x \perp y) \vdash z=x \vdash(y \vdash z)(T 8)$. Trioids have applications in the theory of trialgebras ([1]). Recall that trialgebras are linear analogs of trioids. This kind of algebras is closely related to ternary planar trees. It is well known that dialgebras (dimonoids) ([2, 3]) can be obtained from trialgebras (trioids). In the survey paper [4], numerous examples of trioids were presented. The problem of constructing free trioids was solved in [1, 4]. Free rectangular trioids were given in [5].

Nilpotency in different algebras has been extensively studied by many authors. So, the notion of a nilpotent semigroup was introduced by A. I. Malcev ([6]) and independently by B. H. Neuman and T. Taylor ([7]). The relationships between nilpotent semigroups and semigroup algebras were studied by E. Jespers and J. Okninski ([8]). Nilpotency in rings was considered in [9]. Papers [10, 11] are devoted to studying (di)nilpotent dimonoids.

This paper develops the variety theory of trioids. In Section 2 constructions of a free trioid and some other algebras are given. In Section 3 we introduce the notion of a nilpotent trioid, give examples of nilpotent trioids of nilpotency index 2 and construct a free n-nilpotent trioid. In Section 4 we introduce the notion of a 0 -triband of subtrioids and in terms of 0 -tribands of subtrioids describe the structure of free n-nilpotent trioids. In the final section the least n-nilpotent congruence on a free trioid is characterized.
2. Preliminaries. Consider free trioids (see [4]).

[^1]Let Y be an arbitrary nonempty set, $\bar{Y}=\{\bar{x} \mid x \in Y\}, X=Y \cup \bar{Y}$ and $F[X]$ be the free semigroup on X. Let further $P \subset F[X]$ be a subsemigroup which contains words w with the element $\bar{x}(x \in Y)$ occuring in w at least one time. It is easy to see that $F[X]$ is a band of semigroups P and $F[X] \backslash P[12]$.

Let $w \in P$. Denote by \widetilde{w} the word obtained from w by the replacement of all letters \bar{x} $(x \in Y)$ with x. For instance, if $w=x \bar{x} \bar{y} x \bar{z}$, then $\widetilde{w}=x x y x z$. Obviously, $\widetilde{w} \in F[X] \backslash P$.

Define operations \dashv, \vdash and \perp on P by

$$
w \dashv u=w \widetilde{u}, \quad w \vdash u=\widetilde{w} u, \quad w \perp u=w u
$$

for all $w, u \in P$. Denote the algebra $(P, \dashv, \vdash, \perp)$ by $\operatorname{Frt}(Y)$.
The proof of the following statement is similar to the proof of Proposition 1.9 from [1] obtained for the free trioid of rank 1 .

Proposition 1. $\operatorname{Frt}(Y)$ is the free trioid of an arbitrary rank.
If $Y=\{x\}$, then $\operatorname{Frt}(Y)$ is the free trioid of rank 1 presented by J.-L. Loday and M. O. Ronco in [1]. In the latter paper it was shown that the free associative trialgebra over a vector space is completely determined by the free associative trialgebra on one generator and the description of that trialgebra is reduced to the description of the free trioid of rank 1. A trioid which is isomorphic to the free trioid of rank 1 can be found in [4].

The notion of a normal form for elements of $\operatorname{Frt}(Y)$ of rank 1 (see [1], Lemma 1.10) can be naturally extended to the case of an arbitrary set Y. Namely, let Y be an arbitrary nonempty set and $w \in \operatorname{Frt}(Y)$. Then we obtain the normal form for w (see [13]):

$$
\begin{aligned}
w= & u_{1}^{(0)} u_{2}^{(0)} \ldots u_{k_{0}}^{(0)} \overline{u_{1}^{(1)}} u_{2}^{(1)} \ldots u_{k_{1}}^{(1)} \overline{u_{1}^{(2)}} u_{2}^{(2)} \ldots u_{k_{2}}^{(2)} \ldots u_{k_{j-1}}^{(j-1)} \overline{u_{1}^{(j)}} u_{2}^{(j)} \ldots u_{k_{j}}^{(j)}= \\
& =\left(\overline{u_{1}^{(0)}} \vdash \ldots \vdash \overline{u_{k_{0}}^{(0)}}\right) \vdash\left(\overline{u_{1}^{(1)}} \dashv \ldots \dashv \overline{u_{k_{1}}^{(1)}}\right) \perp \ldots \perp\left(\overline{u_{1}^{(j)}} \dashv \ldots \dashv \overline{u_{k_{j}}^{(j)}}\right),
\end{aligned}
$$

where $u_{l}^{(i)} \in Y, 1 \leq l \leq k_{i}$ for all $i \in\{0,1, \ldots, j\}$, or

$$
\begin{gathered}
w=\overline{u_{1}^{(1)}} u_{2}^{(1)} \ldots u_{k_{1}}^{(1)} \overline{u_{1}^{(2)}} u_{2}^{(2)} \ldots u_{k_{2}}^{(2)} \ldots u_{k_{j-1}}^{(j-1)} u_{1}^{(j)} u_{2}^{(j)} \ldots u_{k_{j}}^{(j)}= \\
=\left(\overline{u_{1}^{(1)}} \dashv \ldots \dashv \overline{u_{k_{1}}^{(1)}}\right) \perp\left(\overline{\left(u_{1}^{(2)}\right.} \dashv \ldots \dashv \overline{u_{k_{2}}^{(2)}}\right) \perp \ldots \perp\left(\overline{u_{1}^{(j)}} \dashv \ldots \dashv \overline{u_{k_{j}}^{(j)}}\right),
\end{gathered}
$$

where $u_{l}^{(i)} \in Y, 1 \leq l \leq k_{i}$ for all $i \in\{1,2, \ldots, j\}$. Let further $\left(T, \not \dashv^{\prime}, \vdash^{\prime}, \perp^{\prime}\right)$ be an arbitrary trioid and $\varphi: \bar{Y} \rightarrow T$ be an arbitrary map. Since $\operatorname{Frt}(Y)$ is a free trioid, there exists a homomorphism $\Phi: \operatorname{Frt}(Y) \rightarrow\left(T, \dashv^{\prime}, \vdash^{\prime}, \perp^{\prime}\right)$. It is defined by the following rule (see [13]):

$$
\begin{gathered}
\left.w \Phi=\left(\overline{u_{1}^{(0)}} \varphi \vdash^{\prime} \overline{u_{2}^{(0)}} \varphi \vdash^{\prime} \ldots \vdash^{\prime} \overline{u_{k_{0}}^{(0)}} \varphi\right) \vdash^{\prime} \overline{\left(u_{1}^{(1)}\right.} \varphi \dashv^{\prime} \overline{u_{2}^{(1)}} \varphi \dashv^{\prime} \ldots \dashv^{\prime} \overline{u_{k_{1}}^{(1)}} \varphi\right) \perp^{\prime} \\
\perp^{\prime} \ldots \perp^{\prime}\left(\overline{u_{1}^{(j)}} \varphi \dashv^{\prime} \overline{u_{2}^{(j)}} \varphi \dashv^{\prime} \ldots \dashv^{\prime} \overline{u_{k_{j}}^{(j)}} \varphi\right)
\end{gathered}
$$

or

$$
\begin{gathered}
\left.w \Phi=\left(\overline{u_{1}^{(1)}} \varphi \dashv^{\prime} \overline{u_{2}^{(1)}} \varphi \dashv^{\prime} \ldots \dashv^{\prime} \overline{u_{k_{1}}^{(1)}} \varphi\right) \perp^{\prime} \overline{\left(u_{1}^{(2)}\right.} \varphi \dashv^{\prime} \overline{u_{2}^{(2)}} \varphi \dashv^{\prime} \ldots \dashv^{\prime} \overline{u_{k_{2}}^{(2)}} \varphi\right) \perp^{\prime} \\
\perp^{\prime} \ldots \perp^{\prime}\left(\overline{u_{1}^{(j)}} \varphi \dashv^{\prime} \overline{u_{2}^{(j)}} \varphi \dashv^{\prime} \ldots \dashv^{\prime} \overline{u_{k_{j}}^{(j)}} \varphi\right) .
\end{gathered}
$$

We will call Φ the canonical homomorphism.

Now recall the definition of a dimonoid ([2, 3]).
A nonempty set D equipped with two binary associative operations \dashv and \vdash satisfying the axioms $(T 1)-(T 3)$ is called a dimonoid. If $D=(D, \dashv, \vdash)$ is a dimonoid, then the trioid $(D, \dashv, \vdash, \dashv)$ (respectively, $(D, \dashv, \vdash, \vdash)$) will be denoted by $(D)^{\dashv}$ (respectively, $\left.(D)^{\vdash}\right)$. It is clear that $(D)^{\dashv}$ and $(D)^{\vdash}$ are distinct as trioids but they coincide as dimonoids.

Consider some algebras from [14] and [5] which will be used in Section 4.
For an arbitrary nonempty set Y let $Y_{\ell z}=(Y, \dashv), Y_{r z}=(Y, \vdash), Y_{r b}=Y_{\ell z} \times Y_{r z}$ be a left zero semigroup, a right zero semigroup and a rectangular band, respectively. By [14] $Y_{\ell z, r z}=(Y, \dashv, \vdash)$ is the free left zero and right zero dimonoid (or the free left and right diband).

Define operations \dashv and \vdash on Y^{2} by $(x, y) \dashv(a, b)=(x, b), \quad(x, y) \vdash(a, b)=(a, b)$ for all $(x, y),(a, b) \in Y^{2}$. By [14] $\left(Y^{2}, \dashv, \vdash\right)$ is the free $(r b, r z)$-dimonoid. It is denoted by $Y_{r b, r z}$.

Define operations \dashv and \vdash on Y^{2} by $(x, y) \dashv(a, b)=(x, y), \quad(x, y) \vdash(a, b)=(x, b)$ for all $(x, y),(a, b) \in Y^{2}$. By [14] $\left(Y^{2}, \dashv, \vdash\right)$ is the free $(\ell z, r b)$-dimonoid. It is denoted by $Y_{\ell z, r b}$.

A trioid (dimonoid) is called a rectangular triband ([5], rectangular diband [14]), if each of its semigroups is a rectangular band.

Define operations \dashv and \vdash on Y^{3} by

$$
\left(x_{1}, x_{2}, x_{3}\right) \dashv\left(y_{1}, y_{2}, y_{3}\right)=\left(x_{1}, x_{2}, y_{3}\right),\left(x_{1}, x_{2}, x_{3}\right) \vdash\left(y_{1}, y_{2}, y_{3}\right)=\left(x_{1}, y_{2}, y_{3}\right)
$$

for all $\left(x_{1}, x_{2}, x_{3}\right),\left(y_{1}, y_{2}, y_{3}\right) \in Y^{3}$. The algebra $\left(Y^{3}, \dashv, \vdash\right)$ is denoted by $\operatorname{FRct}(Y)$. According to Theorem 1 from [14] $\operatorname{FRct}(Y)$ is a free rectangular diband.

Define operations \dashv, \vdash and \perp on Y^{3} by

$$
\begin{gathered}
\left(a_{1}, b_{1}, c_{1}\right) \dashv\left(a_{2}, b_{2}, c_{2}\right)=\left(a_{1}, b_{1}, c_{1}\right),\left(a_{1}, b_{1}, c_{1}\right) \vdash\left(a_{2}, b_{2}, c_{2}\right)=\left(a_{1}, b_{2}, c_{2}\right), \\
\left(a_{1}, b_{1}, c_{1},\right) \perp\left(a_{2}, b_{2}, c_{2}\right)=\left(a_{1}, b_{1}, c_{2}\right)
\end{gathered}
$$

for all $\left(a_{1}, b_{1}, c_{1}\right),\left(a_{2}, b_{2}, c_{2}\right) \in Y^{3}$. By Lemma 1 from $[5]\left(Y^{3}, \dashv, \vdash, \perp\right)$ is a rectangular triband. It is denoted by $Y_{l z, r d}$.

Define operations \dashv, \vdash and \perp on Y^{3} by

$$
\begin{gathered}
\left(a_{1}, b_{1}, c_{1}\right) \dashv\left(a_{2}, b_{2}, c_{2}\right)=\left(a_{1}, b_{1}, c_{2}\right),\left(a_{1}, b_{1}, c_{1}\right) \vdash\left(a_{2}, b_{2}, c_{2}\right)=\left(a_{2}, b_{2}, c_{2}\right), \\
\left(a_{1}, b_{1}, c_{1},\right) \perp\left(a_{2}, b_{2}, c_{2}\right)=\left(a_{1}, b_{2}, c_{2}\right)
\end{gathered}
$$

for all $\left(a_{1}, b_{1}, c_{1}\right),\left(a_{2}, b_{2}, c_{2}\right) \in Y^{3}$. By Lemma 2 from $[5]\left(Y^{3}, \dashv, \vdash, \perp\right)$ is a rectangular triband. It is denoted by $Y_{r d, r z}$.

Define operations \dashv, \vdash and \perp on Y^{2} by

$$
\left(a_{1}, b_{1}\right) \dashv\left(a_{2}, b_{2}\right)=\left(a_{1}, b_{1}\right), \quad\left(a_{1}, b_{1}\right) \vdash\left(a_{2}, b_{2}\right)=\left(a_{2}, b_{2}\right),\left(a_{1}, b_{1}\right) \perp\left(a_{2}, b_{2}\right)=\left(a_{1}, b_{2}\right)
$$

for all $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right) \in Y^{2}$. By Lemma 3 from [5] $\left(Y^{2}, \dashv, \vdash, \perp\right)$ is a rectangular triband. It is denoted by $Y_{l z, r z}^{r b}$. Note that the trioid $Y_{l z, r z}^{r b}$ was first constructed in [15].

Define operations \dashv, \vdash and \perp on Y^{4} by

$$
\begin{aligned}
& \left(x_{1}, x_{2}, x_{3}, x_{4}\right) \dashv\left(y_{1}, y_{2}, y_{3}, y_{4}\right)=\left(x_{1}, x_{2}, x_{3}, y_{4}\right), \\
& \left(x_{1}, x_{2}, x_{3}, x_{4}\right) \vdash\left(y_{1}, y_{2}, y_{3}, y_{4}\right)=\left(x_{1}, y_{2}, y_{3}, y_{4}\right), \\
& \left(x_{1}, x_{2}, x_{3}, x_{4}\right) \perp\left(y_{1}, y_{2}, y_{3}, y_{4}\right)=\left(x_{1}, x_{2}, y_{3}, y_{4}\right)
\end{aligned}
$$

for all $\left(x_{1}, x_{2}, x_{3}, x_{4}\right),\left(y_{1}, y_{2}, y_{3}, y_{4}\right) \in Y^{4}$. The algebra $\left(Y^{4}, \dashv, \vdash, \perp\right)$ is denoted by $\operatorname{FRT}(Y)$. By Theorem 5 from [5] $\operatorname{FRT}(Y)$ is a free rectangular triband.

A nonempty subset A of a trioid $(T, \dashv, \vdash, \perp)$ is called a subtrioid, if for any $a, b \in T$, $a, b \in A$ implies $a \dashv b, a \vdash b, a \perp b \in A$.

As usual, \mathbb{N} denotes the set of all positive integers.
3. Nilpotency in trioids. In this section we introduce the notion of a nilpotent trioid, give examples of nilpotent trioids of nilpotency index 2 and construct a free n-nilpotent trioid of an arbitrary rank.

An element 0 of a trioid $(T, \dashv, \vdash, \perp)$ is called zero $([16])$, if $x * 0=0 * x=0 * 0=0$ for all $x \in T$ and $* \in\{\dashv, \vdash, \perp\}$.

A trioid $(T, \dashv, \vdash, \perp)$ with zero will be called nilpotent, if for some $n \in \mathbb{N}$ and any $x_{i} \in T$, $1 \leq i \leq n+1$, and $*_{j} \in\{-, \vdash, \perp\}, 1 \leq j \leq n$, any parenthesizing of $x_{1} *_{1} x_{2} *_{2} \ldots *_{n} x_{n+1}$ gives $0 \in T$. The least such n we shall call the nilpotency index of $(T, \dashv, \vdash, \perp)$. For $k \in \mathbb{N}$ a nilpotent trioid of nilpotency index $\leq k$ is said to be k-nilpotent.

It is clear that operations of any 1-nilpotent trioid coincide and it is a zero semigroup.
Now we give examples of nilpotent trioids of nilpotency index 2.
Let X_{1} and X_{2} be arbitrary disjoint sets, $0 \in X_{1}$, and let

$$
\varphi_{1}: X_{2} \times X_{2} \rightarrow X_{1}, \quad \varphi_{2}: X_{2} \times X_{2} \rightarrow X_{1}, \quad \varphi_{3}: X_{2} \times X_{2} \rightarrow X_{1}
$$

be arbitrary distinct maps. Define operations \dashv, \vdash and \perp on $X_{1} \cup X_{2}$ by

$$
\begin{gathered}
x \dashv y=\left\{\begin{array}{ll}
(x, y) \varphi_{1}, & x, y \in X_{2}, \\
0, & \text { otherwise },
\end{array} \quad x \vdash y= \begin{cases}(x, y) \varphi_{2}, & x, y \in X_{2}, \\
0, & \text { otherwise },\end{cases} \right. \\
x \perp y= \begin{cases}(x, y) \varphi_{3}, & x, y \in X_{2}, \\
0, & \text { otherwise }\end{cases}
\end{gathered}
$$

for all $x, y \in X_{1} \cup X_{2}$.
The proof of the following statement is similar to the proof of Proposition 2 from [10].
Proposition 2. $\left(X_{1} \cup X_{2}, \dashv, \vdash, \perp\right)$ is a nilpotent trioid of nilpotency index 2 .
Recall that a trioid is called commutative, if its three operations are commutative.
Let Y be an arbitrary set such that $0, a, b, c, d, e, f \in Y$ and $a \neq b, b \neq c, c \neq d, d \neq a$, $b \neq e, d \neq e, f \neq e, a \neq f, c \neq f$. Define operations \dashv, \vdash and \perp on Y, assuming

$$
x \dashv y=\left\{\begin{array}{ll}
b, & x=y=a, \\
0, & \text { otherwise },
\end{array} \quad x \vdash y=\left\{\begin{array}{ll}
d, & x=y=c, \\
0, & \text { otherwise },
\end{array} \quad x \perp y= \begin{cases}f, & x=y=e \\
0, & \text { otherwise }\end{cases}\right.\right.
$$

for all $x, y \in Y$.
The proof of the following statement is similar to that of Proposition 3 from [10].
Proposition 3. If $b \neq 0$ or $d \neq 0$, or $f \neq 0$, then $(Y, \dashv, \vdash, \perp)$ is a nilpotent commutative trioid of nilpotency index 2 .

Note that the trioid $(Y, \dashv \vdash \vdash, \perp)$ was first constructed in [15].
It is not difficult to see that the class of all n-nilpotent trioids is a subvariety of the variety of all trioids. A trioid which is free in the variety of n-nilpotent trioids will be called a free n-nilpotent trioid.

See $[4,17,18]$ for more information about trioids.
For every $w \in F[X]$ denote the length of w by l_{w}. Let $n \in \mathbb{N}$ and $P_{n} \subset P$ be a set which contains words w with the length no more than n (see Section 2). Define operations \prec, \succ and \uparrow on the set $P_{n} \cup\{0\}$ by

$$
\begin{aligned}
& w \prec u=\left\{\begin{array}{ll}
w \widetilde{u}, & l_{w u} \leq n, \\
0, & l_{w u}>n,
\end{array}, w \succ u= \begin{cases}\widetilde{w} u, & l_{w u} \leq n, \\
0, & l_{w u}>n,\end{cases} \right. \\
& w \uparrow u=\left\{\begin{array}{ll}
w u, & l_{w u} \leq n, \\
0, & l_{w u}>n,
\end{array} \quad w * 0=0 * w=0 * 0=0\right.
\end{aligned}
$$

for all $w, u \in P_{n}$ and $* \in\{\prec, \succ, \uparrow\}$. Denote the algebra $\left(P_{n} \cup\{0\}, \prec, \succ, \uparrow\right)$ by $P_{n}^{0}(Y)$.
Theorem 1. $P_{n}^{0}(Y)$ is a free n-nilpotent trioid of an arbitrary rank.
Proof. By Proposition 1 from [16] $P_{n}^{0}(Y)$ is a trioid with zero. For any $w_{i} \in P_{n}^{0}(Y) \backslash\{0\}$, $1 \leq i \leq n+1$, and $*_{j} \in\{\prec, \succ, \uparrow\}, 1 \leq j \leq n$, any parenthesizing of $w_{1} *_{1} w_{2} *_{2} \ldots *_{n} w_{n+1}$ gives 0 . Thus, $P_{n}^{0}(Y)$ is nilpotent. On the other hand, for $\bar{x} \in \bar{Y}$,

$$
\underbrace{\bar{x} \prec \bar{x} \prec \ldots \prec \bar{x}}_{n}=\underbrace{\bar{x} x \ldots x}_{n} \neq 0 .
$$

It means that $P_{n}^{0}(Y)$ has nilpotency index n.
Let us show that $P_{n}^{0}(Y)$ is free in the variety of n-nilpotent trioids.
Let $\left(T, \dashv^{\prime}, \vdash^{\prime}, \perp^{\prime}\right)$ be an arbitrary n-nilpotent trioid, $\rho: \bar{Y} \rightarrow T$ be an arbitrary map and μ : $\operatorname{Frt}(Y) \rightarrow\left(T, \dashv^{\prime}, \vdash^{\prime}, \perp^{\prime}\right)$ be the canonical homomorphism which is defined by ρ (see Section 2). Define a map $\delta: P_{n}^{0}(Y) \rightarrow\left(T, \dashv^{\prime}, \vdash^{\prime}, \perp^{\prime}\right): w \mapsto w \delta$, assuming

$$
w \delta= \begin{cases}w \mu, & w \in P_{n}^{0}(Y) \backslash\{0\} \\ 0, & w=0\end{cases}
$$

Show that δ is a homomorphism.
Let $w_{1}, w_{2} \in P_{n}^{0}(Y) \backslash\{0\}$ and $l_{w_{1}}+l_{w_{2}} \leq n$. As $w_{1} \prec w_{2} \in P_{n}^{0}(Y) \backslash\{0\}$, then

$$
\left(w_{1} \prec w_{2}\right) \delta=\left(w_{1} \prec w_{2}\right) \mu=\left(w_{1} \dashv w_{2}\right) \mu=w_{1} \mu \dashv^{\prime} w_{2} \mu=w_{1} \delta \dashv^{\prime} w_{2} \delta .
$$

Analogously, $\left(w_{1} \succ w_{2}\right) \delta=w_{1} \delta \vdash^{\prime} w_{2} \delta,\left(w_{1} \uparrow w_{2}\right) \delta=w_{1} \delta \perp^{\prime} w_{2} \delta$. The map μ sends an arbitrary element w to the product of some l_{w} elements from T. Hence, in the remaining cases the equalities

$$
\left(w_{1} \prec w_{2}\right) \delta=\left(w_{1} \succ w_{2}\right) \delta=\left(w_{1} \uparrow w_{2}\right) \delta=0=w_{1} \delta \dashv^{\prime} w_{2} \delta=w_{1} \delta \vdash^{\prime} w_{2} \delta=w_{1} \delta \perp^{\prime} w_{2} \delta
$$

hold. Thus, δ is a homomorhism.
4. 0-triband decompositions of $P_{n}^{0}(Y)$. In this section we introduce the notion of a 0 -triband of subtrioids and in terms of 0 -tribands of subtrioids describe the structure of free n-nilpotent trioids.

For trioids with zero there exists a natural analog of the notion of a triband of subtrioids (see [15]).

A trioid S with zero 0 (see Section 3) will be called a 0 -triband of subtrioids $S_{\beta}, \beta \in B$, where B is an idempotent trioid [15], if $S=\bigcup_{\beta \in B} S_{\beta}, S_{\beta} \cap S_{\gamma}=\{0\}$ for $\beta \neq \gamma$ and $S_{\beta} \dashv S_{\gamma} \subseteq$ $S_{\beta \dashv \gamma}, S_{\beta} \vdash S_{\gamma} \subseteq S_{\beta \vdash \gamma}, S_{\beta} \perp S_{\gamma} \subseteq S_{\beta \perp \gamma}$ for any $\beta, \gamma \in B$. If B is an idempotent semigroup (band), then we say that S is a 0 -band of subtrioids $S_{\beta}, \beta \in B$.

Observe that the notion of a 0 -triband of subtrioids generalizes the notion of a 0 -diband of subdimonoids ([3]) and the notion of a 0 -band of semigroups ([19]).

Let $\omega \in F[X]$ and $w \in P_{n}^{0}(Y) \backslash\{0\}$. Denote the first (respectively, last) letter of ω by $\omega^{(0)}$ (respectively, $\omega^{(1)}$). Suppose that u is the initial (respectively, terminal) subword of w with the minimal length such that $u^{(1)} \in \bar{Y}$ (respectively, $u^{(0)} \in \bar{Y}$). In this case $\widetilde{u^{(1)}}$ (respectively, $\left.\widetilde{u^{(0)}}\right)$ will be denoted by $w^{[0]}$ (respectively, $w^{[1]}$).

Let

$$
\begin{gathered}
Q_{(i, j)}=\left\{w \in P_{n}^{0}(Y) \backslash\{0\} \mid\left(\widetilde{w}^{(0)}, \widetilde{w}^{(1)}\right)=(i, j)\right\} \cup\{0\} \\
Q_{(i)}=\left\{w \in P_{n}^{0}(Y) \backslash\{0\} \mid \widetilde{w}^{(0)}=i\right\} \cup\{0\}, Q_{[i]}=\left\{w \in P_{n}^{0}(Y) \backslash\{0\} \mid \widetilde{w}^{(1)}=i\right\} \cup\{0\}
\end{gathered}
$$

for $i, j \in Y, n>1$ and $|Y|>1$.
The following structural theorem gives decompositions of $P_{n}^{0}(Y)$ into 0-bands of subtrioids.

Theorem 2. The free n-nilpotent trioid $P_{n}^{0}(Y)$ is a 0 -band of subtrioids
(i) $Q_{(i, j)},(i, j) \in Y_{r b}$, if $n>1$ and $|Y|>1$;
(ii) $Q_{(i)}, i \in Y_{l z}$, if $n>1$ and $|Y|>1$;
(iii) $Q_{[i]}, i \in Y_{r z}$, if $n>1$ and $|Y|>1$.

Proof. We prove (i). It is obvious that in the case where $n>1$ and $|Y|>1$ one has $Q_{(i, j)} \backslash\{0\} \neq \varnothing$ for all $(i, j) \in Y_{r b}$. Moreover, $Q_{(i, j)},(i, j) \in Y_{r b}$, is a subtrioid of $P_{n}^{0}(Y)$. Clearly,

$$
P_{n}^{0}(Y)=\bigcup_{(i, j) \in Y_{r b}} Q_{(i, j)}, Q_{(i, j)} \cap Q_{\left(i^{\prime}, j^{\prime}\right)}=\{0\}
$$

for $(i, j) \neq\left(i^{\prime}, j^{\prime}\right)$. It is immediate to verify that

$$
Q_{(i, j)} \dashv Q_{\left(i^{\prime}, j^{\prime}\right)} \subseteq Q_{\left(i, j^{\prime}\right)}, \quad Q_{(i, j)} \vdash Q_{\left(i^{\prime}, j^{\prime}\right)} \subseteq Q_{\left(i, j^{\prime}\right)}, \quad Q_{(i, j)} \perp Q_{\left(i^{\prime}, j^{\prime}\right)} \subseteq Q_{\left(i, j^{\prime}\right)}
$$

for any $(i, j),\left(i^{\prime}, j^{\prime}\right) \in Y_{r b}$. So, $P_{n}^{0}(Y)$ is a 0 -band of subtrioids $Q_{(i, j)},(i, j) \in Y_{r b}$.
The proofs of the remaining cases are similar.
Assume

$$
Q_{(i, j, k, s)}=\left\{w \in P_{n}^{0}(Y) \backslash\{0\} \mid\left(\widetilde{w}^{(0)}, w^{[0]}, w^{[1]}, \widetilde{w}^{(1)}\right)=(i, j, k, s)\right\} \cup\{0\}
$$

for $i, j, k, s \in Y, n>3$ and $|Y|>1$;

$$
\begin{aligned}
Q_{(i, j, k)} & =\left\{w \in P_{n}^{0}(Y) \backslash\{0\} \mid\left(\widetilde{w}^{(0)}, w^{[0]}, w^{[1]}\right)=(i, j, k)\right\} \cup\{0\}, \\
Q_{[i, j, k]} & =\left\{w \in P_{n}^{0}(Y) \backslash\{0\} \mid\left(w^{[0]}, w^{[1]}, \widetilde{w}^{(1)}\right)=(i, j, k)\right\} \cup\{0\}
\end{aligned}
$$

for $i, j, k \in Y, n>2$ and $|Y|>1 ; Q_{[i, j]}=\left\{w \in P_{n}^{0}(Y) \backslash\{0\} \mid\left(w^{[0]}, w^{[1]}\right)=(i, j)\right\} \cup\{0\}$ for $i, j \in Y, n>1$ and $|Y|>1$.

The following two structural theorems give decompositions of $P_{n}^{0}(Y)$ into 0-tribands of subtrioids.

Theorem 3. The free n-nilpotent trioid $P_{n}^{0}(Y)$ is a 0 -triband of subtrioids
(i) $Q_{(i, j, k, s)},(i, j, k, s) \in \operatorname{FRT}(Y)$, if $n>3$ and $|Y|>1$;
(ii) $Q_{(i, j, k)},(i, j, k) \in Y_{l z, r d}$, if $n>2$ and $|Y|>1$;
(ii) $Q_{[i, j, k]},(i, j, k) \in Y_{r d, r z}$, if $n>2$ and $|Y|>1$;
(iv) $Q_{[i, j]},(i, j) \in Y_{l z, r z}^{r b}$, if $n>1$ and $|Y|>1$.

Proof. We prove (i). It is easy to see that in the case where $n>3$ and $|Y|>1$ we get $Q_{(i, j, k, s)} \backslash\{0\} \neq \varnothing$ for all $(i, j, k, s) \in \operatorname{FRT}(Y)$. Furthermore, $Q_{(i, j, k, s)},(i, j, k, s) \in \operatorname{FRT}(Y)$, is a subtrioid of $P_{n}^{0}(Y)$. Evidently,

$$
P_{n}^{0}(Y)=\bigcup_{(i, j, k, s) \in \operatorname{FRT}(Y)} Q_{(i, j, k, s)}, Q_{(i, j, k, s)} \cap Q_{\left(i^{\prime}, j^{\prime}, k^{\prime}, s^{\prime}\right)}=\{0\}
$$

for $(i, j, k, s) \neq\left(i^{\prime}, j^{\prime}, k^{\prime}, s^{\prime}\right)$. It can be shown that

$$
\begin{gathered}
Q_{(i, j, k, s)} \backslash Q_{\left(i^{\prime}, j^{\prime}, k^{\prime}, s^{\prime}\right)} \subseteq Q_{\left(i, j, j, s^{\prime}\right)}, \quad Q_{(i, j, k, s)} \vdash Q_{\left(i^{\prime}, j^{\prime}, k^{\prime}, s^{\prime}\right)} \subseteq Q_{\left(i, j^{\prime}, k^{\prime}, s^{\prime}\right)}, \\
Q_{(i, j, j, k, s)} \perp Q_{\left(i^{\prime}, j^{\prime}, k^{\prime}, s^{\prime}\right)} \subseteq Q_{\left(i, i, k, k^{\prime}, s^{\prime}\right)}
\end{gathered}
$$

for any $(i, j, k, s),\left(i^{\prime}, j^{\prime}, k^{\prime}, s^{\prime}\right) \in \operatorname{FRT}(Y)$. Thus, $P_{n}^{0}(Y)$ is a 0 -triband of subtrioids $Q_{(i, j, k, s)}$, $(i, j, k, s) \in \operatorname{FRT}(Y)$.

The proofs of the remaining cases are similar.
Let

$$
\begin{aligned}
W_{(i, j, k)} & =\left\{w \in P_{n}^{0}(Y) \backslash\{0\} \mid\left(\widetilde{w}^{(0)}, w^{[0]}, \widetilde{w}^{(1)}\right)=(i, j, k)\right\} \cup\{0\}, \\
W_{[i, j, k]} & =\left\{w \in P_{n}^{0}(Y) \backslash\{0\} \mid\left(\widetilde{w}^{(0)}, w^{[1]}, \widetilde{w}^{(1)}\right)=(i, j, k)\right\} \cup\{0\}
\end{aligned}
$$

for $i, j, k \in Y, n>2$ and $|Y|>1$;

$$
\begin{gathered}
W_{(i, j)}=\left\{w \in P_{n}^{0}(Y) \backslash\{0\} \mid\left(\widetilde{w}^{(0)}, w^{[0]}\right)=(i, j)\right\} \cup\{0\}, \\
W_{[i, j]}=\left\{w \in P_{n}^{0}(Y) \backslash\{0\} \mid\left(\widetilde{w}^{(0)}, w^{[1]}\right)=(i, j)\right\} \cup\{0\}, \\
W_{(i, j]}=\left\{w \in P_{n}^{0}(Y) \backslash\{0\} \mid\left(w^{[0]}, \widetilde{w}^{(1)}\right)=(i, j)\right\} \cup\{0\}, \\
W_{[i, j)}=\left\{w \in P_{n}^{0}(Y) \backslash\{0\} \mid\left(w^{[1]}, \widetilde{w}^{(1)}\right)=(i, j)\right\} \cup\{0\}, \\
W_{(i)}=\left\{w \in P_{n}^{0}(Y) \backslash\{0\} \mid w^{[0]}=i\right\} \cup\{0\}, W_{[i]}=\left\{w \in P_{n}^{0}(Y) \backslash\{0\} \mid w^{[1]}=i\right\} \cup\{0\}
\end{gathered}
$$

for $i, j \in Y, n>1$ and $|Y|>1$.
Theorem 4. The free n-nilpotent trioid $P_{n}^{0}(Y)$ is a 0 -triband of subtrioids
(i) $W_{(i, j, k)},(i, j, k) \in(\operatorname{FRct}(Y))^{-1}$, if $n>2$ and $|Y|>1$;
(ii) $W_{[i, j, k]},(i, j, k) \in(\operatorname{FRct}(Y))^{\vdash}$, if $n>2$ and $|Y|>1$;
(iii) $W_{(i, j)},(i, j) \in\left(Y_{l z, r b}\right)^{-1}$, if $n>1$ and $|Y|>1$;
(iv) $W_{[i, j]},(i, j) \in\left(Y_{l z, r b}\right)^{\vdash}$, if $n>1$ and $|Y|>1$;
(v) $W_{(i, j]},(i, j) \in\left(Y_{r b, r z}\right)^{-1}$, if $n>1$ and $|Y|>1$;
(vi) $W_{[i, j)},(i, j) \in\left(Y_{r b, r z}\right)^{\vdash}$, if $n>1$ and $|Y|>1$;
(vii) $W_{(i)}, i \in\left(Y_{l z, r z}\right)^{-1}$, if $n>1$ and $|Y|>1$;
(viii) $W_{[i]}, i \in\left(Y_{l z, r z}\right)^{\vdash}$, if $n>1$ and $|Y|>1$.

Proof. We prove (i). It is readily seen that in the case where $n>2$ and $|Y|>1$ one has $W_{(i, j, k)} \backslash\{0\} \neq \varnothing$ for all $(i, j, k) \in(\operatorname{FRct}(Y))^{\dashv}$. In addition, $W_{(i, j, k)},(i, j, k) \in(\operatorname{FRct}(Y))^{\dashv}$, is a subtrioid of $P_{n}^{0}(Y)$. It is clear that

$$
P_{n}^{0}(Y)=\bigcup_{(i, j, k) \in(\operatorname{FRct}(Y))^{-1}} W_{(i, j, k)}, W_{(i, j, k)} \cap W_{\left(i^{\prime}, j^{\prime}, k^{\prime}\right)}=\{0\}
$$

for $(i, j, k) \neq\left(i^{\prime}, j^{\prime}, k^{\prime}\right)$. One can check that

$$
W_{(i, j, k)} \dashv W_{\left(i^{\prime}, j^{\prime}, k^{\prime}\right)} \subseteq W_{\left(i, j, k^{\prime}\right)}, \quad W_{(i, j, k)} \vdash W_{\left(i^{\prime}, j^{\prime}, k^{\prime}\right)} \subseteq W_{\left(i, j^{\prime}, k^{\prime}\right)}, \quad W_{(i, j, k)} \perp W_{\left(i^{\prime}, j^{\prime}, k^{\prime}\right)} \subseteq W_{\left(i, j, k^{\prime}\right)}
$$

for any $(i, j, k),\left(i^{\prime}, j^{\prime}, k^{\prime}\right) \in(\operatorname{FRct}(Y))^{-1}$. Therefore, $P_{n}^{0}(Y)$ is a 0 -triband of subtrioids $W_{(i, j, k)}$, $(i, j, k) \in(\operatorname{FRct}(Y))^{-1}$.

The proofs of the remaining cases are similar.
5. The least n-nilpotent congruence on a free trioid. In this section we present the least n-nilpotent congruence on a free trioid.

If $f: T_{1} \rightarrow T_{2}$ is a homomorphism of trioids, then the corresponding congruence on T_{1} will be denoted by Δ_{f}. If α is a congruence on a trioid $(T, \dashv, \vdash, \perp)$ such that $(T, \dashv, \vdash, \perp) / \alpha$ is an n-nilpotent trioid (see Section 3), then we say that α is an n-nilpotent congruence.

Let $\operatorname{Frt}(Y)$ be a free trioid of an arbitrary rank (see Section 2). Fix $n \in \mathbb{N}$ and define a relation ν_{n} on $\operatorname{Frt}(Y)$ by

$$
w_{1} \nu_{n} w_{2} \text { if and only if } w_{1}=w_{2} \text { or } l_{w_{1}}>n, l_{w_{2}}>n
$$

Theorem 5. The relation ν_{n} is the least n-nilpotent congruence on the free trioid $\operatorname{Frt}(Y)$.
Proof. Define a map $\xi: \operatorname{Frt}(Y) \rightarrow P_{n}^{0}(Y)$ by

$$
w \xi=\left\{\begin{array}{ll}
w, & l_{w} \leq n, \\
0, & l_{w}>n,
\end{array} \quad w \in \operatorname{Frt}(Y)\right.
$$

Take $w_{1}, w_{2} \in \operatorname{Frt}(Y)$ and assume $l_{w_{1} w_{2}} \leq n$. From $l_{w_{1} w_{2}} \leq n$ it follows that $l_{w_{1}}<n$ and $l_{w_{2}}<n$. Then

$$
\begin{gathered}
\left(w_{1} \dashv w_{2}\right) \xi=\left(w_{1} \widetilde{w_{2}}\right) \xi=w_{1} \widetilde{w_{2}}=w_{1} \prec w_{2}=w_{1} \xi \prec w_{2} \xi, \\
\left(w_{1} \vdash w_{2}\right) \xi=\left(\widetilde{w_{1}} w_{2}\right) \xi=\widetilde{w_{1}} w_{2}=w_{1} \succ w_{2}=w_{1} \xi \succ w_{2} \xi, \\
\left(w_{1} \perp w_{2}\right) \xi=\left(w_{1} w_{2}\right) \xi=w_{1} w_{2}=w_{1} \uparrow w_{2}=w_{1} \xi \uparrow w_{2} \xi .
\end{gathered}
$$

If $l_{w_{1} w_{2}}>n$, then

$$
\begin{gathered}
\left(w_{1} \dashv w_{2}\right) \xi=\left(w_{1} \widetilde{w_{2}}\right) \xi=0=w_{1} \xi \prec w_{2} \xi \\
\left(w_{1} \vdash w_{2}\right) \xi=\left(\widetilde{w_{1}} w_{2}\right) \xi=0=w_{1} \xi \succ w_{2} \xi, \quad\left(w_{1} \perp w_{2}\right) \xi=\left(w_{1} w_{2}\right) \xi=0=w_{1} \xi \uparrow w_{2} \xi
\end{gathered}
$$

Consequently, ξ is a surjective homomorphism. According to Theorem $1 P_{n}^{0}(Y)$ is a free n-nilpotent trioid of an arbitrary rank. Then Δ_{ξ} is the least n-nilpotent congruence on $\operatorname{Frt}(Y)$. From the definition of ξ it follows that $\Delta_{\xi}=\nu_{n}$.

REFERENCES

1. J.-L. Loday, M.O. Ronco, Trialgebras and families of polytopes, Contemp. Math., 346 (2004), 369-398.
2. J.-L. Loday, Dialgebras, In: Dialgebras and related operads, Lect. Notes Math., Springer-Verlag, Berlin, 1763 (2001), 7-66.
3. A.V. Zhuchok, Dimonoids, Algebra and Logic, 50 (2011), №4, 323-340.
4. A.V. Zhuchok, Trioids, Asian-European Journal of Math., (2015), to appear.
5. Yul.V. Zhuchok, Free rectangular tribands, Buletinul Academiei de Stiinte a Republicii Moldova, Matematica, (2014), submitted.
6. A.I. Malcev, Nilpotent semigroups, Uchen. Zap. Ivanov. Gos. Ped. Inst., 4 (1953), 107-111. (in Russian)
7. B.H. Neumann, T. Taylor, Subsemigroups of nilpotent groups, Proc. Royal Soc. London, Ser. A, 274 (1963), 1-4.
8. E. Jespers, J. Okninski, Nilpotent semigroups and semigroup algebras, Journal of Algebra, 169 (1994), 984-1011.
9. R.S. Kruse, D.T. Price, On the classification of nilpotent rings, Mathematische Zeitschrift, 113 (1970), №3, 215-223.
10. A.V. Zhuchok, Free n-nilpotent dimonoids, Algebra and Discrete Math., 16 (2013), №2, 299-310.
11. A.V. Zhuchok, Free n-dinilpotent dimonoids, Problems of Physics, Mathematics and Technics, 17 (2013), №4, 43-46.
12. A.H. Clifford, Bands of semigroups, Proc. Amer. Math. Soc., 5 (1954), 499-504.
13. Yu.V. Zhuchok, On definibility of free trioids by endomorhism semigroups, Dopovidi NANU, 4 (2015), to appear. (in Russian)
14. A.V. Zhuchok, Free rectangular dibands and free dimonoids, Algebra and Discrete Math., 11 (2011), №2, 92-111.
15. A.V. Zhuchok, Tribands of subtrioids, Proc. Inst. Applied Math. and Mech., 21 (2010), 98-106.
16. A.V. Zhuchok, On combinatorial properties of operations on trioids, Naukovyy Chasopys NPU im. Dragomanova, Ser. 1, Phis.-Math. Nauku, 14 (2013), 77-83. (in Ukrainian)
17. A.V. Zhuchok, Some congruences on trioids, Journal of Mathematical Sciences, 187 (2012), №2, 138-145.
18. A.V. Zhuchok, Semiretractions of trioids, Ukr. Math. J., 66 (2014), №2, 218-231.
19. L.N. Shevrin, Semigroups, In the book: V. Artamonov, V. Salii, L. Skornyakov and others, General algebra, Sect. IV, 2 (1991), 11-191.

Department of Algebra and System Analysis Luhansk Taras Shevchenko National University yulia.mih@mail.ru

[^0]:

[^1]: 2010 Mathematics Subject Classification: 08A05, 17A30, 17D99, 20M10, 20M50.
 Keywords: trioid; nilpotent trioid; free n-nilpotent trioid; dimonoid; semigroup; congruence. doi:10.15330/ms.43.1.3-11

